Reference Database
(references for the Prime Pages)
The Prime Pages

Home
Search Site

Largest
Finding
How Many?
Mersenne

Glossary

Prime Curios!
e-mail list

FAQ
Prime Lists
Titans

Submit primes
This is the Prime Pages' interface to our BibTeX database.  Rather than being an exhaustive database, it just lists the references we cite on these pages.  Please let me know of any errors you notice.
References: [ Home | Author index | Key index | Search ]

All items with keys beginning with the letter(s): xyz

Xie1989
Xie, Sheng Gang, "The prime 4-tuplet problem," Sichuan Daxue Xuebao, 26:Special Issue (1989) 168--171.  MR 91f:11066
Yan1995
Yan, S. Y., "Primality testing of large numbers in Maple," Comput. Math. Appl., 29:12 (1995) 1--8.  MR1329593 (Abstract available)
Yates1980
S. Yates, "Periods of unique primes," Math. Mag., 53:5 (1980) 314.
Yates1987
Yates, Samuel, Sophie Germain primes.  In "The mathematical heritage of C. F. Gauss," World Sci. Publ., River Edge, NJ, 1991.  pp. 882--886, MR 1146271
Yates1991
S. Yates, "Welcome back, Dr. Matrix," J. Recreational Math., 23:1 (1991) 11--12.
Yates82
S. Yates, Repunits and repetends, Star Publishing Co., Inc., Boynton Beach, Florida, 1982.  pp. vi+215, MR 83k:10014
Yates84
S. Yates, "Titanic primes," J. Recreational Math., 16:4 (1983-84) 250-262. [Here Yates defines titanic primes to be those with at least 1,000 digits.]
Yates85
S. Yates, "Sinkers of the titanics," J. Recreational Math., 17:4 (1984-85) 268-274.
Yates91
S. Yates, Sophie Germain primes.  In "The Mathematical Heritage of C. F. Gauss," G. M. Rassias editor, World Scientific, 1991.  pp. 882--886, MR 93a:11007
Yates92a
S. Yates, "Prime party--an anthropomorphic anecdote," J. Recreational Math., 24:2 (1992) 81--85.
Yates92b
S. Yates, "Collecting gigantic and titanic primes," J. Recreational Math., 24:3 (1992) 193--201. (Annotation available)
YB88
J. Young and D. A. Buell, "The twentieth Fermat number is composite," Math. Comp., 50 (1988) 261--263.  MR 89b:11012
Young98
J. Young, "Large primes and Fermat factors," Math. Comp., 67:244 (1998) 1735--1738.  MR 99a:11010
Abstract: A systematic search for large primes has yielded the largest Fermat factors known.
YP89
J. Young and A. Potler, "First occurrence prime gaps," Math. Comp., 53:185 (1989) 221--224.  MR 89f:11019 [Lists gaps between primes up to the 777 composites following 42842283925351.]
Zhang1994
Zhang, Gui Wen, "On twins, triplets and n-tuplets of prime numbers," Gongcheng Shuxue Xuebao, 11:3 (1994) 41--47.  MR 97e:11015
Zhang2000
Z. Zhang, "Finding strong pseudoprimes to several bases," Math. Comp., 70:234 (2001) 863--872.  MR 2001g:11009 (Abstract available)
Zhang2001b
Z. Zhang, "Using Lucas sequences to factor large integers near group orders," Fibonacci Quart., 39:3 (2001) 228--237.  MR 2002c:11173
Zhang2001c
Z. Zhang, "Finding strong pseudoprimes to several bases," Math. Comp., 70:234 (2001) 863--872.  MR 2001g:11009
Zhang2002a
Z. Zhang, "A one-parameter quadratic-base version of the Baillie-PSW probable prime test," Math. Comp., 71:240 (2002) 1699--1734 (electronic).  MR 1 933 051
Zhang2005a
Z. Zhang, "Finding C3-strong pseudoprimes," Math. Comp., 74:250 (2005) 1009--1024 (electronic).  MR 2114662
Zhang2007
Zhang, Zhenxiang, "Two kinds of strong pseudoprimes up to 1036," Math. Comp., 76:260 (2007) 2095--2107 (electronic).  MR2336285
ZT2003
Z. Zhang and M. Tang, "Finding strong pseudoprimes to several bases. II," Math. Comp., 72:244 (2003) 2085--2097 (electronic).  http://www.ams.org/journal-getitem?pii=S0025-5718-03-01545-XMR 2004c:11008 (Abstract available)
Prime Pages' Home
Another prime page by Chris K. Caldwell