421538917598915629 (another Prime Pages' Curiosity)
 Curios: Curios Search:   Participate: GIMPS has discovered a new largest known prime number: 282589933-1 (24,862,048 digits) ```                                                         42153891 7598915629 ``` The largest known prime factor in "The Octopus" (as of February 3, 2010). It occurs as a(16) in the 7R arm: 2R ``` 2=a(1) 22=a(2) 222=a(3) 6222=a(4) 96222=a(5) 9396222=a(6) 6279396222=a(7) 12546279396222=a(8) 148212546279396222=a(9) 300148212546279396222=a(10) 18333300148212546279396222=a(11) 3795318333300148212546279396222=a(12) 1520433795318333300148212546279396222=a(13) 5055121520433795318333300148212546279396222=a(14) 49840565055121520433795318333300148212546279396222=a(15) 2623287849840565055121520433795318333300148212546279396222=a(16) ?=a(17) ```Let a(1)=2. a(n) is the smallest number > a(n-1) containing a(n-1) as rightmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(14) Andersen: a(15)-a(16) ```2L ``` a(1)=2 a(2)=21 a(3)=2109 a(4)=21098 a(5)=2109822 a(6)=2109822078 a(7)=2109822078054 a(8)=2109822078054306 a(9)=2109822078054306590 a(10)=21098220780543065904030 a(11)=2109822078054306590403010890 a(12)=210982207805430659040301089001530 a(13)=21098220780543065904030108900153044430 a(14)=? ```Let a(1)=2. a(n) is the smallest number > a(n-1) containing a(n-1) as leftmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(13) ```3R ``` 3=a(1) 33=a(2) 1533=a(3) 491533=a(4) 112491533=a(5) 319112491533=a(6) 393319112491533=a(7) 964393319112491533=a(8) 15905964393319112491533=a(9) 598515905964393319112491533=a(10) 16359598515905964393319112491533=a(11) 2217916359598515905964393319112491533=a(12) 3026852217916359598515905964393319112491533=a(13) 11875083026852217916359598515905964393319112491533=a(14) 340161911875083026852217916359598515905964393319112491533=a(15) 73778782340161911875083026852217916359598515905964393319112491533=a(16) ?=a(17) ```Let a(1)=3. a(n) is the smallest number > a(n-1) containing a(n-1) as rightmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(13) Andersen: a(14)-a(16) ```3L ``` a(1)=3 a(2)=33 a(3)=3302 a(4)=33022 a(5)=3302222 a(6)=330222230 a(7)=330222230030 a(8)=330222230030055 a(9)=330222230030055935 a(10)=3302222300300559358065 a(11)=330222230030055935806507470 a(12)=33022223003005593580650747061518 a(13)=33022223003005593580650747061518135430 a(14)=? ```Let a(1)=3. a(n) is the smallest number > a(n-1) containing a(n-1) as leftmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(13) ```5R ``` 5=a(1) 15=a(2) 615=a(3) 18615=a(4) 5718615=a(5) 1055718615=a(6) 1291055718615=a(7) 911291055718615=a(8) 3333911291055718615=a(9) 2183333911291055718615=a(10) 177872183333911291055718615=a(11) 51415177872183333911291055718615=a(12) 1293551415177872183333911291055718615=a(13) 2250601293551415177872183333911291055718615=a(14) 74586822250601293551415177872183333911291055718615=a(15) 574883974586822250601293551415177872183333911291055718615=a(16) ?=a(17) ```Let a(1)=5. a(n) is the smallest number > a(n-1) containing a(n-1) as rightmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(14) Andersen: a(15), a(16) ```5L ``` a(1)=5 a(2)=51 a(3)=518 a(4)=5187 a(5)=518738 a(6)=518738066 a(7)=518738066022 a(8)=518738066022891 a(9)=5187380660228910138 a(10)=51873806602289101381770 a(11)=5187380660228910138177036634 a(12)=51873806602289101381770366340485 a(13)=51873806602289101381770366340485096495 a(14)=? ```Let a(1)=5. a(n) is the smallest number > a(n-1) containing a(n-1) as leftmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(13) ```7R ``` 7=a(1) 57=a(2) 357=a(3) 51357=a(4) 3451357=a(5) 1193451357=a(6) 6391193451357=a(7) 20466391193451357=a(8) 699320466391193451357=a(9) 20508699320466391193451357=a(10) 3802320508699320466391193451357=a(11) 5990603802320508699320466391193451357=a(12) 7950455990603802320508699320466391193451357=a(13) 8621077950455990603802320508699320466391193451357=a(14) 108013858621077950455990603802320508699320466391193451357=a(15) 11428690108013858621077950455990603802320508699320466391193451357=a(16) ?=a(17) ```Let a(1)=7. a(n) is the smallest number > a(n-1) containing a(n-1) as rightmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(13) Andersen: a(14)-a(16) ```7L ``` a(1)=7 a(2)=74 a(3)=741 a(4)=74102 a(5)=7410255 a(6)=741025545 a(7)=741025545195 a(8)=741025545195705 a(9)=7410255451957051086 a(10)=741025545195705108602109 a(11)=7410255451957051086021092590 a(12)=741025545195705108602109259078965 a(13)=74102554519570510860210925907896578105 a(14)=? ```Let a(1)=7. a(n) is the smallest number > a(n-1) containing a(n-1) as leftmost digits and having exactly n distinct prime factors. Can you find the next term? ```Honaker: a(1)-a(4) Gupta: a(5)-a(13) ``` Prime Curios! © 2000-2019 (all rights reserved)  privacy statement   (This page was generated in 0.0474 seconds.)