The Top Twenty--a Prime Page Collection

Wagstaff

This page : Definition(s) | Records | References | Related Pages | RSS 2.0 Feed
  View this page in:   language help
The Prime Pages keeps a list of the 5000 largest known primes, plus a few each of certain selected archivable forms and classes. These forms are defined in this collection's home page. This page is about one of those forms. Comments and suggestions requested.

(up) Definitions and Notes

Bateman, Selfridge, and Wagstaff have made the The New Mersenne Conjecture [BSW89]:
Let p be any odd natural number. If two of the following conditions hold, then so does the third:
The name Wagstaff prime for primes of the form (2p+1)/3 was first introduced by François Morain [Morain1990a]. The numbers (2p+1)/3 are probable primes for p = 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191 (Diepeveen 2008), and (2^4031399+1)/3 (Vrba, Reix 2010).

(up) Record Primes of this Type

rankprime digitswhowhencomment
1(283339 + 1)/3 25088 c54 Sep 2014 ECPP, generalized Lucas number, Wagstaff
2(242737 + 1)/3 12865 M Aug 2007 ECPP, generalized Lucas number, Wagstaff
3(214479 + 1)/3 4359 c4 Nov 2004 Generalized Lucas number, Wagstaff, ECPP
4(212391 + 1)/3 3730 M May 1996 Generalized Lucas number, Wagstaff
5(211279 + 1)/3 3395 PM Jan 1998 Cyclotomy, generalized Lucas number, Wagstaff
6(210691 + 1)/3 3218 c4 Oct 2004 Generalized Lucas number, Wagstaff, ECPP
7(210501 + 1)/3 3161 M May 1996 Generalized Lucas number, Wagstaff
8(25807 + 1)/3 1748 PM Dec 1998 Cyclotomy, generalized Lucas number, Wagstaff
9(23539 + 1)/3 1065 M Dec 1989 First titanic by ECPP, generalized Lucas number, Wagstaff

(up) Related Pages

(up) References

BSW89
P. T. Bateman, J. L. Selfridge and Wagstaff, Jr., S. S., "The new Mersenne conjecture," Amer. Math. Monthly, 96 (1989) 125-128.  MR 90c:11009
LRS1999
Leyendekkers, J. V., Rybak, J. M. and Shannon, A. G., "An analysis of Mersenne-Fibonacci and Mersenne-Lucas primes," Notes Number Theory Discrete Math., 5:1 (1999) 1--26.  MR 1738744
Morain1990a
F. Morain, Distributed primality proving and the primality of (23539+1)/3.  In "Advances in cryptology---EUROCRYPT '90 (Aarhus, 1990)," Lecture Notes in Comput. Sci. Vol, 473, Springer, 1991.  Berlin, pp. 110--123, MR1102475
Pi1999
X. M. Pi, "Primes of the form (2p+1)/3," J. Math. (Wuhan), 19 (1999) 199--202.  MR 2000i:11016 [The author proves the primality of (2p+1)/3 for p=1709 and 2617.]
Chris K. Caldwell © 1996-2014 (all rights reserved)