This number is a composite.

+ The smallest triangular number such that the sum of its digits cubed is prime. Note that 496 is the third perfect number. [Earls]

+ 496 is equal to the alternating sum and difference of the squares of the integers from 1 to 496's largest prime factor. [Ohlson]

+ 496^496 + 496! + 496/496 is a 1337-digit prime. [Firoozbakht]

+ The smallest perfect number such that the sum of its digits is prime: 4 + 9 + 6 = 19. [Pol]

+ The only 3-digit number whose the sum of the reciprocals of its divisors is the only even prime. [Loungrides]

(There are 3 curios for this number that have not yet been approved by an editor.)

Printed from the PrimePages <primes.utm.edu> © G. L. Honaker and Chris K. Caldwell