Primes just less than a power of two
201 to 300 bits (page 3 of 4)
 
(Another of the Prime Pages' resources)
 Our book "Prime Curios! The Dictionary of Prime Number Trivia" is now available on CreateSpace, Amazon, ....


Home
Search Site

Largest
The 5000
Top 20
Finding
How Many?
Mersenne

Glossary
Prime Curios!
Prime Lists

FAQ
e-mail list
Titans

Prime Links
Submit primes

Here is a frequently asked question at the Prime Pages:
I am working on an algorithm and need a few of the largest primes with 64 bits.  Where can I find them?
To which we answer "here!"  Below, for each consecutive value of n we give the ten least positive integers k such that 2n-k is a prime.  In each case these are proven primes (proven using UBASIC's  APRT-CL). Note that 2n-k will be an n bit number (for these k's).


Pages: 8-100 bits, 101-200 bits, 201-300 bits, 301-400 bits

 
n ten least k's for which 2n-k is prime.
201  55, 111, 313, 381, 385, 439, 481, 663, 679, 865 
202  183, 195, 273, 585, 845, 977, 1043, 1067, 1161, 1355 
203  159, 187, 237, 271, 495, 741, 829, 931, 957, 1101 
204  167, 249, 857, 1125, 1137, 1169, 1487, 1515, 1683, 1815 
205  81, 229, 325, 343, 369, 441, 753, 825, 969, 1089 
206 5, 63, 261, 297, 393, 497, 567, 813, 885, 1017 
207 91, 157, 297, 369, 387, 429, 459, 481, 517, 871 
208 299, 423, 563, 675, 1383, 1505, 1583, 1593, 1695, 1749 
209 33, 273, 301, 321, 439, 451, 493, 735, 873, 885 
210 47, 65, 165, 171, 203, 213, 503, 555, 741, 755 
211 175, 481, 495, 601, 837, 1099, 1281, 1329, 1357, 1917 
212 23, 29, 99, 149, 357, 413, 479, 497, 533, 695 
213 3, 61, 123, 513, 595, 793, 1315, 1329, 1335, 1683 
214 185, 255, 395, 447, 623, 633, 707, 743, 813, 1035 
215 157, 237, 309, 765, 897, 1081, 1147, 1189, 1377, 1477 
216 377, 479, 683, 707, 843, 1167, 1215, 1253, 1343, 1377 
217 61, 229, 369, 441, 519, 675, 729, 811, 999, 1033 
218 33, 117, 233, 243, 257, 275, 297, 341, 623, 747 
219 121, 261, 277, 355, 397, 471, 615, 685, 1105, 1189 
220 77, 167, 395, 473, 483, 585, 587, 609, 923, 963 
221 3, 133, 309, 373, 411, 573, 759, 855, 979, 999 
222 117, 263, 335, 437, 641, 647, 875, 1035, 1103, 1125 
223 235, 259, 549, 715, 777, 1125, 1221, 1225, 1417, 1621 
224 63, 363, 573, 719, 773, 857, 1025, 1223, 1227, 1253 
225 49, 81, 103, 261, 445, 489, 609, 625, 741, 825 
226 5, 77, 155, 203, 215, 417, 533, 573, 767, 833 
227 405, 441, 625, 721, 835, 855, 1017, 1149, 1479, 1507 
228 93, 149, 185, 455, 537, 549, 723, 899, 1209, 1283 
229 91, 291, 475, 531, 565, 685, 733, 775, 939, 1093 
230 27, 77, 345, 351, 831, 917, 1221, 1245, 1247, 1335 
231 165, 217, 235, 249, 345, 391, 399, 439, 481, 559 
232 567, 665, 833, 875, 1163, 1197, 1253, 1403, 1917, 2097 
233 3, 159, 289, 373, 511, 531, 595, 615, 759, 1113 
234 83, 243, 257, 341, 503, 581, 593, 683, 1157, 1803 
235 15, 151, 181, 259, 451, 537, 561, 679, 727, 1167 
236 209, 455, 513, 569, 657, 875, 915, 1203, 1317, 1349 
237 181, 649, 765, 829, 949, 1449, 1515, 1633, 1689, 1711 
238 161, 215, 383, 425, 665, 731, 791, 825, 1263, 1313 
239 87, 199, 421, 531, 939, 1147, 1395, 1701, 2001, 2187 
240 467, 797, 887, 1493, 1529, 2027, 2093, 2253, 2495, 2589 
241 39, 819, 1383, 2065, 2113, 2133, 2215, 2253, 2295, 2505 
242 63, 267, 281, 527, 777, 945, 971, 1077, 1223, 1487 
243 9, 31, 199, 475, 507, 699, 1117, 1125, 1179, 1417 
244 189, 329, 767, 1065, 1289, 1553, 1565, 1923, 2105, 2505 
245 163, 303, 489, 759, 843, 861, 1039, 1321, 1389, 1413 
246 107, 171, 243, 483, 567, 797, 945, 1155, 1617, 1697 
247 81, 309, 361, 411, 525, 571, 729, 939, 1047, 1149 
248 237, 387, 485, 603, 605, 765, 887, 1097, 1223, 1515 
249 75, 279, 385, 403, 531, 583, 595, 693, 999, 1021 
250 207, 407, 1053, 1391, 1655, 1671, 1785, 1793, 2111, 2327 
251 9, 325, 355, 369, 451, 465, 615, 619, 1141, 1339 
252 129, 143, 413, 549, 705, 749, 839, 1077, 1133, 1175 
253 273, 391, 421, 1615, 1723, 1725, 1791, 1879, 1951, 2091 
254 245, 521, 701, 933, 941, 1223, 1311, 1427, 1491, 1527 
255 19, 31, 475, 735, 765, 921, 949, 1285, 1311, 1351 
256 189, 357, 435, 587, 617, 923, 1053, 1299, 1539, 1883 
257 93, 363, 493, 679, 813, 819, 1861, 2113, 2211, 2233 
258 87, 1017, 1203, 1355, 1385, 1547, 1773, 2411, 2415, 2747 
259 361, 417, 561, 745, 885, 987, 1069, 1071, 1159, 1305 
260 149, 597, 687, 689, 803, 983, 995, 1247, 1373, 1419 
261 223, 261, 361, 609, 1251, 1263, 1629, 1791, 2023, 2095 
262 71, 287, 453, 515, 711, 1013, 1127, 1187, 1365, 1415 
263 747, 819, 939, 1017, 1101, 1297, 1665, 1767, 2337, 2679 
264 275, 363, 567, 1245, 1257, 1355, 1419, 1505, 1635, 2013 
265 49, 115, 139, 211, 489, 601, 1063, 1281, 1285, 1399 
266 3, 213, 365, 1115, 1611, 1851, 2171, 2177, 2273, 2477 
267 265, 427, 481, 517, 555, 595, 1099, 1381, 1449, 1797 
268 77, 329, 719, 825, 1305, 1635, 1749, 2009, 2259, 2273 
269 241, 343, 603, 615, 709, 1155, 1281, 1431, 1713, 1759 
270 53, 611, 1071, 1251, 1397, 1691, 1847, 1853, 2133, 2343 
271 169, 441, 967, 1221, 1419, 2289, 2295, 2617, 2775, 2817 
272 237, 287, 689, 905, 1253, 1443, 2159, 2355, 2367, 2397 
273 205, 321, 345, 795, 963, 1101, 1269, 1321, 1329, 1725 
274 305, 351, 707, 785, 801, 843, 1077, 1263, 1793, 1833 
275 129, 199, 205, 651, 721, 939, 999, 1017, 1051, 1629 
276 89, 453, 473, 483, 609, 675, 915, 1133, 1287, 1295 
277 103, 181, 859, 1221, 1603, 2071, 2115, 2289, 2343, 2409 
278 93, 623, 653, 665, 831, 857, 947, 1493, 1553, 1563 
279 69, 231, 535, 751, 781, 1159, 1509, 1629, 1839, 2035 
280 47, 105, 195, 725, 1077, 1415, 2105, 2199, 2805, 3029 
281 139, 259, 601, 615, 633, 663, 729, 853, 931, 1195 
282 83, 93, 237, 245, 425, 443, 503, 557, 647, 1431 
283 45, 1225, 1239, 1431, 1455, 1615, 2107, 2355, 2485, 2667 
284 173, 323, 2009, 2109, 2159, 2333, 2417, 3045, 3227, 3713 
285 9, 33, 735, 1081, 1243, 1641, 1839, 1879, 1965, 2245 
286 165, 521, 533, 593, 617, 915, 983, 1265, 1433, 1797 
287 115, 435, 771, 835, 937, 951, 1401, 1441, 1759, 1861 
288 167, 525, 567, 1355, 1473, 1595, 1875, 2349, 2537, 2765 
289 493, 843, 945, 1383, 1489, 1621, 2083, 2143, 2575, 2649 
290 47, 83, 503, 825, 1221, 1553, 1587, 1641, 1697, 1791 
291 19, 315, 427, 861, 907, 987, 1017, 1195, 1329, 2085 
292 167, 197, 207, 657, 789, 923, 977, 1623, 1655, 1967 
293 601, 1095, 1389, 1455, 1459, 1693, 1849, 1863, 2071, 2163 
294 35, 135, 177, 245, 315, 515, 633, 917, 1047, 1125 
295 171, 421, 459, 511, 585, 1291, 1461, 1579, 1611, 2077 
296 285, 785, 1007, 1287, 1389, 1709, 1727, 2117, 2295, 2477 
297 123, 171, 285, 333, 619, 693, 703, 859, 1273, 1501 
298 341, 483, 953, 1223, 1251, 1307, 1475, 1805, 1845, 1907 
299 69, 405, 429, 675, 1015, 1017, 1105, 1137, 1167, 1539 
300 153, 185, 383, 413, 483, 539, 693, 779, 1047, 1097 
The Prime Pages
Another prime page by Chris K. Caldwell <caldwell@utm.edu>