Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
email list
FAQ
Prime Lists
Titans
Submit primes

This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home  Author index  Key index  Search ] All items with keys beginning with the letter(s): tuv
 Tee1974
 G. J. Tee, "A refinement of Mills' primegenerating function," New Zealand Math. Mag., 11 (1974) 911. MR 49:7203 (Annotation available)
 Templer80
 M. Templer, "On the primality of k! + 1 and 2 * 3 * 5 * ^{...} * p + 1," Math. Comp., 34 (1980) 303304. MR 80j:10010
 Trigg1982
 Trigg, Charles W., "A large prime quadruplet," J. Recreational Math., 14:3 (1981/82) 167. MR 83b:10006
 Trigg83
 C. W. Trigg, "Reflectable primes," J. Recreational Math., 15:4 (198283) 251256.
 TT2011
 Tao, Terence, "A remark on primality testing and decimal expansions," J. Aust. Math. Soc., 91:3 (2011) 405413. (http://dx.doi.org/10.1017/S1446788712000043) MR 2900615 (Abstract available)
 Tuckerman71
 B. Tuckerman, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U. S. A., 68 (1971) 23192320. MR 45:166
 TW193288
 Mme P. Tannery and C. de Waard, "Correspondence du P. Marin Mersenne, religieux Minime," (193288) Vols 12, Paris: Beauchesne 19321933, Vols 34, Paris: Presses Univsitairés de France, 194555, Vols 517, Paris: CNRS, 19591988.
 TW1987
 J. W. Tanner and S. S. Wagstaff Jr., "New congruences for the Bernoulli numbers," Math. Comp., 48 (1987) 341350. MR 87m:11017
 TW95
 R. Taylor and A. Wiles, "Ringtheoretic properties of certain hecke algebras," Math. Ann., 141:3 (1995) 553572. MR 96d:11072 [Here Wiles and Taylor fill in the gap which was spotted in the original version of Wiles proof of Fermat's last theorem. The rest of the proof is in [Wiles95].]
 Valente1992
 T. Valente, "A distributed approach to proving large numbers prime," Ph.D. thesis, Rensselaer Polytechmic Institute, (December 1992) Avaliable online at http://www.math.ncsu.edu/~kaltofen/ssg/Erich/Theses/valente.ps.gz.
 Vandiver1940
 H. S. Vandiver, "Note on Euler number criteria for the first case of Fermat's last theorem," Amer. J. Math., 62 (1940) 7982. MR 1,200d
 Vinogradov37
 I. M. Vinogradov, "Representation of an odd number as the sum of three primes," Dokl. Akad. Nauk SSSR, 16 (1937) 179195. Russian. [Proves that the odd Goldbach conjecture holds for all sufficiently large integers n]
 Voutier1995
 Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences," Math. Comp., 64:210 (1995) 869888. MR1284673 (Annotation available)
 Voutier1996
 Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. II," J. Th\'eor. Nombres Bordeaux, 8:2 (1996) 251274. MR1438469
 Voutier1998
 Voutier, P. M., "Primitive divisors of Lucas and Lehmer sequences. III," Math. Proc. Cambridge Philos. Soc., 123:3 (1998) 407419. MR1607969 [From the review: "The main result of this paper is that for any integer n>30 030, the nth element of any Lucas or Lehmer sequence has a primitive divisor."]
 VTW86
 van de Lune, J., te Riele, H. J. J. and Winter, D. T., "On the zeros of the Riemann zeta function in the critical strip, iv," Math. Comp., 46:174 (1986) 667681. MR 87e:11102
