The prime P3474-Gap112194 These two numbers are the limiting primes of what is likely to be the largest prime gap (between proven primes) right now (May 2002), which is the gap of length 112194 reported in Paul Leyland's list. See http://research.microsoft.com/~pleyland/primes/gaps20.htm P was certified prime by Jose Luis Gomez Pardo and Manuel Ladra (2002) Q was certified prime by Jose Luis Gomez Pardo and Manuel Seijas (2002) Mail to jlgomezpardo@yahoo.es Decimal size = 3474 Binary size = 11540 P = 40304802323693974861441201822989771461417124557622297227625154826275765206954\ 10862247144758040320534903879042674706879283833621906160570559479333497675512\ 37697462189058830992726614952857661231587300795953187157486804931105746746715\ 77877077715574251543966963912246890727785117363273685407147382603590401877967\ 64355356692135780669484439032868685316760532233237869141392670618514144352805\ 46856269171899590616140124766386257586812782976563425265843882955739099132018\ 40567889002894824173724790311854676184916264930647265575411119495453228685489\ 34995529288945503046276180314304362356229705339950443111191951587896990873038\ 11001357910094722541305451337708723751064018160607760619675996380810660254751\ 33776143585990474858127280391919190710579157025943309727691122863516873611325\ 59163866647124579499965357629333551108813787861225532427312415211404219663993\ 75342222045273874821960701322488083265821809020123981290334615917292227004685\ 09991745353562560593789066839172206577449058895497565837049228757346279334430\ 62827825310547957352512378259646563338026981708381288715787131943656476678821\ 46484770132701789650659839016599171214165114754093395213179539577513631756944\ 92561351168629182286245640960870690831134950361765218411442607130889553818964\ 60494247088394881847391339635247213233043900701906979130836485104449030629361\ 39847772055031819417280981463025130913444148846472075510176939328358047764130\ 75958279087671660506986847137468134041795568354065209994607807702159586400312\ 66385032103006787645929879636786497572696339278402360877957077444109761017182\ 83354705408049003430718238729122759671670429072289355439169800479901431358417\ 66624799152283965115066473518425527517794421118793943022169358937231189687622\ 90855666324577748662184388663297504188142331952532845456039821323082890409424\ 29247845728669942865907260050431554277687090058900641071208020092473557723939\ 98579851243779168269764483365350514643879669403197122606823244623038596115800\ 79835463276176908016926727256786464078379364160659989700031652502336595547799\ 25657500470694420539083716983858785398324603331861815017718324138856569265823\ 39369697910661494686358309109565130944196661053454038162081537019957094141352\ 72512449592082122215377162126889565073204790228406705392003999185320850105688\ 76125598571293264975276191220464752626737665282102132950250705707453230912157\ 13769437452333425811375305357180367526669730338225964912113623084181809453360\ 03524805804286433445457810596530083804392333340798665258598706634705981609527\ 07783342175569463341026427049140518606924188045795552680520995418284613859095\ 15069129639586898638743801208880053427674549896858598430102628681118509782124\ 54924299602107179092268773015886651287859041284973019418289996938270865544684\ 57203558493261971152530811300748347160218127255749500501534638979860445166022\ 03717976219606966702619786257327973568615829308218106893099263412951761406091\ 99640466252726209638006707603062657001382619774570082084512626017429773732561\ 70475186204782094246972994845903276042426690480688988520023801085816147970132\ 21095359562519035473292828744187535516272066430428453905926818163001462578043\ 43145422041381101253120754890415117117494098912652293170053890897092198870721\ 96021767234768860846017788603438449584708102451942513917350216619207978861212\ 93145819528544222635854024051777422904677016586609163390856270536363959355671\ 72531247153781006122148462418513328846816508921160542979807289856287702492015\ 35207871510051943113181018670622393861642932270533574707401536974300852864198\ 459964887 Q = P + 112194