Reference Database
(references for the Prime Pages)
The Prime Pages

Search Site

How Many?


Prime Curios!
e-mail list

Prime Lists

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]

All items with keys beginning with the letter(s): tuv

G. J. Tee, "A refinement of Mills' prime-generating function," New Zealand Math. Mag., 11 (1974) 9--11.  MR 49:7203 (Annotation available)
M. Templer, "On the primality of k! + 1 and 2 * 3 * 5 * ... * p + 1," Math. Comp., 34 (1980) 303-304.  MR 80j:10010
Trigg, Charles W., "A large prime quadruplet," J. Recreational Math., 14:3 (1981/82) 167.  MR 83b:10006
C. W. Trigg, "Reflectable primes," J. Recreational Math., 15:4 (1982-83) 251-256.
Tao, Terence, "A remark on primality testing and decimal expansions," J. Aust. Math. Soc., 91:3 (2011) 405--413.  ( MR 2900615 (Abstract available)
B. Tuckerman, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U. S. A., 68 (1971) 2319-2320.  MR 45:166
Mme P. Tannery and C. de Waard, "Correspondence du P. Marin Mersenne, religieux Minime," (1932-88) Vols 1-2, Paris: Beauchesne 1932-1933, Vols 3-4, Paris: Presses Univsitairés de France, 1945-55, Vols 5-17, Paris: CNRS, 1959-1988.
J. W. Tanner and S. S. Wagstaff Jr., "New congruences for the Bernoulli numbers," Math. Comp., 48 (1987) 341--350.  MR 87m:11017
R. Taylor and A. Wiles, "Ring-theoretic properties of certain hecke algebras," Math. Ann., 141:3 (1995) 553--572.  MR 96d:11072 [Here Wiles and Taylor fill in the gap which was spotted in the original version of Wiles proof of Fermat's last theorem. The rest of the proof is in [Wiles95].]
T. Valente, "A distributed approach to proving large numbers prime," Ph.D. thesis, Rensselaer Polytechmic Institute, (December 1992) Avaliable online at
H. S. Vandiver, "Note on Euler number criteria for the first case of Fermat's last theorem," Amer. J. Math., 62 (1940) 79--82.  MR 1,200d
I. M. Vinogradov, "Representation of an odd number as the sum of three primes," Dokl. Akad. Nauk SSSR, 16 (1937) 179--195.  Russian. [Proves that the odd Goldbach conjecture holds for sufficiently all large integers n]
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences," Math. Comp., 64:210 (1995) 869--888.  MR1284673 (Annotation available)
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. II," J. Th\'eor. Nombres Bordeaux, 8:2 (1996) 251--274.  MR1438469
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. III," Math. Proc. Cambridge Philos. Soc., 123:3 (1998) 407--419.  MR1607969 [From the review: "The main result of this paper is that for any integer n>30 030, the nth element of any Lucas or Lehmer sequence has a primitive divisor."]
van de Lune, J., te Riele, H. J. J. and Winter, D. T., "On the zeros of the Riemann zeta function in the critical strip, iv," Math. Comp., 46:174 (1986) 667--681.  MR 87e:11102
Prime Pages' Home
Another prime page by Chris K. Caldwell