Reference Database
(references for the Prime Pages)
The Prime Pages

Home
Search Site

Largest
Finding
How Many?
Mersenne

Glossary

Prime Curios!
e-mail list

FAQ
Prime Lists
Titans

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]

All items with keys beginning with the letter(s): tuv

Tee1974
G. J. Tee, "A refinement of Mills' prime-generating function," New Zealand Math. Mag., 11 (1974) 9--11.  MR 49:7203 (Annotation available)
Templer80
M. Templer, "On the primality of k! + 1 and 2 * 3 * 5 * ... * p + 1," Math. Comp., 34 (1980) 303-304.  MR 80j:10010
Trigg1982
Trigg, Charles W., "A large prime quadruplet," J. Recreational Math., 14:3 (1981/82) 167.  MR 83b:10006
Trigg83
C. W. Trigg, "Reflectable primes," J. Recreational Math., 15:4 (1982-83) 251-256.
TT2011
Tao, Terence, "A remark on primality testing and decimal expansions," J. Aust. Math. Soc., 91:3 (2011) 405--413.  (http://dx.doi.org/10.1017/S1446788712000043) MR 2900615 (Abstract available)
Tuckerman71
B. Tuckerman, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U. S. A., 68 (1971) 2319-2320.  MR 45:166
TW1932-88
Mme P. Tannery and C. de Waard, "Correspondence du P. Marin Mersenne, religieux Minime," (1932-88) Vols 1-2, Paris: Beauchesne 1932-1933, Vols 3-4, Paris: Presses Univsitairés de France, 1945-55, Vols 5-17, Paris: CNRS, 1959-1988.
TW1987
J. W. Tanner and S. S. Wagstaff Jr., "New congruences for the Bernoulli numbers," Math. Comp., 48 (1987) 341--350.  MR 87m:11017
TW95
R. Taylor and A. Wiles, "Ring-theoretic properties of certain hecke algebras," Math. Ann., 141:3 (1995) 553--572.  MR 96d:11072 [Here Wiles and Taylor fill in the gap which was spotted in the original version of Wiles proof of Fermat's last theorem. The rest of the proof is in [Wiles95].]
Valente1992
T. Valente, "A distributed approach to proving large numbers prime," Ph.D. thesis, Rensselaer Polytechmic Institute, (December 1992) Avaliable online at http://www.math.ncsu.edu/~kaltofen/ssg/Erich/Theses/valente.ps.gz.
Vandiver1940
H. S. Vandiver, "Note on Euler number criteria for the first case of Fermat's last theorem," Amer. J. Math., 62 (1940) 79--82.  MR 1,200d
Vinogradov37
I. M. Vinogradov, "Representation of an odd number as the sum of three primes," Dokl. Akad. Nauk SSSR, 16 (1937) 179--195.  Russian. [Proves that the odd Goldbach conjecture holds for all sufficiently large integers n]
Voutier1995
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences," Math. Comp., 64:210 (1995) 869--888.  MR1284673 (Annotation available)
Voutier1996
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. II," J. Th\'eor. Nombres Bordeaux, 8:2 (1996) 251--274.  MR1438469
Voutier1998
Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. III," Math. Proc. Cambridge Philos. Soc., 123:3 (1998) 407--419.  MR1607969 [From the review: "The main result of this paper is that for any integer n>30 030, the nth element of any Lucas or Lehmer sequence has a primitive divisor."]
VTW86
van de Lune, J., te Riele, H. J. J. and Winter, D. T., "On the zeros of the Riemann zeta function in the critical strip, iv," Math. Comp., 46:174 (1986) 667--681.  MR 87e:11102
Prime Pages' Home
Another prime page by Chris K. Caldwell