11111...99999 (331-digits)

This number is a probable-prime (likely to be a prime but we have not (re-)proven it on this site).

                    1 1111111111 1111111111 1111111112 2222222222 2222222222
2222222222 2222222222 2333333333 3333333333 3333333333 3333444444 4444444444
4444444444 4444455555 5555555555 5555555555 5555555555 5555555555 5666666666
6666666666 6666666666 6677777777 7777777777 7777777777 7777777777 7777778888
8888888888 8888888888 8888888888 9999999999 9999999999 9999999999 9999999999

+ The largest prime found in the first 370 digits of sqrt(2) after reordering all 370 digits in a non-descending way. The difference between 370- and 331-digits are due to the 39 zeros existing in these 370 digits of sqrt(2) that would be at the very beginning and therefore do not appear. No larger prime like this is found in the first 1000 digits of prime. [Rivera]

Printed from the PrimePages <primes.utm.edu> © G. L. Honaker and Chris K. Caldwell