
Glossary: Prime Pages: Top 5000: 
GIMPS has discovered a new largest known prime number: 2^{82589933}1 (24,862,048 digits) Here are the first few primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 and 43.The differences between these primes are: 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, and 2.For these primes 2 occurs most often as a gap between primes, so we call it a jumping champion. An integer n is jumping champion if n is the most frequently occurring difference between consecutive primes < x for some x. The example above shows 2 is a jumping champion for x=43 (in fact for any x with 7 < x < 131). John Horton Conway coined the term jumping champion in 1993. Harry Nelson may have first suggested the concept (without the term) in 19778. (Jumping champions have also called high jumpers.) Sometimes there are more than one jumping champion for a given x (because a couple gaps show up an equal number of times). For example, when x=5 we have the two champions 1 and 2. When x=179 we have the three champions 2, 4 and 6. The only champions we see in this table are 1, 2, 4, and 6. It is conjectured that if we extend this table far enough we will get other champions including first 30, then 210, and then 2310. In fact it is conjectured that the only jumping champions are 1, 4 and the primorials 2, 6, 30, 210, 2310… To prove this conjecture will probably first require the proof of the ktuple conjecture, so it could be quite awhile. We also see in the table that the jumping champions for a given x seem to be growing as x does. (In the table: 1 last occurs at 6, 2 at 490, and 4 at 946). It is conjecture that the jumping champions tend to infinity. Odlyzko, Rubinstein and Wolf used a heuristic argument to estimate that 6 stays the sole jumping champion from 947 to about 1.7427^{.}10^{35}, where 30 becomes the champion. Moreover, they estimate that 30 is replaced as a jumping champion by 210 around x=10^{425}. Erdös and Straus have shown that this second conjecture follows from a form of the ktuple conjecture.
See Also: GilbreathsConjecture Related pages (outside of this work)
References:
Chris K. Caldwell © 19992019 (all rights reserved)
