Reference Database
(references for the Prime Pages)
The Prime Pages

Home
Search Site

Largest
Finding
How Many?
Mersenne

Glossary

Prime Curios!
e-mail list

FAQ
Prime Lists
Titans

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]

All items with keys beginning with the letter(s): l

Lehmer14
D. N. Lehmer, List of primes numbers from 1 to 10,006,721, Carnegie Institution 1914.  Washington, D.C.,
Lehmer1909
D. N. Lehmer, Factor table for the first ten millions containing the smallest factor of every number not divisible by 2, 3, 5, or 7 between the limits of 0 and 10017000, Carnegie Institution of Washington, publication 105 Washington, D.C., 1909.
Lehmer1965
D. H. Lehmer, "On certain chains of primes," Proc. Lond. Math. Soc., series 3, 14a (1965) 183--186.  MR 31:2222
Lehmer30
D. N. Lehmer, "An extended theory of Lucas' functions," Ann. Math., 31 (1930) 419-448.  Reprinted in Selected Papers, D. McCarthy editor, v. 1, Ch. Babbage Res. Center, St. Pierre, Manitoba Canada, pp. 11-48 (1981).
Lehmer32
D. H. Lehmer, "Note on Mersenne numbers," Bull. Amer. Math. Soc., 38 (1932) 383-384.
Lehmer35
D. H. Lehmer, "On Lucas's test for the primality of Mersenne's numbers," J. London Math. Soc., 10 (1935) 162-165.
Lehmer36
D. H. Lehmer, "On the converse of Fermat's theorem," Amer. Math. Monthly, 43 (1936) 347-354.  Errata in Math. Tables Aids Comput. 2 (1947), 279; Math. Comp. 25 (1971) 943.  MR 53:4460
Lehmer52
D. H. Lehmer, "A new Mersenne prime," Math. Tables Aids Comput., 6 (1952) 205.
Lehmer52a
D. H. Lehmer, "Note 131: recent discoveries of large primes," Math. Tables Aids Comput., 6 (1952) 61. (Annotation available)
Lehmer53
D. H. Lehmer, "Two new Mersenne primes," Math. Tables Aids Comput., 7 (1953) 72.
Lenoble1971
R. Lenoble, Mersenne; ou, la naissance du mécanisme, 2nd edition edition, Vrin, 1971.  Paris, First edition 1943..
Lenstra1981
Lenstra, Jr., H. W., Primality testing algorithms (after Adleman, Rumely and Williams).  In "Bourbaki Seminar, Vol. 1980/81," Lecture Notes in Math. Vol, 901, Springer, 1981.  Berlin, pp. 243--257, MR647500
Lenstra79
Lenstra, Jr., H. W., "Miller's primality test," Inform. Process. Lett., 8 (1979) 86-88.  MR 80c:10008
Lenstra82
Lenstra, Jr., H. W., Primality testing.  In "Computational Methods in Number Theory, part I," Lenstra, Jr., H. W. and R. Tijdemann editors, Vol, 154, Math. Centre Tract, Amsterdam, 1982.  pp. 55--77, MR 85g:11117 [Introduces Lenstra's Galois theory test]
Lenstra86
Lenstra, Jr., H. W., Primality testing.  In "Mathematics and Computer Science: Proceedings of the CWI Symposium," Bakker, J. W. de, M. Hazewinkel and J. K. Lenstra editors, North-Holland, 1986.  Amsterdam, pp. 269-287, MR 88b:11087
Lenstra87
Lenstra, Jr., H. W., "Factoring integers with elliptic curves," Ann. Math., 126 (1987) 649-673.  MR 89g:11125
Levinson74
N. Levinson, "More than one third of the zeros of Riemann's zeta-function are on σ =1/2," Adv. Math., 13 (1974) 383--436.  MR 58:27837
Lewis1986
K. Lewis, "Smith numbers: an infinite subset of N," Master's thesis, M.S., Eastern Kentucky University, (1994)
Linfoot1955
E. H. Linfoot, Recent advances in optics, Clarendon Press, 1955.  MR 17,106g
Littlewood1914
J. E. Littlewood, "Sur la distribution des nombres premiers," C. R. Acad. Sci Paris, 158 (1914) 1869--1872.
LL90
Lenstra, Jr., A. K. and Lenstra, Jr., H. W., Algorithms in number theory.  In "Handbook of Theoretical Computer Science, Vol A: Algorithms and Complexity," The MIT Press, Amsterdam and New York, 1990.  pp. 673-715, MR 1 127 178
LLMP93
A. K. Lenstra, Lenstra, Jr., H. W., M. S. Manasse and J. M. Pollard, "The factorization of the ninth Fermat number," Math. Comp., 61 (1993) 319-349.  Addendum, Math. Comp. 64 (1995), 1357.  MR 1 303 085
LM1980
C. Lalout and J. Meeus, "Nearly-doubled primes," J. Recreational Math., 13 (1980-81) 30--35.
LMO85
J. C. Lagaris, V. S. Miller and A. M. Odlyzko, "Computing π(x): the Meissel-Lehmer method," Math. Comp., 44 (1985) 537-560.  MR 86h:11111
LO91
B. A. LaMacchia and A. M. Odlyzko, "Computation of discrete logarithms in prime fields," Designs, Codes and Cryptography, 1 (1991) 46-62.  MR 92j:11148
Loh89
G. Löh, "Long chains of nearly doubled primes," Math. Comp., 53 (1989) 751-759.  MR 90e:11015 (Abstract available) [Chains of primes for which each is either twice the proceeding one plus one, or each is either twice the proceeding one minus one. See also [Guy94, section A7].]
Looff1851
W. Looff, "Ueber die Periodicitäte der Decimalbrüche," Archiv der Mathematik und Physics, 16 (1851) 54--57. [Includes the prime 999999000001 in his table with a question mark. However Reuschle [[Reuschle1856], pp. 3, 18] claims Looff had proven it prime.]
Lothaire83
M. Lothaire,"Combinatorics on Words" in Encylopedia of mathematics and its applications.  Vol, 17, Addison-Wesley, 1983.  pp. xix+238, ISBN 0-201-13516-7. MR 84g:05002
LP1967a
L. J. Lander and T. R. Parkin, "Consecutive primes in arithmetic progression," Math. Comp., 21 (1967) 489.
LP2003
Luca, F. and Porubský, S., "The multiplicative group generated by the Lehmer numbers," Fibonacci Quart., 41:2 (2003) 122--132.  MR1990520
LP67
L. J. Lander and T. R. Parkin, "On first appearance of prime differences," Math. Comp., 21:99 (1967) 483-488.  MR 37:6237
LR2013
Lygeros, N. and Rozier, O., "Odd prime values of the ramanujan tau function," Ramanujan J., (2013) 1--12.  available from http://www.lygeros.org/lygeros/11713_Odd_prime_values_of_the_Ramanujan_tau_function.pdf.  (http://dx.doi.org/10.1007/s11139-012-9420-8)
LRS1999
Leyendekkers, J. V., Rybak, J. M. and Shannon, A. G., "An analysis of Mersenne-Fibonacci and Mersenne-Lucas primes," Notes Number Theory Discrete Math., 5:1 (1999) 1--26.  MR 1738744
LRW86
J. van de Lune, H. J. J. te Riele and D. T. Winter, "On the zeros of the Riemann zeta function in the critical strip. IV," Math. Comp., 46 (1986) 667-681.  MR 87e:11102 [The first 1,500,000,001 nontrivial zeros of the Riemann zeta function.]
Luca2001
F. Luca, "On a conjecture of erdos and stewart," Math. Comp., 70 (2001) 893--896.  MR 2001g:11042 (Abstract available) [Luca proves that the equation in the abstract has no solutions for n ≥ 6.]
Lucas1878
E. Lucas, "Theorie des fonctions numeriques simplement periodiques," Amer. J. Math., 1 (1878) 184--240 and 289--231.
Prime Pages' Home
Another prime page by Chris K. Caldwell