Reference Database
(references for the Prime Pages)
The Prime Pages

Search Site

How Many?


Prime Curios!
e-mail list

Prime Lists

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]

All items with author Crandall (sorted by date)

J. P. Buhler, R. E. Crandall and M. A. Penk, "Primes of the form n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 38:158 (1982) 639--643.  Corrigendum in Math. Comp. 40 (1983), 727.  MR 83c:10006
J. P. Buhler, R. E. Crandall and R. W. Sompolski, "Irregular primes to one million," Math. Comp., 59:200 (1992) 717--722.  MR 93a:11106
J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä, "Irregular primes and cyclotomic invariants to four million," Math. Comp., 61:203 (1993) 151--153.  MR 93k:11014
R. Crandall and B. Fagin, "Discrete weighted transforms and large-integer arithmetic," Math. Comp., 62:205 (1994) 305--324.  MR 94c:11123
R. Crandall, J. Doenias, C. Norrie and J. Young, "The twenty-second Fermat number is composite," Math. Comp., 64 (1995) 863--868.  MR 95f:11104
R. Crandall, Topics in advanced scientific computation, Springer-Verlag, 1996.  MR 97g:65005
R. Crandall, K. Dilcher and C. Pomerance, "A search for Wieferich and Wilson primes," Math. Comp., 66:217 (1997) 433--449.  MR 97c:11004 (Abstract available)
J. M. Borwein, D. M. Bradley and R. E. Crandall, "Computational strategies for the Riemann zeta function," J. Comput. Appl. Math., 121:1--2 (2000) 247--296.  Numerical analysis in the 20th century, Vol. I, Approximation.  MR 2001h:11110
J. Buhler, R. Crandall, R. Ernvall, T. Metsankyla and M. Shokrollahi, "Irregular primes and cyclotomic invariants to 12 million," J. Symbolic Comput., 31:1--2 (2001) 89--96.  MR 2001m:11220
R. Crandall and C. Pomerance, Prime numbers: a computational perspective, Springer-Verlag, 2001.  New York, NY, pp. xvi+545, ISBN 0-387-94777-9. MR 2002a:11007 (Abstract available) [This is a valuable text written by true experts in two different areas: computational and theoretical respectively. There is now a second edition [CP2005].]
R. E. Crandall, E. W. Mayer and J. S. Papadopoulos, "The twenty-fourth Fermat number is composite," Math. Comp., 72 (2003) 1555--1572. (Abstract available)
R. Crandall and C. Pomerance, Prime numbers--a computational approach, Second edition, Springer, 2005.  New York, pp. xvi+597, ISBN 978-0-387-25282-7; 0-387-25282-7. MR2156291
Prime Pages' Home
Another prime page by Chris K. Caldwell