Reference Database
(references for the Prime Pages)
The Prime Pages

Search Site

How Many?


Prime Curios!
e-mail list

Prime Lists

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]
H. Dubner, T. Forbes, N. Lygeros, M. Mizony, H. Nelson and P. Zimmermann, "Ten consecutive primes in arithmetic progression," Math. Comp., 71:239 (2002) 1323--1328 (electronic).  MR 1 898 760
Abstract: In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availability, and the ability to obtain computational help via the Internet. Although it is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression, it is very likely that 10 primes will remain the record for a long time.
Prime Pages' Home
Another prime page by Chris K. Caldwell