THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Sun 22 May 2022 01:39:07 AM CDT) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13f 202705*2^21320516+1 6418121 L5181 2021 14 2^20996011-1 6320430 G6 2003 Mersenne 40 15 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 16 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 17 168451*2^19375200+1 5832522 L4676 2017 18c 3*2^18924988-1 5696990 L5530 2022 19f 69*2^18831865-1 5668959 L4965 2021 20 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 21e 3*2^18196595-1 5477722 L5461 2022 22 3*2^17748034-1 5342692 L5404 2021 23 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 24d 3622*5^7558139-1 5282917 L4965 2022 25 7*6^6772401+1 5269954 L4965 2019 26 8508301*2^17016603-1 5122515 L4784 2018 Woodall 27 3*2^16819291-1 5063112 L5230 2021 28 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 29 69*2^15866556-1 4776312 L4965 2021 30 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 31 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 32 6*5^6546983+1 4576146 L4965 2020 33f 69*2^14977631-1 4508719 L4965 2021 34 192971*2^14773498-1 4447272 L4965 2021 35 6962*31^2863120-1 4269952 L5410 2020 36 99739*2^14019102+1 4220176 L5008 2019 37e 69*2^13832885-1 4164116 L4965 2022 38 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 39 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 40 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 41 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 42 2^13466917-1 4053946 G5 2001 Mersenne 39 43 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 44 206039*2^13104952-1 3944989 L4965 2021 45 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 46 19249*2^13018586+1 3918990 SB10 2007 47 2293*2^12918431-1 3888839 L4965 2021 48 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 49 69*2^12231580-1 3682075 L4965 2021 50 27*2^12184319+1 3667847 L4965 2021 51 3*2^11895718-1 3580969 L4159 2015 52 3*2^11731850-1 3531640 L4103 2015 53 69*2^11718455-1 3527609 L4965 2020 54a 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 55 69*2^11604348-1 3493259 L4965 2020 56 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 57 3*2^11484018-1 3457035 L3993 2014 58 193997*2^11452891+1 3447670 L4398 2018 59 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 60 9221*2^11392194-1 3429397 L5267 2021 61 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 62 5*2^11355764-1 3418427 L4965 2021 63 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 64 146561*2^11280802-1 3395865 L5181 2020 65 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 66 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 67 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 68 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 69 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 70 9271*2^11134335-1 3351773 L4965 2021 71 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 72 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 73 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 74c 27*2^10902757-1 3282059 L4965 2022 75 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 76a 7*2^10612737-1 3194754 L4965 2022 77 5*2^10495620-1 3159498 L4965 2021 78 5*2^10349000-1 3115361 L4965 2021 79 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 80 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 81 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 82 475856^524288+1 2976633 L3230 2012 Generalized Fermat 83 9*2^9778263+1 2943552 L4965 2020 84 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 85 356926^524288+1 2911151 L3209 2012 Generalized Fermat 86 341112^524288+1 2900832 L3184 2012 Generalized Fermat 87d 43*2^9596983-1 2888982 L4965 2022 88 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 89 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 90 27653*2^9167433+1 2759677 SB8 2005 91 90527*2^9162167+1 2758093 L1460 2010 92 6795*2^9144320-1 2752719 L4965 2021 93 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 94 13*2^8989858+1 2706219 L4965 2020 95b 4159*2^8938471-1 2690752 L4965 2022 96 273809*2^8932416-1 2688931 L1056 2017 97 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 98 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 99 2038*366^1028507-1 2636562 L2054 2016 100 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 101 75898^524288+1 2558647 p334 2011 Generalized Fermat 102 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 103 39*2^8413422+1 2532694 L5232 2021 104 31*2^8348000+1 2513000 L5229 2021 105 27*2^8342438-1 2511326 L3483 2021 106 3687*2^8261084-1 2486838 L4965 2021 107f 273662*5^3493296-1 2441715 L5444 2021 108 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 109 102818*5^3440382-1 2404729 L5427 2021 110 11*2^7971110-1 2399545 L2484 2019 111 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 112 3177*2^7954621-1 2394584 L4965 2021 113 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 114 7*6^3072198+1 2390636 L4965 2019 115 3765*2^7904593-1 2379524 L4965 2021 116 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 117 861*2^7895451-1 2376771 L4965 2021 118 28433*2^7830457+1 2357207 SB7 2004 119 5*2^7755002-1 2334489 L4965 2021 120 2545*2^7732265-1 2327648 L4965 2021 121 5539*2^7730709-1 2327180 L4965 2021 122 4817*2^7719584-1 2323831 L4965 2021 123 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 124d 9467*2^7680034-1 2311925 L4965 2022 125 45*2^7661004+1 2306194 L5200 2020 126 15*2^7619838+1 2293801 L5192 2020 127 3597*2^7580693-1 2282020 L4965 2021 128 7401*2^7523295-1 2264742 L4965 2021 129 45*2^7513661+1 2261839 L5179 2020 130 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 131 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 132 109838*5^3168862-1 2214945 L5129 2020 133 101*2^7345194-1 2211126 L1884 2019 134 15*2^7300254+1 2197597 L5167 2020 135d 422429!+1 2193027 p425 2022 Factorial 136 1759*2^7284439-1 2192838 L4965 2021 137 737*2^7269322-1 2188287 L4665 2017 138 118568*5^3112069+1 2175248 L690 2020 139 6039*2^7207973-1 2169820 L4965 2021 140 502573*2^7181987-1 2162000 L3964 2014 141 402539*2^7173024-1 2159301 L3961 2014 142 3343*2^7166019-1 2157191 L1884 2016 143 161041*2^7107964+1 2139716 L4034 2015 144 27*2^7046834+1 2121310 L3483 2018 145 1759*2^7046791-1 2121299 L4965 2021 146 327*2^7044001-1 2120459 L4965 2021 147 5*2^7037188-1 2118406 L4965 2021 148 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 149 33661*2^7031232+1 2116617 SB11 2007 150 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 151 207494*5^3017502-1 2109149 L5083 2020 152 15*2^6993631-1 2105294 L4965 2021 153e 8943501*2^6972593-1 2098967 L466 2022 154 2^6972593-1 2098960 G4 1999 Mersenne 38 155 6219*2^6958945-1 2094855 L4965 2021 156 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 157 238694*5^2979422-1 2082532 L5081 2020 158 4*72^1119849-1 2079933 L4444 2016 159 33*2^6894190-1 2075360 L4965 2021 160b 2345*2^6882320-1 2071789 L4965 2022 161 146264*5^2953282-1 2064261 L1056 2020 162 69*2^6838971-1 2058738 L5037 2020 163 35816*5^2945294-1 2058677 L5076 2020 164 127*2^6836153-1 2057890 L1862 2018 165 19*2^6833086+1 2056966 L5166 2020 166 40597*2^6808509-1 2049571 L3749 2013 167 283*2^6804731-1 2048431 L2484 2020 168 1861709*2^6789999+1 2044000 L5191 2020 169 5781*2^6789459-1 2043835 L4965 2021 170 8435*2^6786180-1 2042848 L4965 2021 171 51*2^6753404+1 2032979 L4965 2020 172 9995*2^6711008-1 2020219 L4965 2020 173 39*2^6684941+1 2012370 L5162 2020 174 6679881*2^6679881+1 2010852 L917 2009 Cullen 175 37*2^6660841-1 2005115 L3933 2014 176 39*2^6648997+1 2001550 L5161 2020 177 304207*2^6643565-1 1999918 L3547 2013 178 69*2^6639971-1 1998833 L5037 2020 179 6471*2^6631137-1 1996175 L4965 2021 180 1319*2^6506224-1 1958572 L4965 2021 181 322498*5^2800819-1 1957694 L4954 2019 182 88444*5^2799269-1 1956611 L3523 2019 183 13*2^6481780+1 1951212 L4965 2020 184 21*2^6468257-1 1947141 L4965 2021 185 138514*5^2771922+1 1937496 L4937 2019 186 15*2^6429089-1 1935350 L4965 2021 187 398023*2^6418059-1 1932034 L3659 2013 188 631*2^6359347-1 1914357 L4965 2021 189 1995*2^6333396-1 1906546 L4965 2021 190 1582137*2^6328550+1 1905090 L801 2009 Cullen 191 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 192 3303*2^6264946-1 1885941 L4965 2021 193c 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 194d 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 195f 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 196 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 197 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 198 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 199 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 200 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 201 7*6^2396573+1 1864898 L4965 2019 202 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 203 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 204 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 205 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 206 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 207 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 208 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 209 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 210 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 211 194368*5^2638045-1 1843920 L690 2018 212 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 213 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 214 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 215 66916*5^2628609-1 1837324 L690 2018 216 3*2^6090515-1 1833429 L1353 2010 217 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 218 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 219 8349*2^6082397-1 1830988 L4965 2021 220 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 221 32*470^683151+1 1825448 L4064 2021 222 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 223 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 224 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 225 9999*2^6037057-1 1817340 L4965 2021 226 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 227a 33*2^6019138-1 1811943 L4965 2022 228 1583*2^5989282-1 1802957 L4036 2015 229 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 230 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 231 327926*5^2542838-1 1777374 L4807 2018 232 81556*5^2539960+1 1775361 L4809 2018 233 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 234 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 235 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 236 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 237 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 238 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 239 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 240 7*2^5775996+1 1738749 L3325 2012 241 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 242 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 243 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 244 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 245 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 246 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 247 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 248 1243*2^5686715-1 1711875 L1828 2016 249 25*2^5658915-1 1703505 L1884 2021 250 41*2^5651731+1 1701343 L1204 2020 251 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 252 9*2^5642513+1 1698567 L3432 2013 253 10*3^3550446+1 1693995 L4965 2020 254 2622*11^1621920-1 1689060 L2054 2015 255 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 256 301562*5^2408646-1 1683577 L4675 2017 257 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 258 171362*5^2400996-1 1678230 L4669 2017 259 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 260 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 261 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 262 252191*2^5497878-1 1655032 L3183 2012 263 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 264 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 265 258317*2^5450519+1 1640776 g414 2008 266 7*6^2104746+1 1637812 L4965 2019 267 5*2^5429494-1 1634442 L3345 2017 268 43*2^5408183-1 1628027 L1884 2018 269 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 270 1349*2^5385004-1 1621051 L1828 2017 271 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 272 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 273 45*2^5308037+1 1597881 L4761 2019 274 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 275 7*2^5229669-1 1574289 L4965 2021 276 180062*5^2249192-1 1572123 L4435 2016 277 124125*6^2018254+1 1570512 L4001 2019 278 27*2^5213635+1 1569462 L3760 2015 279 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 280e 308084!+1 1557176 p425 2022 Factorial 281 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 282 25*2^5152151-1 1550954 L1884 2020 283 53546*5^2216664-1 1549387 L4398 2016 284 773620^262144+1 1543643 L3118 2012 Generalized Fermat 285 39*2^5119458+1 1541113 L1204 2019 286 607*26^1089034+1 1540957 L5410 2021 287 223*2^5105835-1 1537012 L2484 2019 288 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 289 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 290 51*2^5085142-1 1530782 L760 2014 291 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 292 676754^262144+1 1528413 L2975 2012 Generalized Fermat 293 296024*5^2185270-1 1527444 L671 2016 294 5359*2^5054502+1 1521561 SB6 2003 295 13*2^4998362+1 1504659 L3917 2014 296 525094^262144+1 1499526 p338 2012 Generalized Fermat 297 92158*5^2145024+1 1499313 L4348 2016 298 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 299 77072*5^2139921+1 1495746 L4340 2016 300 2*3^3123036+1 1490068 L5043 2020 301 306398*5^2112410-1 1476517 L4274 2016 302 265711*2^4858008+1 1462412 g414 2008 303 154222*5^2091432+1 1461854 L3523 2015 304 1271*2^4850526-1 1460157 L1828 2012 305a 333*2^4846958-1 1459083 L5546 2022 306 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 307 361658^262144+1 1457075 p332 2011 Generalized Fermat 308 100186*5^2079747-1 1453686 L4197 2015 309e 288465!+1 1449771 p3 2022 Factorial 310 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 311 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 312 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 313 653*10^1435026-1 1435029 p355 2014 314 197*2^4765318-1 1434506 L5175 2021 315 188*468^535963+1 1431156 L4832 2019 316 3267113#-1 1418398 p301 2021 Primorial 317 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 318 1229*2^4703492-1 1415896 L1828 2018 319 144052*5^2018290+1 1410730 L4146 2015 320 195*2^4685711-1 1410542 L5175 2021 321 9*2^4683555-1 1409892 L1828 2012 322 31*2^4673544+1 1406879 L4990 2019 323 34*993^469245+1 1406305 L4806 2018 324 79*2^4658115-1 1402235 L1884 2018 325 39*2^4657951+1 1402185 L1823 2019 326 4*650^498101-1 1401116 L4294 2021 327 11*2^4643238-1 1397755 L2484 2014 328 68*995^465908-1 1396712 L4001 2017 329 7*6^1793775+1 1395830 L4965 2019 330 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 331 27*2^4583717-1 1379838 L2992 2014 332 121*2^4553899-1 1370863 L3023 2012 333 27*2^4542344-1 1367384 L1204 2014 334 29*2^4532463+1 1364409 L4988 2019 335 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 336 145310^262144+1 1353265 p314 2011 Generalized Fermat 337 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 338 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 339 36772*6^1723287-1 1340983 L1301 2014 340 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 341 151*2^4424321-1 1331856 L1884 2016 342 195*2^4373994-1 1316706 L5175 2020 343a (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 344 49*2^4365175-1 1314051 L1959 2017 345 49*2^4360869-1 1312755 L1959 2017 346 13*2^4333087-1 1304391 L1862 2018 347 353159*2^4331116-1 1303802 L2408 2011 348 23*2^4300741+1 1294654 L4147 2019 349 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 350 141941*2^4299438-1 1294265 L689 2011 351 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 352 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 353 3*2^4235414-1 1274988 L606 2008 354 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 355 45*436^481613+1 1271213 L5410 2020 356 109208*5^1816285+1 1269534 L3523 2014 357 1091*2^4215518-1 1269001 L1828 2018 358 191*2^4203426-1 1265360 L2484 2012 359 1259*2^4196028-1 1263134 L1828 2016 360 325918*5^1803339-1 1260486 L3567 2014 361 133778*5^1785689+1 1248149 L3903 2014 362 17*2^4107544-1 1236496 L4113 2015 363 24032*5^1768249+1 1235958 L3925 2014 364 172*159^561319-1 1235689 L4001 2017 365 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 366 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 367 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 368 64*425^467857-1 1229712 p268 2021 369 97*2^4066717-1 1224206 L2484 2019 370 1031*2^4054974-1 1220672 L1828 2017 371 37*2^4046360+1 1218078 L2086 2019 372 39653*430^460397-1 1212446 L4187 2016 373 40734^262144+1 1208473 p309 2011 Generalized Fermat 374 9*2^4005979-1 1205921 L1828 2012 375 12*68^656921+1 1203815 L4001 2016 376 67*688^423893+1 1202836 L4001 2017 377 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 378 138172*5^1714207-1 1198185 L3904 2014 379 50*383^463313+1 1196832 L2012 2021 380 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 381 29*2^3964697+1 1193495 L1204 2019 382 39*2^3961129+1 1192421 L1486 2019 383 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 384 22478*5^1675150-1 1170884 L3903 2014 385 1199*2^3889576-1 1170883 L1828 2018 386 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 387 94*872^397354+1 1168428 L5410 2019 388 27*2^3855094-1 1160501 L3033 2012 389 164*978^387920-1 1160015 L4700 2018 390 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 391 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 392 30*514^424652-1 1151218 L4001 2017 393 24518^262144+1 1150678 g413 2008 Generalized Fermat 394 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 395 241*2^3815727-1 1148651 L2484 2019 396 109*980^383669-1 1147643 L4001 2018 397 123547*2^3804809-1 1145367 L2371 2011 398 2564*75^610753+1 1145203 L3610 2014 399 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 400 166*443^432000+1 1143249 L5410 2020 401 326834*5^1634978-1 1142807 L3523 2014 402 43*182^502611-1 1135939 L4064 2020 403 415267*2^3771929-1 1135470 L2373 2011 404 11*2^3771821+1 1135433 p286 2013 405a 1455*2^3768024-1 1134292 L1134 2022 406 265*2^3765189-1 1133438 L2484 2018 407 938237*2^3752950-1 1129757 L521 2007 Woodall 408 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 409 207394*5^1612573-1 1127146 L3869 2014 410 684*10^1127118+1 1127121 L4036 2017 411 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 412 104944*5^1610735-1 1125861 L3849 2014 413 23451*2^3739388+1 1125673 L591 2015 414 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 415 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 416 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 417 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 418 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 419 119*2^3698412-1 1113336 L2484 2018 420 330286*5^1584399-1 1107453 L3523 2014 421 34*951^371834-1 1107391 L5410 2019 422 45*2^3677787+1 1107126 L1204 2019 423 13*2^3675223-1 1106354 L1862 2016 424 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 425 15*2^3668194-1 1104238 L3665 2013 426 13*2^3664703-1 1103187 L1862 2016 427 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 428 118*892^373012+1 1100524 L5071 2020 429 33300*430^417849-1 1100397 L4393 2016 430 33*2^3649810+1 1098704 L4958 2019 431 989*2^3640585+1 1095929 L5115 2020 432 567*2^3639287+1 1095538 L4959 2019 433 639*2^3635707+1 1094460 L1823 2019 434 753*2^3631472+1 1093185 L1823 2019 435 65531*2^3629342-1 1092546 L2269 2011 436 1121*2^3629201+1 1092502 L4761 2019 437 215*2^3628962-1 1092429 L2484 2018 438 113*2^3628034-1 1092150 L2484 2014 439 1175*2^3627541+1 1092002 L4840 2019 440 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 441 951*2^3623185+1 1090691 L1823 2019 442 29*920^367810-1 1090113 L4064 2015 443 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 444 485*2^3618563+1 1089299 L3924 2019 445 95*2^3614033+1 1087935 L1474 2019 446 1005*2^3612300+1 1087414 L1823 2019 447 861*2^3611815+1 1087268 L1745 2019 448 1087*2^3611476+1 1087166 L4834 2019 449 485767*2^3609357-1 1086531 L622 2008 450 675*2^3606447+1 1085652 L3278 2019 451 669*2^3606266+1 1085598 L1675 2019 452 65077*2^3605944+1 1085503 L4685 2020 453a 1365*2^3605491+1 1085365 L1134 2022 454 851*2^3604395+1 1085034 L2125 2019 455 1143*2^3602429+1 1084443 L4754 2019 456 1183*2^3601898+1 1084283 L1823 2019 457 189*2^3596375+1 1082620 L3760 2016 458 1089*2^3593267+1 1081685 L3035 2019 459 1101*2^3589103+1 1080431 L1823 2019 460 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 461 275*2^3585539+1 1079358 L3803 2016 462 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 463 651*2^3579843+1 1077643 L3035 2018 464 583*2^3578402+1 1077210 L3035 2018 465 309*2^3577339+1 1076889 L4406 2016 466 1185*2^3574583+1 1076060 L4851 2018 467 251*2^3574535+1 1076045 L3035 2016 468a 1485*2^3574333+1 1075985 L1134 2022 469 1019*2^3571635+1 1075173 L1823 2018 470 119*2^3571416-1 1075106 L2484 2018 471 35*2^3570777+1 1074913 L2891 2014 472 33*2^3570132+1 1074719 L2552 2014 473 5*2^3569154-1 1074424 L503 2009 474 81*492^399095-1 1074352 L4001 2015 475 22934*5^1536762-1 1074155 L3789 2014 476 265*2^3564373-1 1072986 L2484 2018 477 771*2^3564109+1 1072907 L2125 2018 478 381*2^3563676+1 1072776 L4190 2016 479 555*2^3563328+1 1072672 L4850 2018 480 1183*2^3560584+1 1071846 L1823 2018 481 415*2^3559614+1 1071554 L3035 2016 482 1103*2^3558176-1 1071121 L1828 2018 483 1379*2^3557072-1 1070789 L1828 2018 484 681*2^3553141+1 1069605 L3035 2018 485 599*2^3551793+1 1069200 L3824 2018 486 621*2^3551472+1 1069103 L4687 2018 487 773*2^3550373+1 1068772 L1808 2018 488 1199*2^3548380-1 1068172 L1828 2018 489 191*2^3548117+1 1068092 L4203 2015 490 867*2^3547711+1 1067971 L4155 2018 491 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 492 351*2^3545752+1 1067381 L4082 2016 493 93*2^3544744+1 1067077 L1728 2014 494 1159*2^3543702+1 1066764 L1823 2018 495 178658*5^1525224-1 1066092 L3789 2014 496 1085*2^3539671+1 1065551 L3035 2018 497 465*2^3536871+1 1064707 L4459 2016 498 1019*2^3536312-1 1064539 L1828 2012 499 1179*2^3534450+1 1063979 L3035 2018 500 447*2^3533656+1 1063740 L4457 2016 501 1059*2^3533550+1 1063708 L1823 2018 502 345*2^3532957+1 1063529 L4314 2016 503 553*2^3532758+1 1063469 L1823 2018 504b 543131*2^3529754-1 1062568 L4925 2022 505 141*2^3529287+1 1062424 L4185 2015 506 13*2^3527315-1 1061829 L1862 2016 507 1393*2^3525571-1 1061306 L1828 2017 508 1071*2^3523944+1 1060816 L1675 2018 509 329*2^3518451+1 1059162 L1823 2016 510 135*2^3518338+1 1059128 L4045 2015 511 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 512 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 513 599*2^3515959+1 1058412 L1823 2018 514 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 515 1135*2^3510890+1 1056887 L1823 2018 516 428639*2^3506452-1 1055553 L2046 2011 517 104*383^408249+1 1054591 L2012 2021 518a 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 519 555*2^3502765+1 1054441 L1823 2018 520a 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 521a 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 522a 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 523 643*2^3501974+1 1054203 L1823 2018 524 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 525 1159*2^3501490+1 1054057 L2125 2018 526b 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 527b 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 528b 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 529b 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 530 1189*2^3499042+1 1053320 L4724 2018 531c 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 532c 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 533c 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 534c 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 535c 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 536c 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 537c 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 538 609*2^3497474+1 1052848 L1823 2018 539 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 540c 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 541c 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 542c 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 543c 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 544c 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 545d 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 546d 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 547 87*2^3496188+1 1052460 L1576 2014 548d 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 549d 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 550d 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 551d 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 552d 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 553 783*2^3494129+1 1051841 L3824 2018 554d 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 555d 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 556d 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 557d 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 558d 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 559d 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 560d 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 561 51*2^3490971+1 1050889 L1823 2014 562 1485*2^3490746+1 1050823 L1134 2021 563d 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 564d 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 565d 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 566d 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 567d 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 568d 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 569d 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 570 753*2^3488818+1 1050242 L1823 2018 571d 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 572d 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 573d 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 574d 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 575 699*2^3487253+1 1049771 L1204 2018 576d 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 577d 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 578d 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 579e 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 580 249*2^3486411+1 1049517 L4045 2015 581 195*2^3486379+1 1049507 L4108 2015 582e 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 583e 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 584e 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 585e 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 586 59912*5^1500861+1 1049062 L3772 2014 587 495*2^3484656+1 1048989 L3035 2016 588e 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 589e 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 590e 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 591e 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 592e 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 593e 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 594e 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 595e 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 596 323*2^3482789+1 1048427 L1204 2016 597e 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 598e 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 599e 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 600e 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 601e 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 602 1149*2^3481694+1 1048098 L1823 2018 603e 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 604e 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 605e 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 606e 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 607e 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 608e 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 609e 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 610 701*2^3479779+1 1047521 L2125 2018 611e 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 612 813*2^3479728+1 1047506 L4724 2018 613e 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 614e 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 615 197*2^3477399+1 1046804 L2125 2015 616e 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 617e 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 618e 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 619e 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 620f 95940796^131072+1 1046218 L4591 2021 Generalized Fermat 621f 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 622f 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 623f 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 624 491*2^3473837+1 1045732 L4343 2016 625 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 626 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 627 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 628 1061*2^3471354-1 1044985 L1828 2017 629 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 630 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 631 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 632 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 633 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 634 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 635 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 636 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 637 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 638 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 639 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 640 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 641 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 642 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 643 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 644 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 645 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 646 641*2^3464061+1 1042790 L1444 2018 647 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 648 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 649 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 650 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 651 453*2^3461688+1 1042075 L3035 2016 652 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 653 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 654 571*2^3460216+1 1041632 L3035 2018 655 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 656 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 657 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 658 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 659 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 660 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 661 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 662 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 663 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 664 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 665 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 666 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 667 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 668 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 669 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 670 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 671 1155*2^3455254+1 1040139 L4711 2017 672 37292*5^1487989+1 1040065 L3553 2013 673 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 674 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 675 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 676 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 677 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 678 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 679 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 680 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 681 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 682 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 683 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 684 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 685 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 686 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 687 1273*2^3448551-1 1038121 L1828 2012 688 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 689 1065*2^3447906+1 1037927 L4664 2017 690 1155*2^3446253+1 1037429 L3035 2017 691 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 692 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 693 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 694 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 695 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 696 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 697 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 698 943*2^3442990+1 1036447 L4687 2017 699 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 700 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 701 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 702 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 703 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 704 943*2^3440196+1 1035606 L1448 2017 705 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 706 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 707 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 708 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 709 543*2^3438810+1 1035188 L3035 2017 710 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 711 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 712 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 713 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 714 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 715 74*941^348034-1 1034913 L5410 2020 716 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 717 113*2^3437145+1 1034686 L4045 2015 718 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 719 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 720 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 721 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 722 1147*2^3435970+1 1034334 L3035 2017 723 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 724 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 725 911*2^3432643+1 1033332 L1355 2017 726 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 727 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 728 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 729 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 730 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 731 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 732 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 733 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 734 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 735 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 736 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 737 1127*2^3427219+1 1031699 L3035 2017 738 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 739 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 740 159*2^3425766+1 1031261 L4045 2015 741 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 742 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 743 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 744 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 745 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 746 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 747 1119*2^3422189+1 1030185 L1355 2017 748a 3363*2^3421353+1 1029934 L5226 2022 749 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 750a 9147*2^3421264+1 1029908 L5237 2022 751a 9705*2^3420915+1 1029803 L5540 2022 752 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 753a 8919*2^3420758+1 1029755 L5226 2022 754 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 755 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 756a 5489*2^3420137+1 1029568 L5174 2022 757a 9957*2^3420098+1 1029557 L5237 2022 758 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 759 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 760a 7213*2^3419370+1 1029337 L5421 2022 761a 7293*2^3419264+1 1029305 L5192 2022 762 975*2^3419230+1 1029294 L3545 2017 763a 4191*2^3419227+1 1029294 L5421 2022 764a 2393*2^3418921+1 1029202 L5197 2022 765 999*2^3418885+1 1029190 L3035 2017 766a 2925*2^3418543+1 1029088 L5174 2022 767 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 768 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 769 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 770b 7383*2^3418297+1 1029014 L5189 2022 771 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 772 907*2^3417890+1 1028891 L3035 2017 773b 5071*2^3417884+1 1028890 L5237 2022 774b 3473*2^3417741+1 1028847 L5541 2022 775 191249*2^3417696-1 1028835 L1949 2010 776 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 777b 3299*2^3417329+1 1028723 L5421 2022 778b 6947*2^3416979+1 1028618 L5540 2022 779 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 780b 8727*2^3416652+1 1028519 L5226 2022 781b 8789*2^3416543+1 1028486 L5197 2022 782 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 783b 7917*2^3415947+1 1028307 L5537 2022 784 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 785b 2055*2^3415873+1 1028284 L5535 2022 786b 4731*2^3415712+1 1028236 L5192 2022 787b 2219*2^3415687+1 1028228 L5178 2022 788 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 789b 5877*2^3415419+1 1028148 L5532 2022 790b 3551*2^3415275+1 1028104 L5231 2022 791 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 792b 2313*2^3415046+1 1028035 L5226 2022 793 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 794b 7637*2^3414875+1 1027984 L5507 2022 795b 2141*2^3414821+1 1027967 L5226 2022 796 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 797b 3667*2^3414686+1 1027927 L5226 2022 798 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 799b 6159*2^3414623+1 1027908 L5226 2022 800 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 801c 4577*2^3413539+1 1027582 L5387 2022 802c 5137*2^3413524+1 1027577 L5261 2022 803c 8937*2^3413364+1 1027529 L5527 2022 804c 8829*2^3413339+1 1027522 L5531 2022 805c 7617*2^3413315+1 1027515 L5197 2022 806 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 807c 3141*2^3413112+1 1027453 L5463 2022 808c 8831*2^3412931+1 1027399 L5310 2022 809 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 810 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 811c 5421*2^3412877+1 1027383 L5310 2022 812c 9187*2^3412700+1 1027330 L5337 2022 813 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 814c 8243*2^3412577+1 1027292 L5524 2022 815c 1751*2^3412565+1 1027288 L5523 2022 816c 9585*2^3412318+1 1027215 L5197 2022 817c 9647*2^3412247+1 1027193 L5178 2022 818c 3207*2^3412108+1 1027151 L5189 2022 819 479*2^3411975+1 1027110 L2873 2016 820 245*2^3411973+1 1027109 L1935 2015 821 177*2^3411847+1 1027071 L4031 2015 822 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 823c 9963*2^3411566+1 1026988 L5237 2022 824 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 825c 9785*2^3411223+1 1026885 L5189 2022 826c 5401*2^3411136+1 1026858 L5261 2022 827 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 828c 9431*2^3411105+1 1026849 L5237 2022 829c 8227*2^3410878+1 1026781 L5316 2022 830c 4735*2^3410724+1 1026734 L5226 2022 831c 9515*2^3410707+1 1026730 L5237 2022 832c 6783*2^3410690+1 1026724 L5434 2022 833c 8773*2^3410558+1 1026685 L5261 2022 834c 4629*2^3410321+1 1026613 L5517 2022 835 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 836 113*2^3409934-1 1026495 L2484 2014 837c 5721*2^3409839+1 1026468 L5226 2022 838 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 839c 6069*2^3409493+1 1026364 L5237 2022 840 1981*910^346850+1 1026347 L1141 2021 841d 5317*2^3409236+1 1026287 L5471 2022 842d 7511*2^3408985+1 1026211 L5514 2022 843d 7851*2^3408909+1 1026188 L5176 2022 844 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 845d 6027*2^3408444+1 1026048 L5239 2022 846 59*2^3408416-1 1026038 L426 2010 847d 2153*2^3408333+1 1026014 L5237 2022 848d 9831*2^3408056+1 1025932 L5233 2022 849d 3615*2^3408035+1 1025925 L5217 2022 850d 6343*2^3407950+1 1025899 L5226 2022 851d 8611*2^3407516+1 1025769 L5509 2022 852 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 853d 7111*2^3407452+1 1025750 L5508 2022 854 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 855d 6945*2^3407256+1 1025691 L5507 2022 856d 6465*2^3407229+1 1025682 L5301 2022 857d 1873*2^3407156+1 1025660 L5440 2022 858d 7133*2^3406377+1 1025426 L5279 2022 859d 7063*2^3406122+1 1025349 L5178 2022 860d 3105*2^3405800+1 1025252 L5502 2022 861 953*2^3405729+1 1025230 L3035 2017 862 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 863 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 864 373*2^3404702+1 1024921 L3924 2016 865d 7221*2^3404507+1 1024863 L5231 2022 866d 6641*2^3404259+1 1024788 L5501 2022 867d 9225*2^3404209+1 1024773 L5250 2022 868 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 869 833*2^3403765+1 1024639 L3035 2017 870 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 871d 2601*2^3403459+1 1024547 L5350 2022 872d 8835*2^3403266+1 1024490 L5161 2022 873d 7755*2^3403010+1 1024412 L5161 2022 874d 3123*2^3402834+1 1024359 L5260 2022 875 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 876 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 877d 1417*2^3402246+1 1024182 L5497 2022 878d 5279*2^3402241+1 1024181 L5250 2022 879d 6651*2^3402137+1 1024150 L5476 2022 880d 1779*2^3401715+1 1024022 L5493 2022 881 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 882d 8397*2^3401502+1 1023959 L5476 2022 883d 4057*2^3401472+1 1023949 L5492 2022 884 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 885d 4095*2^3401174+1 1023860 L5418 2022 886d 5149*2^3400970+1 1023798 L5176 2022 887d 4665*2^3400922+1 1023784 L5308 2022 888 24*414^391179+1 1023717 L4273 2016 889 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 890 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 891d 1725*2^3400371+1 1023617 L5197 2022 892 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 893d 9399*2^3400243+1 1023580 L5488 2022 894d 1241*2^3400127+1 1023544 L5279 2022 895d 1263*2^3399876+1 1023468 L5174 2022 896 1167*2^3399748+1 1023430 L3545 2017 897 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 898d 7679*2^3398569+1 1023076 L5295 2022 899d 6447*2^3398499+1 1023054 L5302 2022 900 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 901d 2785*2^3398332+1 1023004 L5250 2022 902 611*2^3398273+1 1022985 L3035 2017 903d 2145*2^3398034+1 1022914 L5302 2022 904d 3385*2^3397254+1 1022679 L5161 2022 905 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 906d 4463*2^3396657+1 1022500 L5476 2022 907d 2889*2^3396450+1 1022437 L5178 2022 908d 8523*2^3396448+1 1022437 L5231 2022 909 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 910 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 911d 3349*2^3396326+1 1022400 L5480 2022 912 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 913d 4477*2^3395786+1 1022238 L5161 2022 914d 3853*2^3395762+1 1022230 L5302 2022 915d 2693*2^3395725+1 1022219 L5284 2022 916d 8201*2^3395673+1 1022204 L5178 2022 917 255*2^3395661+1 1022199 L3898 2014 918 1049*2^3395647+1 1022195 L3035 2017 919d 9027*2^3395623+1 1022189 L5263 2022 920d 2523*2^3395549+1 1022166 L5472 2022 921d 3199*2^3395402+1 1022122 L5264 2022 922 342924651*2^3394939-1 1021988 L4166 2017 923d 3825*2^3394947+1 1021985 L5471 2022 924d 1895*2^3394731+1 1021920 L5174 2022 925 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 926 555*2^3393389+1 1021515 L2549 2017 927e 1865*2^3393387+1 1021515 L5237 2022 928e 4911*2^3393373+1 1021511 L5231 2022 929 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 930e 5229*2^3392587+1 1021275 L5463 2022 931 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 932 609*2^3392301+1 1021188 L3035 2017 933e 9787*2^3392236+1 1021169 L5350 2022 934 303*2^3391977+1 1021090 L2602 2016 935 805*2^3391818+1 1021042 L4609 2017 936e 6475*2^3391496+1 1020946 L5174 2022 937 67*2^3391385-1 1020911 L1959 2014 938 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 939e 4639*2^3390634+1 1020687 L5189 2022 940e 5265*2^3390581+1 1020671 L5456 2022 941 663*2^3390469+1 1020636 L4316 2017 942f 6945*2^3390340+1 1020598 L5174 2021 943f 5871*2^3390268+1 1020577 L5231 2021 944f 7443*2^3390141+1 1020539 L5226 2021 945f 5383*2^3389924+1 1020473 L5350 2021 946 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 947f 9627*2^3389331+1 1020295 L5231 2021 948 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 949f 8253*2^3388624+1 1020082 L5226 2021 950 3329*2^3388472-1 1020036 L4841 2020 951f 4695*2^3388393+1 1020012 L5237 2021 952 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 953f 7177*2^3388144+1 1019937 L5174 2021 954 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 955f 9611*2^3388059+1 1019912 L5435 2021 956f 1833*2^3387760+1 1019821 L5226 2021 957f 9003*2^3387528+1 1019752 L5189 2021 958f 3161*2^3387141+1 1019635 L5226 2021 959f 7585*2^3387110+1 1019626 L5189 2021 960 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 961 453*2^3387048+1 1019606 L2602 2016 962f 5177*2^3386919+1 1019568 L5226 2021 963f 8739*2^3386813+1 1019537 L5226 2021 964f 2875*2^3386638+1 1019484 L5226 2021 965f 7197*2^3386526+1 1019450 L5178 2021 966f 1605*2^3386229+1 1019360 L5226 2021 967f 8615*2^3386181+1 1019346 L5442 2021 968 3765*2^3386141+1 1019334 L5174 2021 969 5379*2^3385806+1 1019233 L5237 2021 970 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 971 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 972 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 973 173198*5^1457792-1 1018959 L3720 2013 974 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 975 2109*2^3384733+1 1018910 L5261 2021 976 7067*2^3384667+1 1018891 L5439 2021 977 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 978 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 979 2077*2^3384472+1 1018831 L5237 2021 980 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 981 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 982 9165*2^3383917+1 1018665 L5435 2021 983 5579*2^3383209+1 1018452 L5434 2021 984 8241*2^3383131+1 1018428 L5387 2021 985 7409*2^3382869+1 1018349 L5161 2021 986 4883*2^3382813+1 1018332 L5161 2021 987 9783*2^3382792+1 1018326 L5189 2021 988 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 989 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 990 8877*2^3381936+1 1018069 L5429 2021 991 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 992 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 993 6675*2^3381688+1 1017994 L5197 2021 994 2445*2^3381129+1 1017825 L5231 2021 995 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 996 3381*2^3380585+1 1017662 L5237 2021 997 7899*2^3380459+1 1017624 L5421 2021 998 5945*2^3379933+1 1017465 L5418 2021 999 1425*2^3379921+1 1017461 L1134 2020 1000 4975*2^3379420+1 1017311 L5161 2021 1001 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1002 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1003 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1004 9065*2^3378851+1 1017140 L5414 2021 1005 2369*2^3378761+1 1017112 L5197 2021 1006 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1007 621*2^3378148+1 1016927 L3035 2017 1008 7035*2^3378141+1 1016926 L5408 2021 1009 2067*2^3378115+1 1016918 L5405 2021 1010 1093*2^3378000+1 1016883 L4583 2017 1011 9577*2^3377612+1 1016767 L5406 2021 1012 861*2^3377601+1 1016763 L4582 2017 1013 5811*2^3377016+1 1016587 L5261 2021 1014 2285*2^3376911+1 1016555 L5261 2021 1015 4199*2^3376903+1 1016553 L5174 2021 1016 6405*2^3376890+1 1016549 L5269 2021 1017 1783*2^3376810+1 1016525 L5261 2021 1018 5401*2^3376768+1 1016513 L5174 2021 1019 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1020 2941*2^3376536+1 1016443 L5174 2021 1021 1841*2^3376379+1 1016395 L5401 2021 1022 6731*2^3376133+1 1016322 L5261 2021 1023 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1024 8121*2^3375933+1 1016262 L5356 2021 1025 5505*2^3375777+1 1016214 L5174 2021 1026 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1027 3207*2^3375314+1 1016075 L5237 2021 1028 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1029 5307*2^3374939+1 1015962 L5392 2021 1030 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1031 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1032 208003!-1 1015843 p394 2016 Factorial 1033 6219*2^3374198+1 1015739 L5393 2021 1034 3777*2^3374072+1 1015701 L5261 2021 1035 9347*2^3374055+1 1015696 L5387 2021 1036 1461*2^3373383+1 1015493 L5384 2021 1037 6395*2^3373135+1 1015419 L5382 2021 1038 7869*2^3373021+1 1015385 L5381 2021 1039 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1040 4905*2^3372216+1 1015142 L5261 2021 1041 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1042 2839*2^3372034+1 1015087 L5174 2021 1043 7347*2^3371803+1 1015018 L5217 2021 1044 9799*2^3371378+1 1014890 L5261 2021 1045 4329*2^3371201+1 1014837 L5197 2021 1046 3657*2^3371183+1 1014831 L5360 2021 1047 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1048 179*2^3371145+1 1014819 L3763 2014 1049 5155*2^3371016+1 1014781 L5237 2021 1050 7575*2^3371010+1 1014780 L5237 2021 1051 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1052 9195*2^3370798+1 1014716 L5178 2021 1053 1749*2^3370786+1 1014711 L5362 2021 1054 8421*2^3370599+1 1014656 L5174 2021 1055 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1056 4357*2^3369572+1 1014346 L5231 2021 1057 6073*2^3369544+1 1014338 L5358 2021 1058 839*2^3369383+1 1014289 L2891 2017 1059 65*2^3369359+1 1014280 L5236 2021 1060 8023*2^3369228+1 1014243 L5356 2021 1061 677*2^3369115+1 1014208 L2103 2017 1062 1437*2^3369083+1 1014199 L5282 2021 1063 9509*2^3368705+1 1014086 L5237 2021 1064 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1065 4851*2^3368668+1 1014074 L5307 2021 1066 7221*2^3368448+1 1014008 L5353 2021 1067 5549*2^3368437+1 1014005 L5217 2021 1068 715*2^3368210+1 1013936 L4527 2017 1069 617*2^3368119+1 1013908 L4552 2017 1070 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1071 1847*2^3367999+1 1013872 L5352 2021 1072 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1073 6497*2^3367743+1 1013796 L5285 2021 1074 2533*2^3367666+1 1013772 L5326 2021 1075 6001*2^3367552+1 1013738 L5350 2021 1076 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1077 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1078 777*2^3367372+1 1013683 L4408 2017 1079 9609*2^3367351+1 1013678 L5285 2021 1080 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1081 2529*2^3367317+1 1013667 L5237 2021 1082 5941*2^3366960+1 1013560 L5189 2021 1083 5845*2^3366956+1 1013559 L5197 2021 1084 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1085 9853*2^3366608+1 1013454 L5178 2021 1086 61*2^3366033-1 1013279 L4405 2017 1087 7665*2^3365896+1 1013240 L5345 2021 1088 8557*2^3365648+1 1013165 L5346 2021 1089 369*2^3365614+1 1013154 L4364 2016 1090 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1091 8201*2^3365283+1 1013056 L5345 2021 1092 9885*2^3365151+1 1013016 L5344 2021 1093 5173*2^3365096+1 1012999 L5285 2021 1094 8523*2^3364918+1 1012946 L5237 2021 1095 3985*2^3364776+1 1012903 L5178 2021 1096 9711*2^3364452+1 1012805 L5192 2021 1097 7003*2^3364172+1 1012721 L5217 2021 1098 6703*2^3364088+1 1012696 L5337 2021 1099 7187*2^3364011+1 1012673 L5217 2021 1100 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1101 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1102 2345*2^3363157+1 1012415 L5336 2021 1103 6527*2^3363135+1 1012409 L5167 2021 1104 9387*2^3363088+1 1012395 L5161 2021 1105 8989*2^3362986+1 1012364 L5161 2021 1106 533*2^3362857+1 1012324 L3171 2017 1107 619*2^3362814+1 1012311 L4527 2017 1108 2289*2^3362723+1 1012284 L5161 2021 1109 7529*2^3362565+1 1012237 L5161 2021 1110 7377*2^3362366+1 1012177 L5161 2021 1111 4509*2^3362311+1 1012161 L5324 2021 1112 7021*2^3362208+1 1012130 L5178 2021 1113 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1114 104*873^344135-1 1012108 L4700 2018 1115 4953*2^3362054+1 1012083 L5323 2021 1116 8575*2^3361798+1 1012006 L5237 2021 1117 2139*2^3361706+1 1011978 L5174 2021 1118 6939*2^3361203+1 1011827 L5217 2021 1119 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1120 3^2120580-3^623816-1 1011774 CH9 2019 1121 8185*2^3360896+1 1011735 L5189 2021 1122 2389*2^3360882+1 1011730 L5317 2021 1123 2787*2^3360631+1 1011655 L5197 2021 1124 6619*2^3360606+1 1011648 L5316 2021 1125 2755*2^3360526+1 1011623 L5174 2021 1126 1445*2^3360099+1 1011494 L5261 2021 1127 8757*2^3359788+1 1011401 L5197 2021 1128 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1129 5085*2^3359696+1 1011373 L5261 2021 1130 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1131 6459*2^3359457+1 1011302 L5310 2021 1132 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1133 6115*2^3358998+1 1011163 L5309 2021 1134 7605*2^3358929+1 1011143 L5308 2021 1135 2315*2^3358899+1 1011133 L5197 2021 1136 6603*2^3358525+1 1011021 L5307 2021 1137 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1138 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1139 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1140 5893*2^3357490+1 1010709 L5285 2021 1141 6947*2^3357075+1 1010585 L5302 2021 1142 4621*2^3357068+1 1010582 L5301 2021 1143 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1144 1479*2^3356275+1 1010343 L5178 2021 1145 3645*2^3356232+1 1010331 L5296 2021 1146 1259*2^3356215+1 1010325 L5298 2021 1147 2075*2^3356057+1 1010278 L5174 2021 1148 4281*2^3356051+1 1010276 L5295 2021 1149 1275*2^3356045+1 1010274 L5294 2021 1150 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1151 4365*2^3355770+1 1010192 L5261 2021 1152 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1153 2183*2^3355297+1 1010049 L5266 2021 1154 3087*2^3355000+1 1009960 L5226 2021 1155 8673*2^3354760+1 1009888 L5233 2021 1156 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1157 3015*2^3353943+1 1009641 L5290 2021 1158 6819*2^3353877+1 1009622 L5174 2021 1159 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1160 6393*2^3353366+1 1009468 L5287 2021 1161 3573*2^3353273+1 1009440 L5161 2021 1162 4047*2^3353222+1 1009425 L5286 2021 1163 1473*2^3353114+1 1009392 L5161 2021 1164 1183*2^3353058+1 1009375 L3824 2017 1165 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1166 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1167 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1168 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1169 7123*2^3352180+1 1009111 L5161 2021 1170 2757*2^3352180+1 1009111 L5285 2021 1171 9307*2^3352014+1 1009061 L5284 2021 1172 2217*2^3351732+1 1008976 L5283 2021 1173 543*2^3351686+1 1008961 L4198 2017 1174 4419*2^3351666+1 1008956 L5279 2021 1175 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1176 3059*2^3351379+1 1008870 L5278 2021 1177 7789*2^3351046+1 1008770 L5276 2021 1178 9501*2^3350668+1 1008656 L5272 2021 1179 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1180 9691*2^3349952+1 1008441 L5242 2021 1181 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1182 3209*2^3349719+1 1008370 L5269 2021 1183 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1184 393*2^3349525+1 1008311 L3101 2016 1185 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1186 5487*2^3349303+1 1008245 L5266 2021 1187 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1188 2511*2^3349104+1 1008185 L5264 2021 1189f 1005*2^3349046-1 1008167 L4518 2021 1190 7659*2^3348894+1 1008122 L5263 2021 1191 9703*2^3348872+1 1008115 L5262 2021 1192 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1193 7935*2^3348578+1 1008027 L5161 2021 1194 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1195 7821*2^3348400+1 1007973 L5260 2021 1196 7911*2^3347532+1 1007712 L5250 2021 1197 8295*2^3347031+1 1007561 L5249 2021 1198 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1199 4029*2^3346729+1 1007470 L5239 2021 1200 9007*2^3346716+1 1007466 L5161 2021 1201 8865*2^3346499+1 1007401 L5238 2021 1202 6171*2^3346480+1 1007395 L5174 2021 1203 6815*2^3346045+1 1007264 L5235 2021 1204 5*326^400785+1 1007261 L4786 2019 1205 5951*2^3345977+1 1007244 L5233 2021 1206 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1207 1257*2^3345843+1 1007203 L5192 2021 1208 4701*2^3345815+1 1007195 L5192 2021 1209 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1210 7545*2^3345355+1 1007057 L5231 2021 1211 5559*2^3344826+1 1006897 L5223 2021 1212 6823*2^3344692+1 1006857 L5223 2021 1213 4839*2^3344453+1 1006785 L5188 2021 1214 7527*2^3344332+1 1006749 L5220 2021 1215 7555*2^3344240+1 1006721 L5188 2021 1216 6265*2^3344080+1 1006673 L5197 2021 1217 1299*2^3343943+1 1006631 L5217 2021 1218 2815*2^3343754+1 1006574 L5216 2021 1219 5349*2^3343734+1 1006568 L5174 2021 1220 2863*2^3342920+1 1006323 L5179 2020 1221 7387*2^3342848+1 1006302 L5208 2020 1222 9731*2^3342447+1 1006181 L5203 2020 1223 7725*2^3341708+1 1005959 L5195 2020 1224 7703*2^3341625+1 1005934 L5178 2020 1225 7047*2^3341482+1 1005891 L5194 2020 1226 4839*2^3341309+1 1005838 L5192 2020 1227 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1228 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1229 8989*2^3340866+1 1005705 L5189 2020 1230 6631*2^3340808+1 1005688 L5188 2020 1231 1341*2^3340681+1 1005649 L5188 2020 1232 733*2^3340464+1 1005583 L3035 2016 1233 2636*138^469911+1 1005557 L5410 2021 1234 3679815*2^3340001+1 1005448 L4922 2019 1235 57*2^3339932-1 1005422 L3519 2015 1236 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1237 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1238 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1239 3651*2^3339341+1 1005246 L5177 2020 1240 3853*2^3339296+1 1005232 L5178 2020 1241 8015*2^3339267+1 1005224 L5176 2020 1242 3027*2^3339182+1 1005198 L5174 2020 1243 9517*2^3339002+1 1005144 L5172 2020 1244 4003*2^3338588+1 1005019 L3035 2020 1245 6841*2^3338336+1 1004944 L1474 2020 1246 2189*2^3338209+1 1004905 L5031 2020 1247 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1248 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1249 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1250 2957*2^3337667+1 1004742 L5144 2020 1251 1515*2^3337389+1 1004658 L1474 2020 1252 7933*2^3337270+1 1004623 L4666 2020 1253 1251*2^3337116+1 1004576 L4893 2020 1254 651*2^3337101+1 1004571 L3260 2016 1255 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1256 8397*2^3336654+1 1004437 L5125 2020 1257 8145*2^3336474+1 1004383 L5110 2020 1258 1087*2^3336385-1 1004355 L1828 2012 1259 5325*2^3336120+1 1004276 L2125 2020 1260 849*2^3335669+1 1004140 L3035 2016 1261 8913*2^3335216+1 1004005 L5079 2020 1262 7725*2^3335213+1 1004004 L3035 2020 1263 611*2^3334875+1 1003901 L3813 2016 1264 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1265 403*2^3334410+1 1003761 L4293 2016 1266 5491*2^3334392+1 1003756 L4815 2020 1267 6035*2^3334341+1 1003741 L2125 2020 1268 1725*2^3334341+1 1003740 L2125 2020 1269 4001*2^3334031+1 1003647 L1203 2020 1270 2315*2^3333969+1 1003629 L2125 2020 1271 6219*2^3333810+1 1003581 L4582 2020 1272 8063*2^3333721+1 1003554 L1823 2020 1273 9051*2^3333677+1 1003541 L3924 2020 1274 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1275 4091*2^3333153+1 1003383 L1474 2020 1276 9949*2^3332750+1 1003262 L5090 2020 1277 3509*2^3332649+1 1003231 L5085 2020 1278 3781*2^3332436+1 1003167 L1823 2020 1279 4425*2^3332394+1 1003155 L3431 2020 1280 6459*2^3332086+1 1003062 L2629 2020 1281 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1282 5257*2^3331758+1 1002963 L1188 2020 1283 2939*2^3331393+1 1002853 L1823 2020 1284 6959*2^3331365+1 1002845 L1675 2020 1285 8815*2^3330748+1 1002660 L3329 2020 1286 4303*2^3330652+1 1002630 L4730 2020 1287 8595*2^3330649+1 1002630 L4723 2020 1288 673*2^3330436+1 1002564 L3035 2016 1289 8163*2^3330042+1 1002447 L3278 2020 1290 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1291 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1292 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1293 2829*2^3329061+1 1002151 L4343 2020 1294 5775*2^3329034+1 1002143 L1188 2020 1295 7101*2^3328905+1 1002105 L4568 2020 1296 7667*2^3328807+1 1002075 L4087 2020 1297 129*2^3328805+1 1002073 L3859 2014 1298 7261*2^3328740+1 1002055 L2914 2020 1299 4395*2^3328588+1 1002009 L3924 2020 1300 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1301 143183*2^3328297+1 1001923 L4504 2017 1302 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1303 9681*2^3327987+1 1001828 L1204 2020 1304 2945*2^3327987+1 1001828 L2158 2020 1305 5085*2^3327789+1 1001769 L1823 2020 1306 8319*2^3327650+1 1001727 L1204 2020 1307 4581*2^3327644+1 1001725 L2142 2020 1308 655*2^3327518+1 1001686 L4490 2016 1309 8863*2^3327406+1 1001653 L1675 2020 1310 659*2^3327371+1 1001642 L3502 2016 1311 3411*2^3327343+1 1001634 L1675 2020 1312 4987*2^3327294+1 1001619 L3924 2020 1313 821*2^3327003+1 1001531 L3035 2016 1314 2435*2^3326969+1 1001521 L3035 2020 1315b 1931*2^3326850-1 1001485 L4113 2022 1316 2277*2^3326794+1 1001469 L5014 2020 1317 6779*2^3326639+1 1001422 L3924 2020 1318 6195*2^3325993+1 1001228 L1474 2019 1319 555*2^3325925+1 1001206 L4414 2016 1320 9041*2^3325643+1 1001123 L3924 2019 1321c 1965*2^3325639-1 1001121 L4113 2022 1322 1993*2^3325302+1 1001019 L3662 2019 1323 6179*2^3325027+1 1000937 L3048 2019 1324 4485*2^3324900+1 1000899 L1355 2019 1325 3559*2^3324650+1 1000823 L3035 2019 1326 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1327 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1328 6927*2^3324387+1 1000745 L3091 2019 1329 9575*2^3324287+1 1000715 L3824 2019 1330 1797*2^3324259+1 1000705 L3895 2019 1331 4483*2^3324048+1 1000642 L3035 2019 1332 791*2^3323995+1 1000626 L3035 2016 1333 6987*2^3323926+1 1000606 L4973 2019 1334 3937*2^3323886+1 1000593 L3035 2019 1335 2121*2^3323852+1 1000583 L1823 2019 1336 1571*2^3323493+1 1000475 L3035 2019 1337 2319*2^3323402+1 1000448 L4699 2019 1338 2829*2^3323341+1 1000429 L4754 2019 1339 4335*2^3323323+1 1000424 L1823 2019 1340 8485*2^3322938+1 1000308 L4858 2019 1341 6505*2^3322916+1 1000302 L4858 2019 1342 597*2^3322871+1 1000287 L3035 2016 1343 9485*2^3322811+1 1000270 L2603 2019 1344 8619*2^3322774+1 1000259 L3035 2019 1345 387*2^3322763+1 1000254 L1455 2016 1346c 1965*2^3322579-1 1000200 L4113 2022 1347 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1348b 6366*745^348190-1 1000060 L4189 2022 1349 5553507*2^3322000+1 1000029 p391 2016 1350 5029159647*2^3321910-1 1000005 L4960 2021 1351 5009522505*2^3321910-1 1000005 L4960 2021 1352 4766298357*2^3321910-1 1000005 L4960 2021 1353 4759383915*2^3321910-1 1000005 L4960 2021 1354 4635733263*2^3321910-1 1000005 L4960 2021 1355 4603393047*2^3321910-1 1000005 L4960 2021 1356 4550053935*2^3321910-1 1000005 L4960 2021 1357 4288198767*2^3321910-1 1000005 L4960 2021 1358 4229494557*2^3321910-1 1000005 L4960 2021 1359 4110178197*2^3321910-1 1000005 L4960 2021 1360 4022490843*2^3321910-1 1000005 L4960 2021 1361 3936623697*2^3321910-1 1000005 L4960 2021 1362 3751145343*2^3321910-1 1000005 L4960 2021 1363 3715773735*2^3321910-1 1000005 L4960 2021 1364 3698976057*2^3321910-1 1000005 L4960 2021 1365 3659465685*2^3321910-1 1000005 L4960 2020 1366 3652932033*2^3321910-1 1000005 L4960 2020 1367 3603204333*2^3321910-1 1000005 L4960 2020 1368 3543733545*2^3321910-1 1000005 L4960 2020 1369 3191900133*2^3321910-1 1000005 L4960 2020 1370 3174957723*2^3321910-1 1000005 L4960 2020 1371 2973510903*2^3321910-1 1000005 L4960 2019 1372 2848144257*2^3321910-1 1000005 L4960 2019 1373 2820058827*2^3321910-1 1000005 L4960 2019 1374 2611553775*2^3321910-1 1000004 L4960 2020 1375 2601087525*2^3321910-1 1000004 L4960 2019 1376 2386538565*2^3321910-1 1000004 L4960 2019 1377 2272291887*2^3321910-1 1000004 L4960 2019 1378 2167709265*2^3321910-1 1000004 L4960 2019 1379 2087077797*2^3321910-1 1000004 L4960 2019 1380 1848133623*2^3321910-1 1000004 L4960 2019 1381 1825072257*2^3321910-1 1000004 L4960 2019 1382 1633473837*2^3321910-1 1000004 L4960 2019 1383 1228267623*2^3321910-1 1000004 L4808 2019 1384 1148781333*2^3321910-1 1000004 L4808 2019 1385 1065440787*2^3321910-1 1000004 L4808 2019 1386 1055109357*2^3321910-1 1000004 L4960 2019 1387 992309607*2^3321910-1 1000004 L4808 2019 1388 926102325*2^3321910-1 1000004 L4808 2019 1389 892610007*2^3321910-1 1000004 L4960 2019 1390 763076757*2^3321910-1 1000004 L4960 2019 1391 607766997*2^3321910-1 1000004 L4808 2019 1392 539679177*2^3321910-1 1000004 L4808 2019 1393 425521077*2^3321910-1 1000004 L4808 2019 1394 132940575*2^3321910-1 1000003 L4808 2019 1395 239378138685*2^3321891+1 1000001 L5104 2020 1396 464253*2^3321908-1 1000000 L466 2013 1397 3^2095902+3^647322-1 1000000 x44 2018 1398 191273*2^3321908-1 1000000 L466 2013 1399a ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1400 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1401 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1402 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1403 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1404 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1405 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1406 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1407 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1408 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1409 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1410 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1411 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1412 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1413 10^999999+308267*10^292000+1 1000000 CH10 2021 1414 10^999999-1022306*10^287000-1 999999 CH13 2021 1415 10^999999-1087604*10^287000-1 999999 CH13 2021 1416 531631540026641*6^1285077+1 999999 L3494 2021 1417 3139*2^3321905-1 999997 L185 2008 1418e 42550702^131072+1 999937 L4309 2022 Generalized Fermat 1419e 42414020^131072+1 999753 L5030 2022 Generalized Fermat 1420 4847*2^3321063+1 999744 SB9 2005 1421e 42254832^131072+1 999539 L5375 2022 Generalized Fermat 1422e 42243204^131072+1 999524 L4898 2022 Generalized Fermat 1423e 42230406^131072+1 999506 L5453 2022 Generalized Fermat 1424e 42168978^131072+1 999424 L5462 2022 Generalized Fermat 1425e 41688706^131072+1 998772 L5270 2022 Generalized Fermat 1426e 41364744^131072+1 998327 L5453 2022 Generalized Fermat 1427e 41237116^131072+1 998152 L5459 2022 Generalized Fermat 1428e 41102236^131072+1 997965 L4245 2022 Generalized Fermat 1429e 41007562^131072+1 997834 L4210 2022 Generalized Fermat 1430e 41001148^131072+1 997825 L4210 2022 Generalized Fermat 1431e 40550398^131072+1 997196 L4245 2022 Generalized Fermat 1432e 40463598^131072+1 997074 L4591 2022 Generalized Fermat 1433e 40151896^131072+1 996633 L4245 2022 Generalized Fermat 1434 49*2^3309087-1 996137 L1959 2013 1435e 39746366^131072+1 996056 L4201 2022 Generalized Fermat 1436 139413*6^1279992+1 996033 L4001 2015 1437 51*2^3308171+1 995861 L2840 2015 1438e 39597790^131072+1 995842 L4737 2022 Generalized Fermat 1439e 39502358^131072+1 995705 L5453 2022 Generalized Fermat 1440e 39324372^131072+1 995448 L5202 2022 Generalized Fermat 1441 245114*5^1424104-1 995412 L3686 2013 1442e 39100746^131072+1 995123 L5441 2022 Generalized Fermat 1443f 38824296^131072+1 994719 L4245 2021 Generalized Fermat 1444f 38734748^131072+1 994588 L4249 2021 Generalized Fermat 1445 175124*5^1422646-1 994393 L3686 2013 1446f 38310998^131072+1 993962 L4737 2021 Generalized Fermat 1447f 38196496^131072+1 993791 L4861 2021 Generalized Fermat 1448f 38152876^131072+1 993726 L4245 2021 Generalized Fermat 1449f 37909914^131072+1 993363 L4249 2021 Generalized Fermat 1450 1611*22^738988+1 992038 L4139 2015 1451 36531196^131072+1 991254 L4249 2021 Generalized Fermat 1452 2017*2^3292325-1 991092 L3345 2017 1453 36422846^131072+1 991085 L4245 2021 Generalized Fermat 1454 36416848^131072+1 991076 L5202 2021 Generalized Fermat 1455f 36038176^131072+1 990481 L4245 2021 Generalized Fermat 1456 35997532^131072+1 990416 L4245 2021 Generalized Fermat 1457 35957420^131072+1 990353 L4245 2021 Generalized Fermat 1458 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1459 35391288^131072+1 989449 L5070 2021 Generalized Fermat 1460f 35372304^131072+1 989419 L5443 2021 Generalized Fermat 1461 61*2^3286535-1 989348 L4405 2016 1462 35327718^131072+1 989347 L4591 2021 Generalized Fermat 1463 35282096^131072+1 989274 L4245 2021 Generalized Fermat 1464 35141602^131072+1 989046 L4729 2021 Generalized Fermat 1465 35139782^131072+1 989043 L4245 2021 Generalized Fermat 1466 35047222^131072+1 988893 L4249 2021 Generalized Fermat 1467 34957136^131072+1 988747 L5321 2021 Generalized Fermat 1468 34871942^131072+1 988608 L4245 2021 Generalized Fermat 1469 34763644^131072+1 988431 L4737 2021 Generalized Fermat 1470 34585314^131072+1 988138 L4201 2021 Generalized Fermat 1471 34530386^131072+1 988048 L5070 2021 Generalized Fermat 1472 34087952^131072+1 987314 L4764 2021 Generalized Fermat 1473 87*2^3279368+1 987191 L3458 2015 1474 33732746^131072+1 986717 L4359 2021 Generalized Fermat 1475 33474284^131072+1 986279 L5051 2021 Generalized Fermat 1476 33395198^131072+1 986145 L4658 2021 Generalized Fermat 1477 33191418^131072+1 985796 L4201 2021 Generalized Fermat 1478 32869172^131072+1 985241 L4285 2021 Generalized Fermat 1479 32792696^131072+1 985108 L5198 2021 Generalized Fermat 1480 32704348^131072+1 984955 L5312 2021 Generalized Fermat 1481 32608738^131072+1 984788 L5395 2021 Generalized Fermat 1482 32430486^131072+1 984476 L4245 2021 Generalized Fermat 1483 32417420^131072+1 984453 L4245 2021 Generalized Fermat 1484 65*2^3270127+1 984409 L3924 2015 1485 32348894^131072+1 984333 L4245 2021 Generalized Fermat 1486 32286660^131072+1 984223 L5400 2021 Generalized Fermat 1487 32200644^131072+1 984071 L4387 2021 Generalized Fermat 1488 32137342^131072+1 983959 L4559 2021 Generalized Fermat 1489 32096608^131072+1 983887 L4559 2021 Generalized Fermat 1490 32055422^131072+1 983814 L4559 2021 Generalized Fermat 1491 31821360^131072+1 983397 L4861 2021 Generalized Fermat 1492 31768014^131072+1 983301 L4252 2021 Generalized Fermat 1493 31469984^131072+1 982765 L5078 2021 Generalized Fermat 1494 5*2^3264650-1 982759 L384 2013 1495 223*2^3264459-1 982703 L1884 2012 1496 31145080^131072+1 982174 L4201 2021 Generalized Fermat 1497 31044982^131072+1 981991 L5041 2021 Generalized Fermat 1498 30844300^131072+1 981622 L5102 2021 Generalized Fermat 1499 30819256^131072+1 981575 L4201 2021 Generalized Fermat 1500 9*2^3259381-1 981173 L1828 2011 1501 6*5^1403337+1 980892 L4965 2020 1502 30318724^131072+1 980643 L4309 2021 Generalized Fermat 1503 30315072^131072+1 980636 L5375 2021 Generalized Fermat 1504 30300414^131072+1 980609 L4755 2021 Generalized Fermat 1505 30225714^131072+1 980468 L4201 2021 Generalized Fermat 1506 30059800^131072+1 980155 L4928 2021 Generalized Fermat 1507 30022816^131072+1 980085 L5273 2021 Generalized Fermat 1508 29959190^131072+1 979964 L4905 2021 Generalized Fermat 1509 29607314^131072+1 979292 L5378 2021 Generalized Fermat 1510a 779*2^3253063+1 979273 L5192 2022 1511 29505368^131072+1 979095 L5378 2021 Generalized Fermat 1512a 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 1513 29169314^131072+1 978443 L5380 2021 Generalized Fermat 1514a 417*2^3248255+1 977825 L5178 2022 1515 28497098^131072+1 977116 L4308 2021 Generalized Fermat 1516 28398204^131072+1 976918 L5379 2021 Generalized Fermat 1517 28294666^131072+1 976710 L5375 2021 Generalized Fermat 1518 28175634^131072+1 976470 L5378 2021 Generalized Fermat 1519 33*2^3242126-1 975979 L3345 2014 1520 27822108^131072+1 975752 L4760 2021 Generalized Fermat 1521 39*2^3240990+1 975637 L3432 2014 1522 27758510^131072+1 975621 L4289 2021 Generalized Fermat 1523 27557876^131072+1 975208 L4245 2021 Generalized Fermat 1524 27544748^131072+1 975181 L4387 2021 Generalized Fermat 1525 27408050^131072+1 974898 L4210 2021 Generalized Fermat 1526b 225*2^3236967+1 974427 L5529 2022 1527 27022768^131072+1 974092 L4309 2021 Generalized Fermat 1528 26896670^131072+1 973826 L5376 2021 Generalized Fermat 1529a 1075*2^3234606+1 973717 L5192 2022 1530 26757382^131072+1 973530 L5375 2021 Generalized Fermat 1531 26599558^131072+1 973194 L4245 2021 Generalized Fermat 1532 6*5^1392287+1 973168 L4965 2020 1533 26500832^131072+1 972982 L4956 2021 Generalized Fermat 1534b 325*2^3231474+1 972774 L5536 2022 1535b 933*2^3231438+1 972763 L5197 2022 1536b 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 1537 26172278^131072+1 972272 L4245 2021 Generalized Fermat 1538b 697*2^3229518+1 972185 L5534 2022 1539b 385*2^3226814+1 971371 L5178 2022 1540 211195*2^3224974+1 970820 L2121 2013 1541c 1173*2^3223546+1 970388 L5178 2022 1542 7*6^1246814+1 970211 L4965 2019 1543 25128150^131072+1 969954 L4738 2021 Generalized Fermat 1544 25124378^131072+1 969946 L5102 2021 Generalized Fermat 1545c 1089*2^3221691+1 969829 L5178 2022 1546 35*832^332073-1 969696 L4001 2019 1547 600921*2^3219922-1 969299 g337 2018 1548c 939*2^3219319+1 969115 L5178 2022 1549 24734116^131072+1 969055 L5070 2021 Generalized Fermat 1550 24644826^131072+1 968849 L5070 2021 Generalized Fermat 1551 24642712^131072+1 968844 L5070 2021 Generalized Fermat 1552 24641166^131072+1 968840 L5070 2021 Generalized Fermat 1553c 129*2^3218214+1 968782 L5529 2022 1554 24522386^131072+1 968565 L5070 2021 Generalized Fermat 1555 24486806^131072+1 968483 L4737 2021 Generalized Fermat 1556c 811*2^3216944+1 968400 L5233 2022 1557 24297936^131072+1 968042 L4201 2021 Generalized Fermat 1558c 1023*2^3214745+1 967738 L5178 2022 1559c 187*2^3212152+1 966957 L5178 2022 1560 6*409^369832+1 965900 L4001 2015 1561 23363426^131072+1 965809 L5033 2021 Generalized Fermat 1562c 1165*2^3207702+1 965618 L5178 2022 1563 94373*2^3206717+1 965323 L2785 2013 1564 2751*2^3206569-1 965277 L4036 2015 1565c 761*2^3206341+1 965208 L5178 2022 1566 23045178^131072+1 965029 L5023 2021 Generalized Fermat 1567 23011666^131072+1 964946 L5273 2021 Generalized Fermat 1568c 911*2^3205225+1 964872 L5364 2022 1569 22980158^131072+1 964868 L4201 2021 Generalized Fermat 1570 22901508^131072+1 964673 L4743 2021 Generalized Fermat 1571 22808110^131072+1 964440 L5248 2021 Generalized Fermat 1572 22718284^131072+1 964215 L5254 2021 Generalized Fermat 1573 22705306^131072+1 964183 L5248 2021 Generalized Fermat 1574 113983*2^3201175-1 963655 L613 2008 1575 34*888^326732-1 963343 L4001 2017 1576d 899*2^3198219+1 962763 L5503 2022 1577 22007146^131072+1 962405 L4245 2020 Generalized Fermat 1578 4*3^2016951+1 962331 L4965 2020 1579 21917442^131072+1 962173 L4622 2020 Generalized Fermat 1580d 987*2^3195883+1 962060 L5282 2022 1581 21869554^131072+1 962048 L5061 2020 Generalized Fermat 1582 21757066^131072+1 961754 L4773 2020 Generalized Fermat 1583 21582550^131072+1 961296 L5068 2020 Generalized Fermat 1584 21517658^131072+1 961125 L5126 2020 Generalized Fermat 1585 20968936^131072+1 959654 L4245 2020 Generalized Fermat 1586d 671*2^3185411+1 958908 L5315 2022 1587 20674450^131072+1 958849 L4245 2020 Generalized Fermat 1588d 1027*2^3184540+1 958646 L5174 2022 1589d 789*2^3183463+1 958321 L5482 2022 1590d 855*2^3183158+1 958229 L5161 2022 1591 20234282^131072+1 957624 L4942 2020 Generalized Fermat 1592 20227142^131072+1 957604 L4677 2020 Generalized Fermat 1593d 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 1594 20185276^131072+1 957486 L4201 2020 Generalized Fermat 1595d 935*2^3180599+1 957459 L5477 2022 1596d 573*2^3179293+1 957066 L5226 2022 1597 33*2^3176269+1 956154 L3432 2013 1598e 81*2^3174353-1 955578 L3887 2022 1599 19464034^131072+1 955415 L4956 2020 Generalized Fermat 1600 600921*2^3173683-1 955380 g337 2018 1601e 587*2^3173567+1 955342 L5301 2022 1602 19216648^131072+1 954687 L5024 2020 Generalized Fermat 1603 1414*95^482691-1 954633 L4877 2019 1604e 305*2^3171039+1 954581 L5301 2022 1605e 755*2^3170701+1 954479 L5302 2022 1606e 775*2^3170580+1 954443 L5449 2022 1607 78*236^402022-1 953965 L5410 2020 1608 18968126^131072+1 953946 L5011 2020 Generalized Fermat 1609 18813106^131072+1 953479 L4201 2020 Generalized Fermat 1610 18608780^131072+1 952857 L4488 2020 Generalized Fermat 1611 1087*2^3164677-1 952666 L1828 2012 1612 18509226^131072+1 952552 L4884 2020 Generalized Fermat 1613 18501600^131072+1 952528 L4875 2020 Generalized Fermat 1614e 459*2^3163175+1 952214 L5178 2022 1615 15*2^3162659+1 952057 p286 2012 1616 18309468^131072+1 951934 L4928 2020 Generalized Fermat 1617 18298534^131072+1 951900 L4201 2020 Generalized Fermat 1618e 849*2^3161727+1 951778 L5178 2022 1619 67*2^3161450+1 951694 L3223 2015 1620e 119*2^3161195+1 951617 L5320 2022 1621 1759*2^3160863-1 951518 L4965 2021 1622 58*117^460033+1 951436 L5410 2020 1623e 417*2^3160443+1 951391 L5302 2022 1624 9231*70^515544+1 951234 L5410 2021 1625e 671*2^3159523+1 951115 L5188 2022 1626 17958952^131072+1 950834 L4201 2020 Generalized Fermat 1627 17814792^131072+1 950375 L4752 2020 Generalized Fermat 1628 17643330^131072+1 949824 L4201 2020 Generalized Fermat 1629 19*2^3155009-1 949754 L1828 2012 1630e 281*2^3151457+1 948686 L5316 2022 1631f 179*2^3150265+1 948327 L5302 2021 1632 17141888^131072+1 948183 L4963 2019 Generalized Fermat 1633 17138628^131072+1 948172 L4963 2019 Generalized Fermat 1634 17119936^131072+1 948110 L4963 2019 Generalized Fermat 1635 17052490^131072+1 947885 L4715 2019 Generalized Fermat 1636 17025822^131072+1 947796 L4870 2019 Generalized Fermat 1637 16985784^131072+1 947662 L4295 2019 Generalized Fermat 1638f 865*2^3147482+1 947490 L5178 2021 1639f 963*2^3145753+1 946969 L5451 2021 1640 16741226^131072+1 946837 L4201 2019 Generalized Fermat 1641f 387*2^3144483+1 946587 L5450 2021 1642f 1035*2^3144236+1 946513 L5449 2021 1643f 1065*2^3143667+1 946342 L4944 2021 1644f 193*2^3142150+1 945884 L5178 2021 1645f 915*2^3141942+1 945822 L5448 2021 1646f 939*2^3141397+1 945658 L5320 2021 1647f 1063*2^3141350+1 945644 L5178 2021 1648 16329572^131072+1 945420 L4201 2019 Generalized Fermat 1649 69*2^3140225-1 945304 L3764 2014 1650 3*2^3136255-1 944108 L256 2007 1651f 417*2^3136187+1 944089 L5178 2021 1652 15731520^131072+1 943296 L4245 2019 Generalized Fermat 1653 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 1654 15667716^131072+1 943064 L4387 2019 Generalized Fermat 1655 15567144^131072+1 942698 L4918 2019 Generalized Fermat 1656 299*2^3130621+1 942414 L5178 2021 1657 15342502^131072+1 941870 L4245 2019 Generalized Fermat 1658 15237960^131072+1 941481 L4898 2019 Generalized Fermat 1659 571*2^3127388+1 941441 L5440 2021 1660 15147290^131072+1 941141 L4861 2019 Generalized Fermat 1661 197*2^3126343+1 941126 L5178 2021 1662 15091270^131072+1 940930 L4760 2019 Generalized Fermat 1663 1097*2^3124455+1 940558 L5178 2021 1664 3125*2^3124079+1 940445 L1160 2019 1665 495*2^3123624+1 940308 L5438 2021 1666 14790404^131072+1 939784 L4871 2019 Generalized Fermat 1667 1041*2^3120649+1 939412 L5437 2021 1668 14613898^131072+1 939101 L4926 2019 Generalized Fermat 1669 3317*2^3117162-1 938363 L5399 2021 1670 763*2^3115684+1 937918 L4944 2021 1671 581*2^3114611+1 937595 L5178 2021 1672 14217182^131072+1 937534 L4387 2019 Generalized Fermat 1673 134*864^319246-1 937473 L5410 2020 1674b 700057*2^3113753-1 937339 L5410 2022 1675 1197*2^3111838+1 936760 L5178 2021 1676 14020004^131072+1 936739 L4249 2019 Generalized Fermat 1677 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 1678 755*2^3110759+1 936435 L5320 2021 1679 13800346^131072+1 935840 L4880 2019 Generalized Fermat 1680 13613070^131072+1 935062 L4245 2019 Generalized Fermat 1681 628*80^491322+1 935033 L5410 2021 1682 761*2^3105087+1 934728 L5197 2021 1683 13433028^131072+1 934305 L4868 2018 Generalized Fermat 1684 1019*2^3103680-1 934304 L1828 2012 1685 579*2^3102639+1 933991 L5315 2021 1686 99*2^3102401-1 933918 L1862 2017 1687 256612*5^1335485-1 933470 L1056 2013 1688 13083418^131072+1 932803 L4747 2018 Generalized Fermat 1689 69*2^3097340-1 932395 L3764 2014 1690 153*2^3097277+1 932376 L4944 2021 1691 12978952^131072+1 932347 L4849 2018 Generalized Fermat 1692 12961862^131072+1 932272 L4245 2018 Generalized Fermat 1693 207*2^3095391+1 931808 L5178 2021 1694 12851074^131072+1 931783 L4670 2018 Generalized Fermat 1695 45*2^3094632-1 931579 L1862 2018 1696 259*2^3094582+1 931565 L5214 2021 1697 553*2^3094072+1 931412 L4944 2021 1698 57*2^3093440-1 931220 L2484 2020 1699 12687374^131072+1 931054 L4289 2018 Generalized Fermat 1700 513*2^3092705+1 931000 L4329 2016 1701 12661786^131072+1 930939 L4819 2018 Generalized Fermat 1702 933*2^3091825+1 930736 L5178 2021 1703 38*875^316292-1 930536 L4001 2019 1704 5*2^3090860-1 930443 L1862 2012 1705 12512992^131072+1 930266 L4814 2018 Generalized Fermat 1706 12357518^131072+1 929554 L4295 2018 Generalized Fermat 1707 12343130^131072+1 929488 L4720 2018 Generalized Fermat 1708 297*2^3087543+1 929446 L5326 2021 1709 1149*2^3087514+1 929438 L5407 2021 1710 745*2^3087428+1 929412 L5178 2021 1711 373*520^342177+1 929357 L3610 2014 1712 19401*2^3086450-1 929119 L541 2015 1713 75*2^3086355+1 929088 L3760 2015 1714 65*2^3080952-1 927461 L2484 2020 1715 11876066^131072+1 927292 L4737 2018 Generalized Fermat 1716 1139*2^3079783+1 927111 L5174 2021 1717 271*2^3079189-1 926931 L2484 2018 1718 766*33^610412+1 926923 L4001 2016 1719 11778792^131072+1 926824 L4672 2018 Generalized Fermat 1720 555*2^3078792+1 926812 L5226 2021 1721 31*332^367560+1 926672 L4294 2018 1722 167*2^3077568-1 926443 L1862 2019 1723 10001*2^3075602-1 925853 L4405 2019 1724 116*107^455562-1 924513 L4064 2021 1725 11292782^131072+1 924425 L4672 2018 Generalized Fermat 1726 14844*430^350980-1 924299 L4001 2016 1727 11267296^131072+1 924297 L4654 2017 Generalized Fermat 1728 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 1729 1105*2^3069884+1 924131 L5314 2021 1730 319*2^3069362+1 923973 L5377 2021 1731 11195602^131072+1 923933 L4706 2017 Generalized Fermat 1732 973*2^3069092+1 923892 L5214 2021 1733 765*2^3068511+1 923717 L5174 2021 1734 60849*2^3067914+1 923539 L591 2014 1735 674*249^385359+1 923400 L5410 2019 1736 499*2^3066970+1 923253 L5373 2021 1737 553*2^3066838+1 923213 L5368 2021 1738 629*2^3066827+1 923210 L5226 2021 1739 11036888^131072+1 923120 L4660 2017 Generalized Fermat 1740 261*2^3066009+1 922964 L5197 2021 1741 10994460^131072+1 922901 L4704 2017 Generalized Fermat 1742 21*2^3065701+1 922870 p286 2012 1743 10962066^131072+1 922733 L4702 2017 Generalized Fermat 1744 10921162^131072+1 922520 L4559 2017 Generalized Fermat 1745 875*2^3063847+1 922313 L5364 2021 1746 43*2^3063674+1 922260 L3432 2013 1747 677*2^3063403+1 922180 L5346 2021 1748 8460*241^387047-1 921957 L5410 2019 1749 10765720^131072+1 921704 L4695 2017 Generalized Fermat 1750 111*2^3060238-1 921226 L2484 2020 1751 1165*2^3060228+1 921224 L5360 2021 1752 5*2^3059698-1 921062 L503 2008 1753 10453790^131072+1 920031 L4694 2017 Generalized Fermat 1754 453*2^3056181+1 920005 L5320 2021 1755 791*2^3055695+1 919859 L5177 2021 1756 10368632^131072+1 919565 L4692 2017 Generalized Fermat 1757b 582971*2^3053414-1 919175 L5410 2022 1758 123*2^3049038+1 917854 L4119 2015 1759 10037266^131072+1 917716 L4691 2017 Generalized Fermat 1760 400*95^463883-1 917435 L4001 2019 1761 9907326^131072+1 916975 L4690 2017 Generalized Fermat 1762 454*383^354814+1 916558 L2012 2020 1763 9785844^131072+1 916272 L4326 2017 Generalized Fermat 1764 435*2^3041954+1 915723 L5320 2021 1765 639*2^3040438+1 915266 L5320 2021 1766 1045*2^3037988+1 914529 L5178 2021 1767 291*2^3037904+1 914503 L3545 2015 1768 311*2^3037565+1 914401 L5178 2021 1769 373*2^3036746+1 914155 L5178 2021 1770 9419976^131072+1 914103 L4591 2017 Generalized Fermat 1771 801*2^3036045+1 913944 L5348 2021 1772 915*2^3033775+1 913261 L5178 2021 1773 38804*3^1913975+1 913203 L5410 2021 1774 9240606^131072+1 913009 L4591 2017 Generalized Fermat 1775 869*2^3030655+1 912322 L5260 2021 1776 643*2^3030650+1 912320 L5320 2021 1777 99*2^3029959-1 912111 L1862 2020 1778 417*2^3029342+1 911926 L5178 2021 1779 345*2^3027769+1 911452 L5343 2021 1780 26*3^1910099+1 911351 L4799 2020 1781 355*2^3027372+1 911333 L5174 2021 1782 99*2^3026660-1 911118 L1862 2020 1783 417*2^3026492+1 911068 L5197 2021 1784 1065*2^3025527+1 910778 L5208 2021 1785 34202*3^1908800+1 910734 L5410 2021 1786 8343*42^560662+1 910099 L4444 2020 1787 699*2^3023263+1 910096 L5335 2021 1788 8770526^131072+1 910037 L4245 2017 Generalized Fermat 1789 8704114^131072+1 909604 L4670 2017 Generalized Fermat 1790 383731*2^3021377-1 909531 L466 2011 1791 46821*2^3021380-374567 909531 p363 2013 1792 2^3021377-1 909526 G3 1998 Mersenne 37 1793 615*2^3019445+1 908947 L5260 2021 1794 389*2^3019025+1 908820 L5178 2021 1795 875*2^3018175+1 908565 L5334 2021 1796 555*2^3016352+1 908016 L5178 2021 1797 7*2^3015762+1 907836 g279 2008 1798 759*2^3015314+1 907703 L5178 2021 1799 32582*3^1901790+1 907389 L5372 2021 1800 75*2^3012342+1 906808 L3941 2015 1801 459*2^3011814+1 906650 L5178 2021 1802 991*2^3010036+1 906115 L5326 2021 1803 583*2^3009698+1 906013 L5325 2021 1804 8150484^131072+1 905863 L4249 2017 Generalized Fermat 1805 593*2^3006969+1 905191 L5178 2021 1806 367*2^3004536+1 904459 L5178 2021 1807 7926326^131072+1 904276 L4249 2017 Generalized Fermat 1808 1003*2^3003756+1 904224 L5320 2021 1809 573*2^3002662+1 903895 L5319 2021 1810 7858180^131072+1 903784 L4201 2017 Generalized Fermat 1811 329*2^3002295+1 903784 L5318 2021 1812 7832704^131072+1 903599 L4249 2017 Generalized Fermat 1813 268514*5^1292240-1 903243 L3562 2013 1814 7*10^902708+1 902709 p342 2013 1815 435*2^2997453+1 902326 L5167 2021 1816 583*2^2996526+1 902047 L5174 2021 1817 1037*2^2995695+1 901798 L5178 2021 1818 717*2^2995326+1 901686 L5178 2021 1819 885*2^2995274+1 901671 L5178 2021 1820 43*2^2994958+1 901574 L3222 2013 1821 1065*2^2994154+1 901334 L5315 2021 1822 561*2^2994132+1 901327 L5314 2021 1823 1095*2^2992587-1 900862 L1828 2011 1824 519*2^2991849+1 900640 L5311 2021 1825 7379442^131072+1 900206 L4201 2017 Generalized Fermat 1826 459*2^2990134+1 900123 L5197 2021 1827 15*2^2988834+1 899730 p286 2012 1828 29*564^326765+1 899024 L4001 2017 1829 971*2^2982525+1 897833 L5197 2021 1830 1033*2^2980962+1 897362 L5305 2021 1831 39*2^2978894+1 896739 L2719 2013 1832 38*977^299737+1 896184 L5410 2021 1833 4348099*2^2976221-1 895939 L466 2008 1834 205833*2^2976222-411665 895938 L4667 2017 1835 18976*2^2976221-18975 895937 p373 2014 1836 2^2976221-1 895932 G2 1997 Mersenne 36 1837 1024*3^1877301+1 895704 p378 2014 1838 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 1839 24704*3^1877135+1 895626 L5410 2021 1840 591*2^2975069+1 895588 L5299 2021 1841 249*2^2975002+1 895568 L2322 2015 1842 195*2^2972947+1 894949 L3234 2015 1843 6705932^131072+1 894758 L4201 2017 Generalized Fermat 1844 391*2^2971600+1 894544 L5242 2021 1845 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 1846 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 1847 493*72^480933+1 893256 L3610 2014 1848 561*2^2964753+1 892483 L5161 2021 1849 1185*2^2964350+1 892362 L5161 2021 1850 6403134^131072+1 892128 L4510 2016 Generalized Fermat 1851 6391936^131072+1 892028 L4511 2016 Generalized Fermat 1852 21*2^2959789-1 890987 L5313 2021 1853 627*2^2959098+1 890781 L5197 2021 1854 45*2^2958002-1 890449 L1862 2017 1855 729*2^2955389+1 889664 L5282 2021 1856 198677*2^2950515+1 888199 L2121 2012 1857 88*985^296644+1 887987 L5410 2020 1858 5877582^131072+1 887253 L4245 2016 Generalized Fermat 1859 17*2^2946584-1 887012 L3519 2013 1860 489*2^2944673+1 886438 L5167 2021 1861 141*2^2943065+1 885953 L3719 2015 1862 757*2^2942742+1 885857 L5261 2021 1863 5734100^131072+1 885846 L4477 2016 Generalized Fermat 1864 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 1865 33*2^2939063-1 884748 L3345 2013 1866 5903*2^2938744-1 884654 L4036 2015 1867 717*2^2937963+1 884418 L5256 2021 1868 5586416^131072+1 884361 L4454 2016 Generalized Fermat 1869 243*2^2937316+1 884223 L4114 2015 1870 973*2^2937046+1 884142 L5253 2021 1871 61*2^2936967-1 884117 L2484 2017 1872 903*2^2934602+1 883407 L5246 2021 1873 5471814^131072+1 883181 L4362 2016 Generalized Fermat 1874 188*228^374503+1 883056 L4786 2020 1875 53*248^368775+1 883016 L5196 2020 1876 5400728^131072+1 882436 L4201 2016 Generalized Fermat 1877 17*326^350899+1 881887 L4786 2019 1878 855*2^2929550+1 881886 L5200 2021 1879 5326454^131072+1 881648 L4201 2016 Generalized Fermat 1880 839*2^2928551+1 881585 L5242 2021 1881 7019*10^881309-1 881313 L3564 2013 1882 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 1883 577*2^2925602+1 880697 L5201 2021 1884 97366*5^1259955-1 880676 L3567 2013 1885 973*2^2923062+1 879933 L5228 2021 1886 1126*177^391360+1 879770 L4955 2020 1887 243944*5^1258576-1 879713 L3566 2013 1888 693*2^2921528+1 879471 L5201 2021 1889 6*10^879313+1 879314 L5009 2019 1890 269*2^2918105+1 878440 L2715 2015 1891 331*2^2917844+1 878362 L5210 2021 1892 169*2^2917805-1 878350 L2484 2018 1893 1085*2^2916967+1 878098 L5174 2020 1894 389*2^2916499+1 877957 L5215 2020 1895 431*2^2916429+1 877936 L5214 2020 1896 1189*2^2916406+1 877929 L5174 2020 1897 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 1898 4974408^131072+1 877756 L4380 2016 Generalized Fermat 1899 465*2^2914079+1 877228 L5210 2020 1900 427194*113^427194+1 877069 p310 2012 Generalized Cullen 1901 4893072^131072+1 876817 L4303 2016 Generalized Fermat 1902 493*2^2912552+1 876769 L5192 2021 1903 143157*2^2911403+1 876425 L4504 2017 1904 567*2^2910402+1 876122 L5201 2020 1905 683*2^2909217+1 875765 L5199 2020 1906 674*249^365445+1 875682 L5410 2019 1907 475*2^2908802+1 875640 L5192 2021 1908 371*2^2907377+1 875211 L5197 2020 1909 207*2^2903535+1 874054 L3173 2015 1910 851*2^2902731+1 873813 L5177 2020 1911 777*2^2901907+1 873564 L5192 2020 1912 717*2^2900775+1 873224 L5185 2020 1913 99*2^2899303-1 872780 L1862 2017 1914 63*2^2898957+1 872675 L3262 2013 1915 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 1916 747*2^2895307+1 871578 L5178 2020 1917 403*2^2894566+1 871354 L5180 2020 1918 629*2^2892961+1 870871 L5173 2020 1919 627*2^2891514+1 870436 L5168 2020 1920a 325*2^2890955-1 870267 L5545 2022 1921 363*2^2890208+1 870042 L3261 2020 1922 471*2^2890148+1 870024 L5158 2020 1923 4329134^131072+1 869847 L4395 2016 Generalized Fermat 1924 583*2^2889248+1 869754 L5139 2020 1925 955*2^2887934+1 869358 L4958 2020 1926a 303*2^2887603-1 869258 L5184 2022 1927 937*2^2887130+1 869116 L5134 2020 1928 885*2^2886389+1 868893 L3924 2020 1929 763*2^2885928+1 868754 L2125 2020 1930 1071*2^2884844+1 868428 L3593 2020 1931 1181*2^2883981+1 868168 L3593 2020 1932a 327*2^2881349-1 867375 L5545 2022 1933 51*2^2881227+1 867338 L3512 2013 1934 933*2^2879973+1 866962 L4951 2020 1935 261*2^2879941+1 866952 L4119 2015 1936 4085818^131072+1 866554 L4201 2016 Generalized Fermat 1937 65*2^2876718-1 865981 L2484 2016 1938 21*948^290747-1 865500 L4985 2019 1939 4013*2^2873250-1 864939 L1959 2014 1940 41*2^2872058-1 864578 L2484 2013 1941 359*2^2870935+1 864241 L1300 2020 1942 165*2^2870868+1 864220 L4119 2015 1943 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 1944 665*2^2869847+1 863913 L2885 2020 1945 283*2^2868750+1 863583 L3877 2015 1946 845*2^2868291+1 863445 L5100 2020 1947 3125*2^2867399+1 863177 L1754 2019 1948 701*2^2867141+1 863099 L1422 2020 1949 3814944^131072+1 862649 L4201 2016 Generalized Fermat 1950 307*2^2862962+1 861840 L4740 2020 1951 147*2^2862651+1 861746 L1741 2015 1952 1207*2^2861901-1 861522 L1828 2011 1953 231*2^2860725+1 861167 L2873 2015 1954 193*2^2858812+1 860591 L2997 2015 1955 629*2^2857891+1 860314 L3035 2020 1956 493*2^2857856+1 860304 L5087 2020 1957 241*2^2857313-1 860140 L2484 2018 1958 707*2^2856331+1 859845 L5084 2020 1959 3615210^131072+1 859588 L4201 2016 Generalized Fermat 1960 949*2^2854946+1 859428 L2366 2020 1961 222361*2^2854840+1 859398 g403 2006 1962 725*2^2854661+1 859342 L5031 2020 1963 399*2^2851994+1 858539 L4099 2020 1964 225*2^2851959+1 858528 L3941 2015 1965 247*2^2851602+1 858421 L3865 2015 1966 183*2^2850321+1 858035 L2117 2015 1967 1191*2^2849315+1 857733 L1188 2020 1968 717*2^2848598+1 857517 L1204 2020 1969 795*2^2848360+1 857445 L4099 2020 1970 3450080^131072+1 856927 L4201 2016 Generalized Fermat 1971 705*2^2846638+1 856927 L1808 2020 1972 369*2^2846547+1 856899 L4099 2020 1973 233*2^2846392-1 856852 L2484 2021 1974 955*2^2844974+1 856426 L1188 2020 1975 753*2^2844700+1 856343 L1204 2020 1976 11138*745^297992-1 855884 L4189 2019 1977 111*2^2841992+1 855527 L1792 2015 1978 44*744^297912-1 855478 L5410 2021 1979 649*2^2841318+1 855325 L4732 2020 1980e 228*912^288954-1 855305 L5410 2022 1981 305*2^2840155+1 854975 L4907 2020 1982 1149*2^2839622+1 854815 L2042 2020 1983 95*2^2837909+1 854298 L3539 2013 1984 199*2^2835667-1 853624 L2484 2019 1985 595*2^2833406+1 852943 L4343 2020 1986 1101*2^2832061+1 852539 L4930 2020 1987 813*2^2831757+1 852447 L4951 2020 1988 435*2^2831709+1 852432 L4951 2020 1989 543*2^2828217+1 851381 L4746 2019 1990 704*249^354745+1 850043 L5410 2019 1991 1001*2^2822037+1 849521 L1209 2019 1992 84466*5^1215373-1 849515 L3562 2013 1993 97*2^2820650+1 849103 L2163 2013 1994 107*2^2819922-1 848884 L2484 2013 1995 84256*3^1778899+1 848756 L4789 2018 1996 45472*3^1778899-1 848756 L4789 2018 1997 14804*3^1778530+1 848579 L4064 2021 1998 497*2^2818787+1 848543 L4842 2019 1999 97*2^2818306+1 848397 L3262 2013 2000f 313*2^2817751-1 848231 L802 2021 2001 177*2^2816050+1 847718 L129 2012 2002 553*2^2815596+1 847582 L4980 2019 2003 1071*2^2814469+1 847243 L3035 2019 2004 105*2^2813000+1 846800 L3200 2015 2005 1115*2^2812911+1 846774 L1125 2019 2006 96*10^846519-1 846521 L2425 2011 Near-repdigit 2007 763*2^2811726+1 846417 L3919 2019 2008 1125*2^2811598+1 846379 L4981 2019 2009 891*2^2810100+1 845928 L4981 2019 2010 441*2^2809881+1 845862 L4980 2019 2011 711*2^2808473+1 845438 L1502 2019 2012 1089*2^2808231+1 845365 L4687 2019 2013 63*2^2807130+1 845033 L3262 2013 2014 1083*2^2806536+1 844855 L3035 2019 2015 675*2^2805669+1 844594 L1932 2019 2016 819*2^2805389+1 844510 L3372 2019 2017 1027*2^2805222+1 844459 L3035 2019 2018 437*2^2803775+1 844024 L3168 2019 2019 4431*372^327835-1 842718 L5410 2019 2020 150344*5^1205508-1 842620 L3547 2013 2021 311*2^2798459+1 842423 L4970 2019 2022 81*2^2797443-1 842117 L3887 2021 2023 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2024 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2025 43*2^2795582+1 841556 L2842 2013 2026 1001*2^2794357+1 841189 L1675 2019 2027 117*2^2794014+1 841085 L1741 2015 2028 1057*2^2792700+1 840690 L1675 2019 2029 345*2^2792269+1 840560 L1754 2019 2030 711*2^2792072+1 840501 L4256 2019 2031 315*2^2791414-1 840302 L2235 2021 2032 973*2^2789516+1 839731 L3372 2019 2033 27602*3^1759590+1 839543 L4064 2021 2034 2187*2^2786802+1 838915 L1745 2019 2035 15*2^2785940+1 838653 p286 2012 2036 333*2^2785626-1 838560 L802 2021 2037 1337*2^2785444-1 838506 L4518 2017 2038 711*2^2784213+1 838135 L4687 2019 2039 58582*91^427818+1 838118 L5410 2020 2040 923*2^2783153+1 837816 L1675 2019 2041 1103*2^2783149+1 837815 L3784 2019 2042 485*2^2778151+1 836310 L1745 2019 2043 600921*2^2776014-1 835670 g337 2017 2044 1129*2^2774934+1 835342 L1774 2019 2045 750*1017^277556-1 834703 L4955 2021 2046 8700*241^350384-1 834625 L5410 2019 2047 1023*2^2772512+1 834613 L4724 2019 2048 656*249^348030+1 833953 L5410 2019 2049 92*10^833852-1 833854 L4789 2018 Near-repdigit 2050 437*2^2769299+1 833645 L3760 2019 2051 967*2^2768408+1 833377 L3760 2019 2052 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2053 1171*2^2768112+1 833288 L2676 2019 2054 57*2^2765963+1 832640 L3262 2013 2055 1323*2^2764024+1 832058 L1115 2019 2056 77*2^2762047+1 831461 L3430 2013 2057 745*2^2761514+1 831302 L1204 2019 2058 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2059 7*10^830865+1 830866 p342 2014 2060 893*2^2758841+1 830497 L4826 2019 2061 537*2^2755164+1 829390 L3035 2019 2062 579*2^2754370+1 829151 L1823 2019 2063 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2064 215*2^2751022-1 828143 L2484 2018 2065 337*2^2750860+1 828094 L4854 2019 2066 701*2^2750267+1 827916 L3784 2019 2067 467*2^2749195+1 827593 L1745 2019 2068 245*2^2748663+1 827433 L3173 2015 2069 591*2^2748315+1 827329 L3029 2019 2070 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2071 1089*2^2746155+1 826679 L2583 2019 2072 707*2^2745815+1 826576 L3760 2019 2073 459*2^2742310+1 825521 L4582 2019 2074 777*2^2742196+1 825487 L3919 2019 2075 609*2^2741078+1 825150 L3091 2019 2076e 684*157^375674+1 824946 L5112 2022 2077 639*2^2740186+1 824881 L4958 2019 2078 905*2^2739805+1 824767 L4958 2019 2079 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2080 777*2^2737282+1 824007 L1823 2019 2081 765*2^2735232+1 823390 L1823 2019 2082 609*2^2735031+1 823330 L1823 2019 2083 305*2^2733989+1 823016 L1823 2019 2084 165*2^2732983+1 822713 L1741 2015 2085 1133*2^2731993+1 822415 L4687 2019 2086 251*2^2730917+1 822091 L3924 2015 2087 1185*2^2730620+1 822002 L4948 2019 2088a (10^410997+1)^2-2 821995 p405 2022 2089 173*2^2729905+1 821786 L3895 2015 2090 1981*2^2728877-1 821478 L1134 2018 2091 693*2^2728537+1 821375 L3035 2019 2092 501*2^2728224+1 821280 L3035 2019 2093 763*2^2727928+1 821192 L3924 2019 2094 10*743^285478+1 819606 L4955 2019 2095 17*2^2721830-1 819354 p279 2010 2096f 1006*639^291952+1 819075 L4444 2021 2097 1101*2^2720091+1 818833 L4935 2019 2098 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2099 165*2^2717378-1 818015 L2055 2012 2100 68633*2^2715609+1 817485 L5105 2020 2101 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2102 9574*5^1169232+1 817263 L5410 2021 2103 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2104 133*2^2713410+1 816820 L3223 2015 2105 45*2^2711732+1 816315 L1349 2012 2106 569*2^2711451+1 816231 L4568 2019 2107 12830*3^1709456+1 815622 L5410 2021 2108 335*2^2708958-1 815481 L2235 2020 2109 93*2^2708718-1 815408 L1862 2016 2110 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2111 837*2^2708160+1 815241 L4314 2019 2112 1005*2^2707268+1 814972 L4687 2019 2113 13*458^306196+1 814748 L3610 2015 2114 253*2^2705844+1 814543 L4083 2015 2115 657*2^2705620+1 814476 L4907 2019 2116 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2117 303*2^2703864+1 813947 L1204 2019 2118 141*2^2702160+1 813434 L1741 2015 2119 753*2^2701925+1 813364 L4314 2019 2120 133*2^2701452+1 813221 L3173 2015 2121 521*2^2700095+1 812813 L4854 2019 2122 393*2^2698956+1 812470 L1823 2019 2123 417*2^2698652+1 812378 L3035 2019 2124 525*2^2698118+1 812218 L1823 2019 2125 3125*2^2697651+1 812078 L3924 2019 2126 153*2^2697173+1 811933 L3865 2015 2127 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2128 26*3^1700041+1 811128 L4799 2020 2129 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2130 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2131 58*536^296735-1 809841 L5410 2021 2132 33016*3^1696980+1 809670 L5366 2021 2133 7335*2^2689080-1 809498 L4036 2015 2134 1049*2^2688749+1 809398 L4869 2018 2135 329*2^2688221+1 809238 L3035 2018 2136 865*2^2687434+1 809002 L4844 2018 2137 989*2^2686591+1 808748 L2805 2018 2138 136*904^273532+1 808609 L5410 2020 2139 243*2^2685873+1 808531 L3865 2015 2140 909*2^2685019+1 808275 L3431 2018 2141 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2142 1455*2^2683953-1 807954 L1134 2020 2143 11210*241^339153-1 807873 L5410 2019 2144 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2145 975*2^2681840+1 807318 L4155 2018 2146 295*2^2680932+1 807044 L1741 2015 2147 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2148 575*2^2679711+1 806677 L2125 2018 2149 2386*52^469972+1 806477 L4955 2019 2150 219*2^2676229+1 805628 L1792 2015 2151 637*2^2675976+1 805552 L3035 2018 2152 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2153 951*2^2674564+1 805127 L1885 2018 2154 1372930^131072+1 804474 g236 2003 Generalized Fermat 2155 662*1009^267747-1 804286 L5410 2020 2156 261*2^2671677+1 804258 L3035 2015 2157 895*2^2671520+1 804211 L3035 2018 2158 1361244^131072+1 803988 g236 2004 Generalized Fermat 2159 789*2^2670409+1 803877 L3035 2018 2160 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2161 503*2^2668529+1 803310 L4844 2018 2162 255*2^2668448+1 803286 L1129 2015 2163 4189*2^2666639-1 802742 L1959 2017 2164 539*2^2664603+1 802129 L4717 2018 2165 26036*745^279261-1 802086 L4189 2020 2166 1396*5^1146713-1 801522 L3547 2013 2167 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2168 51*892^271541+1 801147 L5410 2019 2169 297*2^2660048+1 800757 L3865 2015 2170 99*2^2658496-1 800290 L1862 2021 2171 851*2^2656411+1 799663 L4717 2018 2172 487*2^2655008+1 799240 L3760 2018 2173 371*2^2651663+1 798233 L3760 2018 2174 69*2^2649939-1 797713 L3764 2014 2175 207*2^2649810+1 797675 L1204 2015 2176 505*2^2649496+1 797581 L3760 2018 2177 993*2^2649256+1 797509 L3760 2018 2178 517*2^2648698+1 797341 L3760 2018 2179 340*703^280035+1 797250 L4001 2018 2180 441*2^2648307+1 797223 L3760 2018 2181 1129*2^2646590+1 796707 L3760 2018 2182 128*518^293315+1 796156 L4001 2019 2183 211*744^277219-1 796057 L5410 2021 2184 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 2185 1176694^131072+1 795695 g236 2003 Generalized Fermat 2186 13*2^2642943-1 795607 L1862 2012 2187 119*410^304307+1 795091 L4294 2019 2188 501*2^2641052+1 795039 L3035 2018 2189 879*2^2639962+1 794711 L3760 2018 2190 57*2^2639528-1 794579 L2484 2016 2191 342673*2^2639439-1 794556 L53 2007 2192 813*2^2639092+1 794449 L2158 2018 2193 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 2194e 197*972^265841-1 794247 L4955 2022 2195 1027*2^2638186+1 794177 L3760 2018 2196 889*2^2637834+1 794071 L3545 2018 2197 92182*5^1135262+1 793520 L3547 2013 2198 5608*70^429979+1 793358 L5390 2021 2199 741*2^2634385+1 793032 L1204 2018 2200 465*2^2630496+1 791861 L1444 2018 2201 189*2^2630487+1 791858 L3035 2015 2202 87*2^2630468+1 791852 L3262 2013 2203 1131*2^2629345+1 791515 L4826 2018 2204 967*2^2629344+1 791515 L3760 2018 2205 267*2^2629210+1 791474 L3035 2015 2206 154*883^268602+1 791294 L5410 2020 2207 819*2^2627529+1 790968 L1387 2018 2208 17152*5^1131205-1 790683 L3552 2013 2209 183*2^2626442+1 790641 L3035 2015 2210 813*2^2626224+1 790576 L4830 2018 2211 807*2^2625044+1 790220 L1412 2018 2212 1063730^131072+1 789949 g260 2013 Generalized Fermat 2213 1243*2^2623707-1 789818 L1828 2011 2214 693*2^2623557+1 789773 L3278 2018 2215 981*2^2622032+1 789314 L1448 2018 2216 145*2^2621020+1 789008 L3035 2015 2217 963*792^271959-1 788338 L5410 2021 2218 541*2^2614676+1 787099 L4824 2018 2219a (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2220 1061*268^323645-1 785857 L5410 2019 2221 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 2222 1071*2^2609316+1 785486 L3760 2018 2223 87*2^2609046+1 785404 L2520 2013 2224 18922*111^383954+1 785315 L4927 2021 2225 543*2^2608129+1 785128 L4822 2018 2226 329584*5^1122935-1 784904 L3553 2013 2227 10*311^314806+1 784737 L3610 2014 2228 1019*2^2606525+1 784646 L1201 2018 2229 977*2^2606211+1 784551 L4746 2018 2230 13*2^2606075-1 784508 L1862 2011 2231 693*2^2605905+1 784459 L4821 2018 2232 147*2^2604275+1 783968 L1741 2015 2233 105*2^2603631+1 783774 L3459 2015 2234 93*2^2602483-1 783428 L1862 2016 2235 155*2^2602213+1 783347 L2719 2015 2236 303*2^2601525+1 783140 L4816 2018 2237 711*2^2600535+1 782842 L4815 2018 2238 1133*2^2599345+1 782484 L4796 2018 2239 397*2^2598796+1 782319 L3877 2018 2240 1536*177^347600+1 781399 L5410 2020 2241 1171*2^2595736+1 781398 L3035 2018 2242 909548^131072+1 781036 p387 2015 Generalized Fermat 2243 2*218^333925+1 780870 L4683 2017 2244 1149*2^2593359+1 780682 L1125 2018 2245 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 2246 333*2^2591874-1 780235 L2017 2019 2247 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 2248 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 2249 703*2^2586728+1 778686 L4256 2018 2250 2642*372^302825-1 778429 L5410 2019 2251 120*825^266904+1 778416 L4001 2018 2252 337*2^2585660+1 778364 L2873 2018 2253 393*2^2584957+1 778153 L4600 2018 2254 151*2^2584480+1 778009 L4043 2015 2255 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 2256 385*2^2584280+1 777949 L4600 2018 2257 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 2258 65*2^2583720-1 777780 L2484 2015 2259 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 2260 82*920^262409-1 777727 L4064 2015 2261 1041*2^2582112+1 777297 L1456 2018 2262 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2263 229*2^2581111-1 776995 L1862 2017 2264 61*2^2580689-1 776867 L2484 2015 2265 1113*2^2580205+1 776723 L4724 2018 2266 51*2^2578652+1 776254 L3262 2013 2267 173*2^2578197+1 776117 L3035 2015 2268 833*2^2578029+1 776067 L4724 2018 2269 80*394^298731-1 775358 L541 2020 2270 302*423^295123-1 775096 L5413 2021 2271 460*628^276994+1 775021 L5410 2020 2272 459*2^2573899+1 774824 L1204 2018 2273 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 2274 627*2^2567718+1 772963 L3803 2018 2275 933*2^2567598+1 772927 L4724 2018 2276 757*2^2566468+1 772587 L2606 2018 2277 231*2^2565263+1 772224 L3035 2015 2278 4*737^269302+1 772216 L4294 2016 Generalized Fermat 2279 941*2^2564867+1 772105 L4724 2018 2280 923*2^2563709+1 771757 L1823 2018 2281 151*596^278054+1 771671 L4876 2019 2282 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 2283 303*2^2562423-1 771369 L2017 2018 2284 75*2^2562382-1 771356 L2055 2011 2285 147559*2^2562218+1 771310 L764 2012 2286 117*412^294963+1 771300 p268 2021 2287 829*2^2561730+1 771161 L1823 2018 2288 404*12^714558+1 771141 L1471 2011 2289 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 2290 295*80^404886+1 770537 L5410 2021 2291 1193*2^2559453+1 770476 L2030 2018 2292 19*984^257291+1 770072 L5410 2020 2293f 116*950^258458-1 769619 L5410 2021 2294 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 2295 65*752^267180-1 768470 L5410 2020 2296 419*2^2552363+1 768341 L4713 2018 2297 34*759^266676-1 768093 L4001 2019 2298 315*2^2550412+1 767754 L4712 2017 2299 415*2^2549590+1 767506 L4710 2017 2300 1152*792^264617-1 767056 L4955 2021 2301 693*2^2547752+1 766953 L4600 2017 2302 673*2^2547226+1 766795 L2873 2017 2303 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2304 196*814^263256+1 766242 L5410 2021 Generalized Fermat 2305 183*2^2545116+1 766159 L3035 2015 2306 311*2^2544778-1 766058 L2017 2018 2307 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2308 67*446^288982+1 765612 L4273 2020 2309 663*2^2542990+1 765520 L4703 2017 2310 705*2^2542464+1 765361 L2873 2017 2311 689186^131072+1 765243 g429 2013 Generalized Fermat 2312 745*2^2540726+1 764838 L4696 2017 2313 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 2314 64*177^340147-1 764644 L3610 2015 2315 421*2^2539336+1 764419 L4148 2017 2316 123287*2^2538167+1 764070 L3054 2012 2317 305716*5^1093095-1 764047 L3547 2013 2318 223*2^2538080+1 764041 L2125 2015 2319 83*2^2537641+1 763908 L1300 2013 2320e 543539*2^2536028-1 763427 L4187 2022 2321 645*2^2532811+1 762455 L4600 2017 2322 953*2^2531601+1 762091 L4404 2017 2323 694*567^276568-1 761556 L4444 2021 2324 545*2^2528179+1 761061 L1502 2017 2325 203*2^2526505+1 760557 L3910 2015 2326 967*2^2526276+1 760488 L1204 2017 2327 3317*2^2523366-1 759613 L5399 2021 2328 241*2^2522801-1 759442 L2484 2018 2329 360307*6^975466-1 759066 p255 2017 2330 326*80^398799+1 758953 L4444 2021 2331 749*2^2519457+1 758436 L1823 2017 2332 199*2^2518871-1 758259 L2484 2018 2333 6*10^758068+1 758069 L5009 2019 2334 87*2^2518122-1 758033 L2484 2014 2335 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 2336 711*2^2516187+1 757451 L3035 2017 2337 967*2^2514698+1 757003 L4600 2017 2338 33*2^2513872-1 756753 L3345 2013 2339 973*2^2511920+1 756167 L1823 2017 2340 679*2^2511814+1 756135 L4598 2017 2341 1093*2^2511384+1 756005 L1823 2017 2342 38*875^256892-1 755780 L4001 2019 2343 45*2^2507894+1 754953 L1349 2012 2344 130484*5^1080012-1 754902 L3547 2013 2345 572186^131072+1 754652 g0 2004 Generalized Fermat 2346 242*501^279492-1 754586 L4911 2019 2347 883*2^2506382+1 754500 L1823 2017 2348 847*2^2505540+1 754246 L4600 2017 2349 191*2^2504121+1 753818 L3035 2015 2350 783*2^2500912+1 752853 L1823 2017 2351 165*2^2500130-1 752617 L2055 2011 2352 33*2^2499883-1 752542 L3345 2013 2353 319*2^2498685-1 752182 L2017 2018 2354 321*2^2496594-1 751553 L2235 2018 2355 365*2^2494991+1 751070 L3035 2017 2356 213*2^2493004-1 750472 L1863 2017 2357 777*2^2492560+1 750339 L3035 2017 2358 57*2^2492031+1 750178 L1230 2013 2359 879*2^2491342+1 749972 L4600 2017 2360 14*152^343720-1 749945 L3610 2015 2361 231*2^2489083+1 749292 L3035 2015 2362 255*2^2488562+1 749135 L3035 2015 2363 221*780^258841-1 748596 L4001 2018 2364 303*2^2486629+1 748553 L3035 2017 2365 6*433^283918-1 748548 L3610 2015 2366 617*2^2485919+1 748339 L1885 2017 2367 515*2^2484885+1 748028 L3035 2017 2368 1095*2^2484828+1 748011 L3035 2017 2369 1113*2^2484125+1 747800 L3035 2017 2370 607*2^2483616+1 747646 L3035 2017 2371 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 2372 723*2^2482064+1 747179 L3035 2017 2373 26*3^1565545+1 746957 L4799 2020 2374 14336*3^1563960+1 746203 L5410 2021 2375 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 2376 1071*2^2477584+1 745831 L3035 2017 2377 22*30^504814-1 745673 p355 2014 2378 11*2^2476839+1 745604 L2691 2011 2379 825*2^2474996+1 745051 L1300 2017 2380 1061*2^2474282-1 744837 L1828 2012 2381 435*2^2473905+1 744723 L3035 2017 2382 1005*2^2473724-1 744669 L4518 2021 2383 1121*2^2473401+1 744571 L3924 2017 2384 325*2^2473267-1 744531 L2017 2018 2385 11996*3^1559395+1 744025 L5410 2021 2386 889*2^2471082+1 743873 L1300 2017 2387 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 2388 883*2^2469268+1 743327 L4593 2017 2389 5754*313^297824-1 743237 L5089 2020 2390 81*2^2468789+1 743182 g418 2009 2391 55154*5^1063213+1 743159 L3543 2013 2392 119*2^2468556-1 743112 L2484 2018 2393 2136*396^285974+1 742877 L5410 2021 2394 525*2^2467658+1 742842 L3035 2017 2395 715*2^2465640+1 742235 L3035 2017 2396 26773*2^2465343-1 742147 L197 2006 2397 581*550^270707-1 741839 L5410 2020 2398 993*2^2464082+1 741766 L3035 2017 2399 1179*2^2463746+1 741665 L3035 2017 2400 857*2^2463411+1 741564 L3662 2017 2401 103*2^2462567-1 741309 L2484 2014 2402 12587*2^2462524-1 741298 L2012 2017 2403 5*2^2460482-1 740680 L503 2008 2404 763*2^2458592+1 740113 L1823 2017 2405 453*2^2458461+1 740074 L3035 2017 2406 519*2^2458058+1 739952 L3803 2017 2407 137*2^2457639+1 739826 L4021 2014 2408 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 2409 2688*991^246849+1 739582 L5410 2021 2410 133*2^2455666+1 739232 L2322 2014 2411 99*2^2455541-1 739194 L1862 2015 2412 377*2^2452639+1 738321 L3035 2017 2413 2189*138^345010+1 738284 L5410 2020 2414 1129*2^2452294+1 738218 L3035 2017 2415 1103*2^2451133+1 737868 L4531 2017 2416 65*2^2450614-1 737711 L2074 2014 2417 549*2^2450523+1 737684 L3035 2017 2418 4*789^254595+1 737582 L4955 2019 2419 3942*55^423771-1 737519 L4955 2019 2420 765*2^2448660+1 737123 L4412 2017 2421 607*2^2447836+1 736875 L4523 2017 2422 1261*988^246031+1 736807 L5342 2021 2423 1005*2^2446722+1 736540 L4522 2017 2424 703*2^2446472+1 736465 L2805 2017 2425 75*2^2446050+1 736337 L3035 2013 2426 115*26^520277-1 736181 L1471 2014 2427 114986*5^1052966-1 735997 L3528 2013 2428 1029*2^2444707+1 735934 L3035 2017 2429 1035*2^2443369+1 735531 L3173 2017 2430 1017*2^2442723+1 735336 L4417 2017 2431 962*3^1540432+1 734976 L5410 2021 2432 1065*2^2441132+1 734857 L1823 2017 2433 393*2^2436849+1 733568 L3035 2016 2434 1425*2^2435607-1 733194 L1134 2020 2435 386892^131072+1 732377 p259 2009 Generalized Fermat 2436 465*2^2431455+1 731944 L3035 2016 2437 905*2^2430509+1 731660 L4408 2016 2438 223*2^2430490+1 731653 L4016 2014 2439 8*410^279991+1 731557 L4700 2019 2440 69*2^2428251-1 730979 L384 2014 2441 6070*466^273937+1 730974 L5410 2021 2442 233*2^2426512-1 730456 L2484 2020 2443 645*2^2426494+1 730451 L3035 2016 2444 665*2^2425789+1 730239 L3173 2016 2445 23*2^2425641+1 730193 L2675 2011 2446 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 2447 753*2^2422914+1 729373 L3035 2016 2448 5619*52^424922+1 729172 L5410 2019 2449 105*2^2422105+1 729129 L2520 2014 2450 62*962^244403+1 729099 L5409 2021 2451 3338*396^280633+1 729003 L5410 2021 2452 201*2^2421514-1 728951 L1862 2016 2453 1084*7^862557+1 728949 L5211 2021 2454 239*2^2421404-1 728918 L2484 2018 2455 577*2^2420868+1 728757 L4489 2016 2456 929*2^2417767+1 727824 L3924 2016 2457 4075*2^2417579-1 727768 L1959 2017 2458 303*2^2417452-1 727729 L2235 2018 2459 895*2^2417396+1 727712 L3035 2016 2460 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 2461 3317*2^2415998-1 727292 L5399 2021 2462 5724*313^291243-1 726814 L4444 2020 2463 1081*2^2412780+1 726323 L1203 2016 2464 333*2^2412735-1 726309 L2017 2018 2465 6891*52^423132+1 726100 L5410 2019 2466 83*2^2411962-1 726075 L1959 2018 2467 69*2^2410035-1 725495 L2074 2013 2468 12362*1027^240890-1 725462 L4444 2018 2469 143157*2^2409056+1 725204 L4504 2016 2470 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 2471 339*2^2408337+1 724985 L3029 2016 2472 811*2^2408096+1 724913 L2526 2016 2473 157*2^2407958+1 724870 L1741 2014 2474 243686*5^1036954-1 724806 L3549 2013 2475 3660*163^327506+1 724509 L4955 2019 2476 303*2^2406433+1 724411 L4425 2016 2477 345*2^2405701+1 724191 L3035 2016 2478 921*2^2405056+1 723997 L2805 2016 2479 673*2^2403606+1 723561 L3035 2016 2480 475*2^2403220+1 723444 L4445 2016 2481 837*2^2402798+1 723318 L3372 2016 2482 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 2483 231*2^2402748+1 723302 L3995 2014 2484 375*2^2401881+1 723041 L2805 2016 2485 107*2^2401731+1 722996 L3998 2014 2486 1023*2^2398601+1 722054 L4414 2016 2487 539*2^2398227+1 721941 L4061 2016 2488 659*2^2397567+1 721743 L4441 2016 2489 40*844^246524+1 721416 L4001 2017 2490 465*2^2395133+1 721010 L4088 2016 2491 56*318^288096+1 720941 L1471 2019 2492 667*2^2394430+1 720799 L4408 2016 2493 15*2^2393365+1 720476 L1349 2010 2494 1642*273^295670+1 720304 L5410 2019 2495 8*908^243439+1 720115 L5410 2021 2496 633*2^2391222+1 719833 L3743 2016 2497 273*2^2388104+1 718894 L3668 2014 2498 118*558^261698+1 718791 L4877 2019 2499 1485*2^2386037-1 718272 L1134 2017 2500 399*2^2384115+1 717693 L4412 2016 2501 99*2^2383846+1 717612 L1780 2013 2502 737*2^2382804-1 717299 L191 2007 2503 111*2^2382772+1 717288 L3810 2014 2504 61*2^2381887-1 717022 L2432 2012 2505 202*249^299162+1 716855 L5410 2019 2506 321*2^2378535-1 716013 L2017 2018 2507 435*2^2378522+1 716010 L1218 2016 2508 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 2509 147*2^2375995+1 715248 L1130 2014 2510 915*2^2375923+1 715228 L1741 2016 2511 1981*2^2375591-1 715128 L1134 2017 2512 81*2^2375447-1 715083 L3887 2021 2513 1129*2^2374562+1 714818 L3035 2016 2514 97*2^2374485-1 714794 L2484 2018 2515 1117*2^2373977-1 714642 L1828 2012 2516 949*2^2372902+1 714318 L4408 2016 2517 1005*2^2372754-1 714274 L4518 2021 2518 659*2^2372657+1 714244 L3035 2016 2519 1365*2^2372586+1 714223 L1134 2016 2520 509*2^2370721+1 713661 L1792 2016 2521 99*2^2370390+1 713561 L1204 2013 2522 959*2^2370077+1 713468 L1502 2016 2523 1135*2^2369808+1 713387 L2520 2016 2524 125*2^2369461+1 713281 L3035 2014 2525 1183953*2^2367907-1 712818 L447 2007 Woodall 2526 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 2527 119878*5^1019645-1 712707 L3528 2013 2528 453*2^2367388+1 712658 L3035 2016 2529 150209!+1 712355 p3 2011 Factorial 2530 281*2^2363327+1 711435 L1741 2014 2531 2683*2^2360743-1 710658 L1959 2012 2532 409*2^2360166+1 710484 L1199 2016 2533 305*2^2358854-1 710089 L2017 2018 2534 1706*123^339764+1 710078 L5410 2021 2535 403*2^2357572+1 709703 L3029 2016 2536 155*2^2357111+1 709564 L3975 2014 2537 365*2^2355607+1 709111 L2117 2016 2538 33706*6^910462+1 708482 L587 2014 2539 1087*2^2352830+1 708276 L1492 2016 2540 152*1002^235971+1 708120 L5410 2019 2541 179*2^2352291+1 708113 L1741 2014 2542 559*2^2351894+1 707994 L3924 2016 2543 24573*2^2350824+1 707673 p168 2018 2544 1035*2^2350388+1 707541 L2526 2016 2545 433*2^2348252+1 706897 L2322 2016 2546 329*2^2348105+1 706853 L3029 2016 2547 45*2^2347187+1 706576 L1349 2012 2548 7675*46^424840+1 706410 L5410 2019 2549 127*2^2346377-1 706332 L282 2009 2550 933*2^2345893+1 706188 L3035 2016 2551 903*2^2345013+1 705923 L2006 2016 2552 33*2^2345001+1 705918 L2322 2013 2553 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 2554 627*2^2343140+1 705359 L3125 2016 2555 83*2^2342345+1 705119 L2626 2013 2556 61*380^273136+1 704634 L5410 2019 2557 277*2^2340182+1 704468 L1158 2014 2558 159*2^2339566+1 704282 L3035 2014 2559 335*2^2338972-1 704104 L2235 2017 2560 22*422^268038+1 703685 L4955 2019 2561 9602*241^295318-1 703457 L5410 2019 2562 1149*2^2336638+1 703402 L4388 2016 2563 339*2^2336421-1 703336 L2519 2017 2564 231*2^2335281-1 702992 L1862 2019 2565 275293*2^2335007-1 702913 L193 2006 2566 105*2^2334755-1 702834 L1959 2018 2567 228188^131072+1 702323 g124 2010 Generalized Fermat 2568 809*2^2333017+1 702312 L2675 2016 2569 795*2^2332488+1 702152 L3029 2016 2570 3^1471170-3^529291+1 701927 p269 2019 2571 229*2^2331017-1 701709 L1862 2021 2572 118*761^243458+1 701499 L5410 2019 2573 435*2^2329948+1 701387 L2322 2016 2574 585*2^2329350+1 701207 L2707 2016 2575 213*2^2328530-1 700960 L1863 2017 2576 1482*327^278686+1 700773 L5410 2020 2577 26472*91^357645+1 700646 L5410 2020 2578 1107*2^2327472+1 700642 L3601 2016 2579 435*2^2327152+1 700546 L2337 2016 2580 4161*2^2326875-1 700463 L1959 2016 2581 427*2^2326288+1 700286 L2719 2016 2582 438*19^547574-1 700215 L5410 2020 2583 147855!-1 700177 p362 2013 Factorial 2584 5872*3^1467401+1 700132 L4444 2021 2585 451*2^2323952+1 699582 L3173 2016 2586 431*2^2323633+1 699486 L3260 2016 2587e 228*912^236298-1 699444 L5366 2022 2588 1085*2^2323291+1 699384 L1209 2016 2589 15*2^2323205-1 699356 L2484 2011 2590 7566*46^420563+1 699299 L5410 2019 2591 1131*2^2322167+1 699045 L1823 2016 2592 385*2^2321502+1 698845 L1129 2016 2593 8348*3^1464571+1 698782 L5367 2021 2594 645*2^2320231+1 698462 L3377 2016 2595b 1942*877^237267+1 698280 L5410 2022 2596 165*2^2319575+1 698264 L2627 2014 2597 809*2^2319373+1 698204 L3924 2016 2598 125098*6^896696+1 697771 L587 2014 2599 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 2600 381*2^2314743+1 696810 L4358 2016 2601 120*825^238890+1 696714 L4837 2018 2602 3375*2^2314297+1 696677 L1745 2019 2603 4063*2^2313843-1 696540 L1959 2016 2604 345*2^2313720-1 696502 L2017 2017 2605 74*830^238594-1 696477 L5410 2020 2606 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 2607 1983*366^271591-1 696222 L2054 2012 2608 3*2^2312734-1 696203 L158 2005 2609 2643996*7^823543-1 695981 p396 2021 2610 53653*2^2311848+1 695941 L2012 2017 2611 873*2^2311086+1 695710 L2526 2016 2612 1033*2^2310976+1 695677 L4352 2016 2613 4063*2^2310187-1 695440 L1959 2016 2614 4063*2^2309263-1 695162 L1959 2016 2615 565*2^2308984+1 695077 L2322 2016 2616 450457*2^2307905-1 694755 L172 2006 2617 1018*3^1455600+1 694501 L5410 2021 2618 1185*2^2306324+1 694276 L4347 2016 2619 3267*2^2305266+1 693958 L1204 2019 2620 107*770^240408-1 693938 L4955 2020 2621 537*2^2304115+1 693611 L3267 2016 2622 842*1017^230634-1 693594 L4001 2017 2623 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 2624 641*2^2302879+1 693239 L2051 2016 2625 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 2626 189*2^2299959+1 692359 L2627 2014 2627f 2582*111^338032-1 691389 L4786 2021 2628 659*2^2294393+1 690684 L3378 2016 2629 1087*2^2293345-1 690369 L1828 2011 2630 97768*5^987383-1 690157 L1016 2013 2631 4761657101009*2^2292504-1 690126 L257 2019 2632 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 2633 319*2^2290722+1 689579 L1792 2015 2634 779*2^2290273+1 689444 L3034 2016 2635 1001*2^2289438-1 689193 L4518 2020 2636 971*2^2289135+1 689102 L4198 2016 2637 399*2^2288691+1 688968 L1990 2015 2638 1425*2^2288483-1 688906 L1134 2021 2639 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 2640 74270*151^315734-1 687982 L4001 2018 2641 23902*52^400831+1 687832 L5410 2019 2642 417*2^2284402+1 687677 L2322 2015 2643 130*686^242244+1 687085 L4064 2018 2644 427*2^2282080+1 686978 L3260 2015 2645 109*2^2280194+1 686409 L2520 2014 2646 105*2^2280078-1 686374 L2444 2014 2647 1019*2^2278467+1 685890 L4323 2016 2648 213*2^2277870-1 685710 L1863 2017 2649d 904*957^229937-1 685425 L5410 2022 2650 547*2^2276648+1 685343 L3260 2015 2651 26*3^1435875+1 685088 L4799 2020 2652 7913*2^2275664-1 685048 L4036 2015 2653 651*2^2275040+1 684859 L4082 2016 2654 155877*2^2273465-1 684387 L541 2014 2655 16*710^240014+1 684344 L5410 2019 Generalized Fermat 2656 739*2^2272938+1 684226 L1209 2016 2657 279*798^235749-1 684147 L541 2021 2658 4821*396^263301+1 683980 L5410 2021 2659 (362^133647+1)^2-2 683928 p403 2019 2660 943*2^2269594+1 683219 L1823 2016 2661 182*792^235539+1 682766 L4837 2019 2662 1286*603^245567+1 682758 L4444 2019 2663 50*893^231310-1 682564 L4975 2019 2664 329*2^2266631+1 682327 L4109 2015 2665 739*2^2266602+1 682319 L2520 2016 2666 19683*2^2265896+1 682107 L2914 2019 2667 1151*2^2265761+1 682066 L1823 2016 2668 851*2^2265691+1 682044 L3173 2016 2669 977*2^2265655+1 682034 L2413 2016 2670 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 2671b 185*2^2264906-1 681807 L2484 2022 2672 31924*3^1428855+1 681742 L5410 2021 2673 217*2^2264546+1 681699 L3179 2014 2674 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 2675 93*2^2263894+1 681502 L2826 2013 2676f 74*932^229308-1 680913 L4444 2021 2677 217499*28^470508-1 680905 p366 2013 2678 963*2^2261357+1 680740 L1300 2016 2679 2138*3^1426626+1 680677 L5410 2021 2680 1065*2^2260193+1 680389 L1204 2016 2681 837*2^2259470+1 680172 L1823 2016 2682 927*2^2258112+1 679763 L4287 2016 2683 265*2^2258071-1 679750 L2484 2018 2684 561*2^2256600+1 679308 L3877 2015 2685 495*2^2255944+1 679110 L4119 2015 2686 129*2^2255199+1 678885 L3049 2014 2687 735*2^2254660+1 678724 L4283 2016 2688 162*814^233173+1 678682 L5410 2021 2689 973*2^2254320+1 678621 L1204 2016 2690 275102*151^311399-1 678537 L4001 2018 2691 603*2^2252402+1 678044 L1803 2016 2692 1029*2^2252198+1 677983 L3125 2016 2693 39*2^2251104-1 677652 L177 2015 2694 575*2^2250751+1 677547 L1741 2015 2695 2838*88^348438+1 677536 L5410 2020 2696 725*2^2250697+1 677531 L2859 2016 2697 65*2^2250637+1 677512 L3487 2013 2698 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 2699 187*2^2249974+1 677312 L2322 2014 2700 141*2^2249967+1 677310 L3877 2014 2701 459*2^2249183+1 677075 L3877 2015 2702d 904*957^227111-1 677001 L5410 2022 2703 319*2^2248914+1 676994 L2322 2015 2704 569*2^2248709+1 676932 L4133 2015 2705 221*2^2248363+1 676828 L1130 2014 2706 144912*151^310514-1 676609 L4001 2018 2707 649*2^2247490+1 676565 L1204 2016 2708 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 2709 721*2^2246420+1 676243 L3037 2016 2710 875*2^2246363+1 676226 L2859 2016 2711 3888*931^227714-1 676075 L4001 2018 2712 347*2^2245598-1 675995 L2519 2017 2713 1199*2^2244631+1 675705 L3593 2016 2714b 137*2^2244398-1 675634 L2484 2022 2715 197*2^2244347+1 675619 L1129 2014 2716 5055*2^2242777-1 675147 L4036 2015 2717 651*2^2241783+1 674847 L3260 2016 2718 35*2^2241049+1 674625 L2742 2013 2719 4161*2^2240358-1 674419 L1959 2016 2720 164978*151^309413-1 674210 L4001 2018 2721 2354*138^314727+1 673482 L5410 2020 2722 20*698^236810-1 673455 L5410 2020 2723 146*447^254042-1 673292 L4001 2018 2724 675*2^2236244+1 673180 L4191 2016 2725 615*2^2235833+1 673056 L1823 2016 2726 53069*28^465060-1 673021 p257 2016 2727 831*2^2235253+1 672882 L3432 2013 2728 185*2^2235003+1 672806 L2322 2014 2729 103*2^2234536+1 672665 L3865 2014 2730 885*2^2234318+1 672600 L3125 2016 2731 963*2^2234249+1 672579 L1823 2016 2732 305*2^2233655+1 672400 L4118 2015 2733 267*2^2233376+1 672316 L1792 2014 2734 221*994^224221-1 672080 L5410 2020 2735 103*2^2232551-1 672067 L2484 2013 2736 889*2^2231034+1 671612 L2526 2016 2737 1779*88^345359+1 671548 L5410 2020 2738 907*2^2230776+1 671534 L4269 2016 2739 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 2740 1425*2^2229009+1 671002 L1134 2016 2741 747*2^2228814+1 670943 L2526 2016 2742 9760*3^1406070+1 670870 L4444 2021 2743 969*2^2228379+1 670812 L4262 2016 2744 887*2^2228179+1 670752 L2840 2015 2745 130816^131072+1 670651 g308 2003 Generalized Fermat 2746 1123*2^2227338+1 670499 L3924 2015 2747 3478*378^260076+1 670348 L4955 2021 2748 213*2^2226329+1 670195 L2125 2014 2749 505*2^2225296+1 669884 L4111 2015 2750 11*878^227481+1 669591 L5410 2019 2751 271*2^2223601-1 669374 L2484 2018 2752 325*2^2223243-1 669266 L2235 2016 2753a (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 2754 84363*2^2222321+1 668991 L541 2014 2755 2516745*2^2222222+1 668962 p396 2017 2756 7043*48^397817-1 668831 p255 2016 2757 1137*2^2221062+1 668610 L4040 2015 2758 152*806^229984-1 668413 L4001 2018 2759 1425*2^2219664-1 668189 L1134 2021 2760 1031*2^2218785+1 667924 L1204 2015 2761 911*2^2218151+1 667733 L3260 2015 2762 27*2^2218064+1 667706 L690 2009 2763 587*2^2217355+1 667494 L4109 2015 2764 547*2^2216110+1 667119 L2322 2015 2765 67*2^2215581-1 666959 L268 2010 2766 33*2^2215291-1 666871 L3345 2013 2767 157533*2^2214598-1 666666 L3494 2013 2768 1105*2^2213846+1 666438 L2321 2015 2769 33*2^2212971-1 666173 L3345 2013 2770 101*2^2212769+1 666112 L1741 2014 2771 3*10^665829+1 665830 p300 2012 2772 4207801666259*2^2211084-1 665616 L257 2019 2773 631*2^2210260+1 665358 L2322 2015 2774 479*2^2209541+1 665141 L4106 2015 2775 165*2^2207550-1 664541 L2055 2011 2776 819*2^2206370+1 664187 L2526 2015 2777 19*2^2206266+1 664154 p189 2006 2778 45*2^2205977-1 664067 L1862 2015 2779 1323*2^2205832+1 664025 L4893 2019 2780 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 2781 73*416^253392+1 663660 L3610 2015 2782 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 2783 1041*2^2201196+1 662630 L3719 2015 2784 481*2^2201148+1 662615 L1741 2015 2785 1344*73^355570+1 662545 L3610 2014 2786 783*2^2200256+1 662346 L3924 2015 2787 969*2^2200223+1 662337 L1209 2015 2788 173*2^2199301+1 662058 L1204 2014 2789 5077*2^2198565-1 661838 L251 2008 2790 114487*2^2198389-1 661787 L179 2006 2791 1035*2^2197489+1 661514 L2517 2014 2792 903*2^2197294+1 661455 L2322 2014 2793 404882*43^404882-1 661368 p310 2011 Generalized Woodall 2794 638*520^243506-1 661366 L4877 2019 2795 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 2796 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 2797 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 2798 10880*151^302997-1 660228 L4001 2018 2799 1073*2^2193069+1 660183 L2487 2014 2800 169*2^2193049-1 660176 L2484 2018 2801 26040*421^251428+1 659823 L5410 2021 2802 202064*151^302700-1 659582 L4001 2018 2803 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 2804 819*2^2190853+1 659516 L3234 2014 2805 1179*2^2189870+1 659220 L2517 2014 2806 269*2^2189235+1 659028 L1204 2014 2807 39*2^2188855+1 658913 p286 2013 2808 433*2^2188076+1 658680 L3855 2014 2809 1323*2^2186806+1 658298 L4974 2019 2810 815*2^2185439+1 657886 L3035 2014 2811 249*2^2185003+1 657754 L1300 2014 2812 585*2^2184510+1 657606 L3838 2014 2813 1033*2^2183858+1 657410 L3865 2014 2814 1035*2^2183770+1 657384 L3514 2014 2815 193020*151^301686-1 657373 L4001 2018 2816 353938*7^777777+1 657304 L4789 2020 2817 1179*2^2182691+1 657059 L2163 2014 2818 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 2819 23902*52^382687+1 656697 L4876 2019 2820 525*2^2180848+1 656504 L3797 2014 2821 135*2^2180256-1 656325 L1959 2019 2822 1107*2^2180142+1 656292 L1741 2014 2823 447*2^2180102+1 656279 L3760 2014 2824 315*2^2179612-1 656132 L2235 2015 2825 1423*2^2179023-1 655955 L3887 2015 2826 995*2^2178819+1 655893 L1741 2014 2827 219*2^2178673-1 655849 L5313 2021 2828 1423*2^2178363-1 655756 L3887 2015 2829 196597*2^2178109-1 655682 L175 2006 2830 6*10^655642+1 655643 L5009 2019 2831 879*2^2177186+1 655402 L2981 2014 2832 67*410^250678+1 654970 L4444 2019 2833 70082*5^936972-1 654921 L3523 2013 2834 699*2^2175031+1 654753 L3865 2014 2835 1260*991^218477+1 654577 L5410 2021 2836 69*2^2174213-1 654506 L2055 2012 2837 1069*2^2174122+1 654479 L3865 2014 2838 793*2^2173720+1 654358 L2322 2014 2839 3267*2^2173170+1 654193 L1204 2019 2840 651*2^2173159+1 654189 L3864 2014 2841 187*2^2172693-1 654049 L1959 2019 2842 10001*2^2172615+1 654027 L4405 2018 2843 1011*2^2172063+1 653860 L2826 2014 2844 1105*2^2171956+1 653827 L3035 2014 2845 4165*2^2171145-1 653584 L1959 2017 2846 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 2847 739*2^2170786+1 653475 L2121 2014 2848f 134*937^219783-1 653140 L5410 2021 2849 701*2^2169041+1 652950 L3863 2014 2850 1779*88^335783+1 652928 L5410 2020 2851 295*2^2168448+1 652771 L1935 2014 2852 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 2853 359*2^2165551+1 651899 L3838 2014 2854 1059*2^2164149+1 651477 L2322 2014 2855 329*2^2163717+1 651347 L2117 2014 2856 559*2^2163382+1 651246 L1741 2014 2857 235*2^2163273-1 651213 L5313 2021 2858 775*2^2162344+1 650934 L3588 2014 2859 21*2^2160479-1 650371 L2074 2012 2860 102976*5^929801-1 649909 L3313 2013 2861 1007*2^2158720-1 649843 L4518 2021 2862 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 2863 617*2^2156699+1 649234 L1675 2014 2864 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 2865f 57*572^235362+1 648989 L4444 2021 2866 2*3^1360104-1 648935 p390 2015 2867 483*2^2155456+1 648860 L3760 2014 2868 105*2^2155392+1 648840 L3580 2014 2869 40*1017^215605+1 648396 L4927 2018 2870 1005*2^2153712-1 648335 L4518 2021 2871 31340*6^833096+1 648280 p271 2013 2872 427*2^2153306+1 648213 L3838 2014 2873 834*709^227380-1 648183 L5410 2021 2874 261*2^2152805+1 648062 L1125 2014 2875 371*2^2150871+1 647480 L2545 2014 2876 111*2^2150802-1 647458 L2484 2013 2877 357*2^2148518+1 646771 L1741 2014 2878 993*2^2148205+1 646678 L1741 2014 2879 67*2^2148060+1 646633 L3276 2013 2880 243*2^2147387-1 646431 L2444 2014 2881 693*2^2147024+1 646322 L3862 2014 2882 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 2883 143157*2^2144728+1 645633 L4504 2016 2884 509*2^2144181+1 645466 L3035 2014 2885 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 2886 161*2^2142431+1 644939 L3105 2014 2887 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 2888 23*2^2141626-1 644696 L545 2008 2889 519*2^2140311+1 644301 L2659 2014 2890 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 2891 315*2^2139665+1 644106 L3838 2014 2892 193*2^2139400+1 644026 L3538 2014 2893 1113*2^2139060+1 643925 L3914 2014 2894 292402*159^292402+1 643699 g407 2012 Generalized Cullen 2895 307*2^2137553-1 643471 L2235 2015 2896 1051*2^2137440+1 643437 L3865 2014 2897 1185*2^2137344+1 643408 L3877 2014 2898 405*2^2137280-1 643388 L1862 2016 2899 513*2^2135642+1 642896 L3843 2014 2900 241*2^2135279-1 642786 L2484 2018 2901 915*2^2135151+1 642748 L2322 2014 2902 61*2^2134577-1 642574 L2055 2011 2903 2*3^1346542+1 642465 L5043 2020 2904 93*10^642225-1 642227 L4789 2020 Near-repdigit 2905 26362*421^244658+1 642057 L5388 2021 2906 5428*378^249058+1 641949 L5410 2021 2907 711*2^2132477+1 641943 L2125 2014 2908 81*984^214452+1 641856 L5410 2020 Generalized Fermat 2909 215*2^2131988-1 641795 L2484 2018 2910 319*2^2130729-1 641416 L1817 2015 2911 78792*151^294324-1 641331 L4001 2018 2912 75*2^2130432-1 641326 L2055 2011 2913 1145*2^2130307+1 641290 L3909 2014 2914 110488*5^917100+1 641031 L3354 2013 2915 37*2^2128328+1 640693 L3422 2013 2916 103*2^2128242+1 640667 L3787 2014 2917 185*2^2127966-1 640584 L1959 2019 2918 3762*70^347127+1 640487 L4876 2019 2919 253*2^2126968+1 640284 L1935 2014 2920 583*2^2126166+1 640043 L1741 2014 2921 999*2^2125575+1 639865 L1741 2014 2922 7*848^218439-1 639677 L5410 2020 2923 587*2^2124947+1 639676 L3838 2014 2924 451*2^2124636+1 639582 L1741 2014 2925 887*2^2124027+1 639399 L3865 2014 2926e 721751*2^2123838-1 639345 L4001 2022 2927 693*2^2121393+1 638606 L3278 2014 2928 118*107^314663-1 638575 L5227 2021 2929 8331405*2^2120345-1 638295 L2055 2013 2930 975*2^2119209+1 637949 L1158 2014 2931 33*2^2118570-1 637755 L3345 2013 2932 117*2^2117600-1 637464 L1959 2019 2933 254*5^911506-1 637118 p292 2010 2934 1139*2^2115949+1 636968 L3865 2014 2935 771*2^2115741+1 636905 L1675 2014 2936 411*2^2115559+1 636850 L2840 2014 2937 34*3^1334729+1 636830 L4799 2021 2938 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 2939 929*2^2114679+1 636585 L3035 2014 2940 1065*2^2113463+1 636219 L2826 2014 2941e 609179*2^2111132-1 635520 L5410 2022 2942 591*2^2111001+1 635478 L1360 2014 2943 1051*2^2109344+1 634979 L3035 2014 2944 433*2^2109146+1 634919 L1935 2014 2945 519*2^2108910+1 634848 L1356 2014 2946 1047*2^2108751+1 634801 L3824 2014 2947 257*2^2108554-1 634741 L5313 2021 2948 3261*46^381439+1 634245 L5000 2019 2949 765*2^2106027+1 633981 L3838 2014 2950 503*2^2106013+1 633976 L1741 2014 2951 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 2952 113*2^2104825+1 633618 L3785 2014 2953 381*2^2103999+1 633370 L2322 2014 2954 1246461300659*2^2103424-1 633206 L2484 2015 2955 57*2^2103370-1 633180 L2055 2011 2956 539*2^2102167+1 632819 L3125 2014 2957 1425*2^2101260-1 632546 L1134 2020 2958 1001*2^2101062-1 632486 L4518 2020 2959 179*894^214290-1 632445 L5209 2020 2960 687*2^2100243+1 632239 L3867 2014 2961 329*2^2099771+1 632097 L2507 2014 2962 35*2^2099769+1 632095 L3432 2013 2963 405*2^2099716+1 632081 L3154 2014 2964 575*2^2098483+1 631710 L3168 2014 2965 1005*2^2097683-1 631469 L4518 2021 2966d 522335*2^2097154-1 631312 L466 2022 2967 695265*2^2097153-1 631312 L466 2020 2968 208703*2^2097153+1 631312 L466 2018 2969 28401*2^2097152+1 631311 L4547 2017 2970 907*2^2095896+1 630931 L1129 2014 2971 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 2972 2503*2^2094587-1 630537 L4113 2017 2973 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 2974 103*2^2093350+1 630164 L3432 2013 2975 4001*2^2093286-1 630146 L1959 2014 2976 14172*1027^209226-1 630103 L4001 2018 2977 369*2^2093022+1 630065 L3514 2014 2978 217*2^2092673-1 629960 L2484 2018 2979 2188*253^262084+1 629823 L5410 2020 2980 68*920^212407+1 629532 L4001 2017 2981 165*2^2090645+1 629350 L1209 2014 2982 1119*2^2090509+1 629309 L2520 2014 2983 941*2^2090243+1 629229 L1356 2014 2984 62722^131072+1 628808 g308 2003 Generalized Fermat 2985 401*2^2088713+1 628768 L3035 2014 2986 1702*1021^208948+1 628734 L5410 2021 2987 819*2^2088423+1 628681 L3890 2014 2988 1009*2^2087690+1 628461 L3728 2014 2989 85*2^2087651-1 628448 L2338 2013 2990 467*2^2085835+1 627902 L3625 2014 2991 563528*13^563528-1 627745 p262 2009 Generalized Woodall 2992 55*2^2084305-1 627441 L3887 2021 2993 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 2994 18*984^209436-1 626843 L5410 2019 2995 247*2^2082202+1 626808 L3294 2014 2996 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 2997 159*2^2081069-1 626467 L1959 2019 2998 27*634^223550+1 626409 L4001 2018 2999 655*2^2080562+1 626315 L3859 2014 3000 201*2^2080464+1 626285 L1741 2014 3001 269328*211^269328+1 626000 p354 2012 Generalized Cullen 3002 153*2^2079401+1 625965 L3601 2014 3003 279*2^2079167+1 625895 L2413 2014 3004 692*95^316400-1 625755 L4444 2019 3005 643*2^2078306+1 625636 L3035 2014 3006 79*2^2078162+1 625591 L2117 2013 3007 1485*2^2077172+1 625295 L1134 2015 3008 239*2^2076663+1 625141 L2413 2014 3009 1003*2^2076535-1 625103 L51 2008 3010 2186*7^739474-1 624932 p258 2011 3011 73*2^2075936+1 624921 L3464 2013 3012 807*2^2075519+1 624797 L3555 2014 3013 1425*2^2075382+1 624756 L1134 2015 3014 65*2^2073229+1 624106 L1480 2013 3015 693*2^2072564+1 623907 L3290 2014 3016 55*552^227540-1 623903 L4786 2019 3017 375*2^2071598+1 623616 L2413 2014 3018 73*2^2071592+1 623614 L1480 2013 3019 125*2^2071555+1 623603 L3432 2013 3020 1107*2^2071480+1 623581 L2520 2014 3021 6207*28^430803-1 623444 L1471 2014 3022 299*2^2070979+1 623430 L1741 2014 3023 99*2^2070908-1 623408 L1862 2015 3024 19062*1027^206877-1 623029 L4444 2018 3025 891*2^2069024+1 622842 L2520 2014 3026 943*2^2068944+1 622818 L1741 2014 3027 579*2^2068647+1 622728 L2967 2014 3028 911*2^2068497+1 622683 L1741 2014 3029 1005*2^2067272+1 622314 L3895 2014 3030 3474*5^890253+1 622264 L5410 2021 3031 393*2^2066540+1 622094 L3700 2014 3032f 44*950^208860-1 621929 L4187 2021 3033 951*2^2065180+1 621685 L1403 2014 3034 915*2^2064663+1 621529 L3035 2014 3035 213*2^2064426-1 621457 L1863 2017 3036 29*468^232718+1 621416 L4832 2018 3037 1455*2^2064103-1 621361 L1134 2016 3038 824*423^236540-1 621238 L5410 2021 3039 9*2^2060941-1 620407 L503 2008 3040 1455*2^2059553+1 619991 L1134 2015 3041 659*2^2058623+1 619711 L3860 2014 3042 128448*151^284308-1 619506 L4001 2018 3043 575*2^2056081+1 618945 L1935 2014 3044 1095*2^2055975+1 618914 L3518 2014 3045 3*10^618853+1 618854 p300 2012 3046b 225*2^2055433-1 618750 L2484 2022 3047 819*2^2054470+1 618461 L2826 2014 3048 969*2^2054054+1 618335 L3668 2014 3049 3394*28^427262+1 618320 p385 2015 3050 318564*151^283711-1 618206 L4444 2018 3051 675*2^2053578+1 618192 L1792 2014 3052 178998*151^283702-1 618186 L4001 2018 3053c 281*2^2051865+1 617676 L5519 2022 3054 5916*277^252878-1 617654 L5410 2020 3055 739*2^2051658+1 617614 L3838 2014 3056 71*2^2051313+1 617509 L1480 2013 3057 265*2^2051155-1 617462 L2484 2018 3058 779*2^2050881+1 617380 L3453 2014 3059 75*2^2050637-1 617306 L2055 2011 3060 935*2^2050113+1 617149 L3696 2014 3061 847*2^2049400+1 616934 L2322 2014 3062 4998*235^260170-1 616885 L5410 2019 3063 73*2^2048754+1 616739 L3432 2013 3064d 30*712^215913+1 615889 L4444 2022 3065 527*2^2045751+1 615836 L4123 2014 3066 785*2^2045419+1 615736 L3861 2014 3067 195*2^2044789+1 615546 L3744 2014 3068 537*2^2044162+1 615357 L1741 2014 3069 413*2^2043829+1 615257 L1300 2014 3070b 1682*655^218457-1 615231 L4925 2022 3071 1334*567^223344-1 615000 L5410 2021 3072 345*2^2042295+1 614795 L2562 2014 3073 216848*151^282017-1 614514 L4700 2018 3074 104*579^222402-1 614428 L4001 2018 3075 57257*2^2040062-1 614125 L4812 2019 3076 1069*2^2039562+1 613973 L1741 2014 3077 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 3078 7188*313^245886-1 613624 L5410 2020 3079 1085*2^2038005+1 613504 L2520 2014 3080 125*2^2037752-1 613427 L2444 2014 3081 1069*2^2036902+1 613172 L3876 2014 3082 10020*171^274566+1 613109 L5410 2019 3083 417*2^2036482+1 613045 L1847 2014 3084 701*2^2035955+1 612887 L2823 2014 3085 1025*2^2034405+1 612420 L1741 2014 3086 651*2^2034352+1 612404 L3459 2014 3087 121*2^2033941-1 612280 L162 2006 3088 19683*2^2033900+1 612270 L1823 2019 3089 57*2^2033643+1 612190 L3432 2013 3090 4175*2^2032552-1 611863 L1959 2017 3091 249*2^2031803+1 611637 L2327 2014 3092 783*2^2031629+1 611585 L2126 2014 3093 (290^124116-1)^2-2 611246 p403 2019 3094 872*268^251714-1 611199 L5410 2019 3095 4157*2^2029894-1 611063 L1959 2017 3096 293028*151^280273-1 610714 L4001 2018 3097 285*2^2028495+1 610641 L2594 2014 3098 775*2^2027562+1 610360 L1204 2014 3099 199*686^215171-1 610297 L4001 2018 3100 4190*235^257371-1 610248 L5410 2019 3101 621*2^2026864+1 610150 L3446 2014 3102 357*2^2026846+1 610144 L2163 2014 3103 122112*151^279966-1 610045 L4001 2018 3104 879*2^2026501+1 610041 L1139 2014 3105 4185*2^2026400-1 610011 L1959 2017 3106 787*2^2026242+1 609963 L2122 2014 3107 2*3^1277862+1 609696 L5043 2020 3108 273*2^2024810-1 609531 L5118 2020 3109 919*2^2024094+1 609316 L1741 2014 3110 325*2^2024035-1 609298 L4076 2015 3111 235*2^2023486+1 609133 L2594 2014 3112 195*2^2023030+1 608996 L4122 2014 3113 8*10^608989-1 608990 p297 2011 Near-repdigit 3114 1485*2^2022873+1 608949 L1134 2015 3115 233*2^2022801+1 608927 L3767 2014 3116 521*2^2022059+1 608704 L3760 2014 3117 5678*1027^202018-1 608396 L4001 2018 3118 94*790^209857+1 608090 L4001 2018 3119 431*2^2019693+1 607991 L2100 2014 3120 1155*2^2019244+1 607857 L3873 2014 3121 195*2^2018866+1 607742 L2413 2014 3122 59506*6^780877+1 607646 p254 2013 3123 4101*2^2018133-1 607523 L1959 2017 3124 2152*177^270059+1 607089 L5410 2020 3125 4081*2^2015959-1 606868 L1959 2017 3126 4191*2^2015150-1 606625 L1959 2017 3127 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3128 251749*2^2013995-1 606279 L436 2007 Woodall 3129 126*523^222906-1 605973 L4001 2017 3130 1023*2^2012570+1 605847 L1741 2014 3131 403*2^2012412+1 605799 L3538 2014 3132 1173*2^2012185+1 605732 L1413 2014 3133 85*730^211537+1 605701 L4001 2018 3134 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 3135 751*2^2010924+1 605352 L3859 2014 3136 101*2^2009735+1 604993 L3432 2013 3137 1069*2^2008558+1 604640 L1595 2014 3138 881*2^2008309+1 604565 L3260 2014 3139 959*2^2008035+1 604482 L1422 2014 3140 633*2^2007897+1 604441 L3857 2014 3141 143*2^2007888-1 604437 L384 2016 3142 4*5^864751-1 604436 L4881 2019 3143 223*2^2007748+1 604395 L1741 2014 3144 461*2^2007631+1 604360 L1300 2014 3145 477*2^2006719+1 604086 L3803 2014 3146 428551*2^2006520+1 604029 g411 2011 3147 1097*2^2005203+1 603630 L3868 2014 3148 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 3149 6*5^862923+1 603159 L4965 2020 3150 493*2^2002964+1 602955 L3800 2014 3151 315*2^2002904+1 602937 L3790 2014 3152 77*2^2002742-1 602888 L2074 2013 3153 585*2^2002589+1 602843 L3035 2014 3154 1059*2^2001821+1 602612 L2103 2014 3155 249*2^2001627-1 602553 L1862 2015 3156 47*158^273942-1 602307 L541 2020 3157 1115*2^2000291+1 602151 L3588 2014 3158 891*2^2000268+1 602144 L3440 2014 3159 1067*792^207705-1 602083 L5410 2021 3160 17872*430^228564+1 601921 L4955 2020 3161 343388*151^276191-1 601820 L4700 2018 3162 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3163 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 3164 573*2^1998232+1 601531 L1300 2013 3165 1323*2^1998103-1 601493 L1828 2016 3166 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 3167 1274*3^1260173+1 601259 L5410 2021 3168 669*2^1995918+1 600835 L2659 2013 3169 19861029*2^1995311-1 600656 L895 2013 3170 261*2^1995105+1 600589 L3378 2013 3171 68398*1027^199397+1 600503 L4001 2018 3172 1031*2^1994741+1 600480 L2626 2014 3173 577*2^1994634+1 600448 L3035 2013 3174 497*2^1994051+1 600272 L2413 2013 3175 8331405*2^1993674-1 600163 L260 2011 3176b 1965*2^1993666-1 600157 L4113 2022 3177 467917*2^1993429-1 600088 L160 2005 3178 137137*2^1993201-1 600019 L321 2007 3179 589*2^1992774+1 599888 L2322 2013 3180 209*2^1992071+1 599676 L3422 2013 3181 2955*2^1991780-1 599589 L1862 2019 3182 317*2^1991592-1 599532 L1809 2014 3183 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 3184 547*2^1990606+1 599235 L3173 2013 3185 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 3186 508*1017^199220-1 599122 L4700 2017 3187b 1606*877^203564+1 599092 L5410 2022 3188 105*2^1989208-1 598814 L1959 2014 3189a 1925975*2^1989191+1 598813 L5327 2022 3190 1019*2^1988959+1 598740 L3514 2013 3191 1455*2^1988795-1 598691 L1134 2015 3192 629*2^1988579+1 598625 L2117 2013 3193 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3194 733*2^1988086+1 598477 L3502 2013 3195 135*2^1987735+1 598370 L1300 2013 3196 162434*5^856004-1 598327 L3410 2013 3197 749*2^1986977+1 598143 L1492 2013 3198 4141*2^1986959-1 598138 L1959 2016 3199 34*3^1253399+1 598025 L4799 2020 3200 3792*217^255934-1 597984 L5410 2020 3201 32*236^251993+1 597959 L4786 2019 3202 174344*5^855138-1 597722 L3354 2013 3203 6292*1027^198459+1 597678 L4001 2018 3204 4125*2^1984855-1 597505 L1959 2017 3205 8331405*2^1984565-1 597421 L260 2011 3206 1133*2^1984488-1 597394 L1828 2016 3207 195*2^1983875-1 597209 L1828 2014 3208f 1071855*2^1981910-1 596621 L5340 2021 3209 523895*2^1981910-1 596621 L5340 2021 3210 496177*2^1981910+1 596621 L5340 2021 3211 445*2^1980900+1 596313 L3577 2013 3212 731*2^1980503+1 596194 L3035 2013 3213 1147*2^1978390+1 595558 L1741 2013 3214 5758*211^256223+1 595539 L5410 2020 3215 25*2^1977369-1 595249 L426 2008 3216 245478*151^273168-1 595233 L4001 2018 3217 1197*2^1977152-1 595186 L1828 2016 3218 43*780^205685+1 594863 L5410 2019 3219 1234*95^300749-1 594802 L4444 2019 3220 866*183^262883+1 594763 L3610 2015 3221 386*117^287544+1 594698 L5410 2020 3222 1149*2^1975451-1 594674 L1828 2016 3223 381*2^1974841-1 594489 L1809 2014 3224 19920911*2^1974666-1 594441 L806 2017 3225 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 3226 148323*2^1973319-1 594034 L587 2011 3227 705*2^1972428+1 593763 L3043 2013 3228b 74*894^201093+1 593496 L5410 2022 3229 549*2^1971183+1 593388 L2840 2013 3230 4197*2^1970430-1 593163 L1959 2016 3231 1387*2^1970033-1 593043 L1828 2016 3232 1616*277^242731-1 592869 L5410 2020 3233 1693*396^228140+1 592642 L5410 2021 3234 441*2^1968431+1 592560 L3035 2013 3235 1485*2^1968400-1 592551 L1134 2014 3236 1159*2^1968190+1 592488 L3035 2013 3237 731*2^1968039+1 592442 L3682 2013 3238 833*2^1967841+1 592383 L3744 2013 3239 989*2^1967819+1 592376 L3738 2013 3240 1035*2^1967708+1 592343 L3739 2013 3241 148*789^204455+1 592325 L5410 2019 3242 1309*2^1967613-1 592314 L1828 2016 3243 4025*2^1966732-1 592049 L1959 2016 3244 203*2^1966689+1 592035 L1408 2013 3245 101594*151^271697-1 592027 L4001 2018 3246 273*2^1966630+1 592018 L2532 2013 3247 93*2^1965880+1 591791 L1210 2011 3248 253*2^1965215-1 591592 L3345 2012 3249 1089*2^1964781+1 591462 L3737 2013 3250 10*173^264234+1 591369 L1471 2015 3251 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 3252 125*2^1963964-1 591215 L1959 2014 3253 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 3254 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 3255 102088*6^759012-1 590632 L4521 2019 3256 4065*2^1961907-1 590597 L1959 2016 3257 113*2^1960341+1 590124 L3091 2013 3258 57406*5^844253-1 590113 L3313 2012 3259 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 3260 1111*2^1959625-1 589909 L1828 2016 3261 24838*421^224768+1 589860 L5410 2021 3262 803*2^1959445+1 589855 L2724 2013 3263 552*360^230680+1 589691 L5410 2021 3264 6166*3^1235741+1 589603 L5365 2021 3265 45*2^1957377-1 589231 L1862 2014 3266 1065*2^1957291-1 589207 L1828 2016 3267 1149*2^1957223+1 589186 L1935 2013 3268 6326*333^233552+1 589126 L4001 2017 3269 129*2^1956915+1 589093 L2826 2013 3270 229*2^1956294+1 588906 L3548 2013 3271 74*500^218184-1 588874 p355 2013 3272 27*342^232379+1 588856 L5410 2021 3273 1045*2^1955356+1 588624 L1186 2013 3274 112*113^286643-1 588503 L426 2012 3275 1137*2^1954730+1 588436 L3733 2013 3276 673*2^1954456+1 588353 L3666 2013 3277 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 3278 121*2^1954243-1 588288 L162 2006 3279 351*2^1954003+1 588217 L2413 2013 3280 641*2^1952941+1 587897 L3487 2013 3281 188378*151^269725-1 587730 L4001 2018 3282 4027*2^1951909-1 587587 L1959 2016 3283 1019*138^274533+1 587471 L5410 2020 3284 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 3285 1173*2^1951169+1 587364 L3171 2013 3286 1101*2^1950812+1 587256 L2719 2013 3287 P587124 587124 p414 2020 3288 3317*2^1949958-1 587000 L5399 2021 3289 4007*2^1949916-1 586987 L1959 2016 3290 313*2^1949544+1 586874 L2520 2013 3291 391*2^1949159-1 586758 L2519 2014 3292 539*2^1949135+1 586751 L1130 2013 3293 1167*2^1949013-1 586715 L1828 2016 3294 351*2^1947281-1 586193 L1809 2014 3295 3068*5^838561+1 586133 L5410 2021 3296 21290*745^203998-1 585919 L4189 2017 3297 111*2^1946322-1 585904 L2484 2012 3298 1209*2^1946260-1 585886 L1828 2016 3299 1339*2^1945965-1 585797 L1828 2016 3300 149*2^1945668-1 585707 L3967 2015 3301 4011*2^1945630-1 585697 L1959 2016 3302 639*2^1945473+1 585649 L2649 2013 3303 675*2^1945232+1 585577 L3688 2013 3304 30364*1027^194319+1 585210 L4001 2018 3305 417*2^1943755+1 585132 L3173 2013 3306 89*2^1943337+1 585005 L2413 2011 3307 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 3308 269*2^1942389+1 584720 L3548 2013 3309 4173*2^1941820-1 584550 L1959 2016 3310 1093*2^1941672+1 584505 L2322 2013 3311 144*471^218627-1 584397 L4064 2021 3312 193*2^1940804+1 584243 L3418 2013 3313 827*2^1940747+1 584226 L3206 2013 3314 221*2^1940211+1 584065 L2327 2013 3315 421*138^272919-1 584017 L5410 2020 3316 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 3317 9*10^583696+1 583697 L4789 2020 Generalized Fermat 3318 575*2^1938673+1 583602 L2019 2013 3319 1179*2^1938570+1 583571 L1300 2013 3320 865*2^1938180+1 583454 L3233 2013 3321 17702*1027^193732-1 583442 L4700 2018 3322 1091*2^1937857+1 583357 L3731 2013 3323 555*2^1937595+1 583277 L2826 2013 3324 9299*2^1937309+1 583193 L3886 2014 3325 30*386^225439+1 583120 L3610 2015 3326 34910*430^221380-1 583002 L4001 2015 3327 56064*1027^193573+1 582964 L4700 2018 3328 239*2^1936025+1 582804 L1741 2013 3329 1191*2^1935613-1 582681 L1828 2016 3330 4047*2^1934881-1 582461 L1959 2016 3331 357*2^1934704-1 582407 L1809 2014 3332 182627*2^1934664-1 582398 L3336 2012 3333 64*497^215875-1 582078 L4925 2019 3334 14172*1027^193213-1 581879 L4001 2018 3335 363*2^1932724+1 581811 L3171 2013 3336 1265*2^1932660-1 581792 L1828 2016 3337 134*383^225187+1 581705 L2012 2019 3338 143*2^1932112-1 581626 L1828 2012 3339 48764*5^831946-1 581510 L3313 2012 3340 1095*2^1931213-1 581357 L1828 2016 3341 1365*2^1931200+1 581353 L1134 2016 3342 1789*138^271671+1 581347 L5211 2020 3343 387*2^1930200+1 581051 L1129 2013 3344 2135489665061*2^1929362-1 580809 L2484 2015 3345 1101*2^1929297-1 580780 L1828 2016 3346 735*2^1929225+1 580758 L3378 2013 3347 214519*2^1929114+1 580727 g346 2006 3348 1071*2^1928515-1 580544 L1828 2016 3349 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 3350a 3871*2^1925976+1 579781 L5327 2022 3351 633*2^1925684+1 579692 L1408 2013 3352 3580*408^222030+1 579649 L5410 2021 3353 5724*313^232269-1 579642 L5410 2020 3354b 1965*2^1925248-1 579561 L4113 2022 3355 968*288^235591+1 579414 L5410 2020 3356 1283*2^1924402-1 579306 L1828 2016 3357 1005*2^1923658+1 579082 L3514 2013 3358 243*2^1923567-1 579054 L2055 2011 3359 4005*2^1923385-1 579001 L1959 2016 3360 319*2^1923378+1 578997 L3548 2013 3361 1620198*7^684923-1 578834 L4786 2021 3362 280992*151^265553-1 578640 L4001 2018 3363 851*2^1922179+1 578637 L3180 2013 3364 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 3365 314159*2^1920875+1 578247 L4994 2019 3366 157*2^1920152+1 578026 L2494 2013 3367 14066*60^324990+1 577886 L4444 2018 3368 143171*2^1918679+1 577586 L4504 2017 3369 1187*2^1918188-1 577436 L1828 2015 3370 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 3371 75492*151^264966-1 577360 L4444 2018 3372 1071*2^1917749-1 577304 L1828 2015 3373 335*2^1917610-1 577261 L1809 2014 3374 51*712^202369-1 577256 L4001 2018 3375 133631*28^398790-1 577118 p255 2013 3376 191*2^1916611+1 576960 L1792 2013 3377 1087*2^1916212+1 576841 L2719 2013 3378 1065*2^1916200-1 576837 L1828 2015 3379 1682*161^261371+1 576804 L5410 2020 3380 1125*2^1915695+1 576685 L3719 2013 3381 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 3382 63348*1027^191392+1 576396 L4001 2018 3383 93788*151^264402-1 576131 L4001 2018 3384 207*2^1913067+1 575893 L1741 2013 3385 80618*151^264291-1 575889 L4001 2018 3386 849*2^1913021+1 575880 L2413 2013 3387 72844*1027^191206+1 575836 L4001 2018 3388 859*430^218562+1 575580 L5410 2020 3389 280*53^333574+1 575177 L4294 2021 3390 85*2^1910520+1 575126 L2703 2011 3391 267*2^1909876-1 574933 L1828 2013 3392 4103*2^1909766-1 574901 L1959 2016 3393 621*2^1909716+1 574885 L2117 2013 3394 611*2^1909525+1 574828 L2413 2013 3395 379*2^1909097-1 574699 L1809 2014 3396 435*2^1908579+1 574543 L3385 2013 3397 4035*2^1907685-1 574275 L1959 2016 3398 291*2^1907541-1 574230 L2484 2013 3399 573*2^1907450+1 574203 L2520 2013 3400 10005*2^1906876-1 574031 L4405 2019 3401 14*814^197138-1 573796 L4001 2018 3402 263*2^1904406-1 573286 L2484 2015 3403 969*2^1904357+1 573272 L2719 2013 3404 17*962^192155+1 573234 L4786 2020 3405 27*2^1902689-1 572768 L1153 2009 3406 553*2^1902102+1 572593 L2520 2013 3407 1112*423^218014-1 572583 L5410 2021 3408 4171*2^1901433-1 572392 L1959 2016 3409 86*394^220461-1 572208 L541 2020 3410 20707410481*2^1900579-1 572142 L5327 2021 3411 271562*151^262431-1 571837 L4001 2018 3412 1323*2^1899548-1 571825 L1828 2014 3413 10005*2^1898938-1 571642 L4405 2019 3414 4806*37^364466-1 571560 L4001 2015 3415 314159*2^1898333+1 571461 L4994 2019 3416 2707*352^224386+1 571412 L5410 2021 3417 633*2^1897632+1 571247 L1741 2013 3418 1131*2^1897379-1 571172 L1828 2014 3419 7092*313^228770-1 570910 L5410 2020 3420 707*2^1895035+1 570466 L3035 2013 3421 3945*2^1894329-1 570254 L4036 2015 3422 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 3423 4157*2^1892772-1 569785 L1959 2015 3424 154*730^198988+1 569770 L4001 2018 3425 10005*2^1892466-1 569694 L4405 2019 3426 1053*2^1891799-1 569492 L1828 2014 3427 687*2^1891730+1 569471 L3221 2013 3428 5758*211^244970+1 569384 L5410 2020 3429 87*2^1891391+1 569368 L2673 2011 3430 85287*2^1890011+1 568955 p254 2011 3431 221*2^1889983+1 568944 L1741 2013 3432 585*2^1887819+1 568293 L3171 2013 3433 347*2^1887507+1 568199 L3548 2013 3434 391*2^1886863-1 568005 L1809 2014 3435 791*2^1885961+1 567734 L3075 2013 3436 975*2^1885724+1 567663 L1129 2013 3437 22*615^203539-1 567647 L4001 2018 3438 987*2^1885160+1 567493 L2070 2013 3439 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 3440 744716047603963*2^1884575-1 567329 L257 2013 3441 485*2^1884579+1 567318 L3548 2013 3442 14296*421^216090+1 567086 L5410 2021 3443 879*2^1883385+1 566959 L3223 2013 3444 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 3445 693*2^1881882+1 566506 L2322 2013 3446 30*7^670289+1 566462 L3610 2014 3447 639*2^1880451+1 566075 L3141 2013 3448 277*2^1880022+1 565946 L3418 2013 3449 46498*1027^187913+1 565918 L4001 2018 3450 2655*2^1879275-1 565722 L2484 2018 3451 89*2^1879132-1 565678 L1828 2013 3452 441*2^1879067+1 565659 L2840 2013 3453 283*2^1879051-1 565654 L2484 2015 3454 214*378^219424-1 565566 L5410 2020 3455 729*2^1877995+1 565336 L1792 2013 3456 645*2^1877756+1 565264 L2981 2013 3457 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 3458 613*2^1876758+1 564964 L2413 2013 3459 10005*2^1876648-1 564932 L4405 2019 3460 267*2^1876604+1 564917 L1792 2013 3461 345067*2^1876573-1 564911 g59 2005 3462 1063*2^1876427-1 564864 L1828 2014 3463 1389*2^1876376-1 564849 L1828 2014 3464 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 3465 4015*2^1875453-1 564572 L1959 2014 3466 1043*2^1875213+1 564499 L2413 2013 3467 1209*2^1874804-1 564376 L1828 2014 3468 4125*2^1874718-1 564350 L1959 2015 3469 1199*2^1874495+1 564283 L2827 2013 3470 495*2^1874077+1 564157 L1344 2013 3471 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 3472 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 3473 21*2^1872923-1 563808 L2074 2012 3474 4039*2^1872875-1 563796 L1959 2015 3475 399878576^65536+1 563736 L4964 2019 Generalized Fermat 3476 357*2^1871600-1 563411 L2519 2014 3477 1309*2^1871045-1 563244 L1828 2014 3478 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 3479 735*2^1870118+1 562965 L3075 2013 3480 575*2^1869989+1 562926 L3650 2013 3481 315*2^1869119-1 562664 L2235 2012 3482 19683*2^1868828+1 562578 L3784 2019 3483 400*315^225179-1 562570 L4444 2021 3484 933*2^1868602+1 562509 L3709 2013 3485 503*2^1868417+1 562453 L3378 2013 3486 1073*2^1867944-1 562311 L1828 2014 3487 2*1595^175532-1 562188 L4961 2019 3488 13162*3^1177896+1 562004 L5410 2021 3489 1115*2^1866094-1 561754 L1828 2014 3490 70*905^189879-1 561408 L541 2017 3491 407*2^1864735+1 561344 L2520 2013 3492 10005*2^1864432-1 561254 L4405 2019 3493 489*2^1864339+1 561225 L2520 2013 3494 427*2^1863702+1 561033 L3586 2013 3495 1161*2^1863637+1 561014 L3213 2013 3496 2*3^1175232+1 560729 p199 2010 3497 347*2^1861974-1 560513 L2519 2014 3498 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 3499 411*2^1861627+1 560409 L1741 2013 3500 281*2^1860862-1 560178 L2484 2015 3501 1165*2^1860749-1 560145 L1828 2014 3502 231*2^1860743-1 560142 L1862 2015 3503 103*2^1860103-1 559949 L2484 2012 3504 350006744^65536+1 559945 L4964 2019 Generalized Fermat 3505 11726*1027^185913-1 559895 L4001 2018 3506 2655*2^1859692-1 559827 L1862 2018 3507 161*2^1859586-1 559794 L177 2013 3508 51*2^1859193+1 559675 L1204 2011 3509 1177*2^1859144+1 559662 L3625 2013 3510 1818*378^217098+1 559572 L5410 2021 3511 1455*2^1858634-1 559508 L1134 2015 3512 8331405*2^1858587-1 559498 L260 2011 3513 8*3^1172480+1 559417 L4799 2020 3514b 145*590^201814+1 559199 L5410 2022 3515 669*2^1857223+1 559083 L2413 2013 3516 296990*151^256535-1 558990 L4700 2018 3517a 525*2^1856834-1 558966 L5516 2022 3518 1125*2^1856703-1 558927 L1828 2014 3519a 429*2^1856373-1 558827 L5516 2022 3520 52600*91^285235+1 558792 L5410 2020 3521 1155*2^1855389-1 558531 L1828 2014 3522 4031*2^1855338-1 558516 L1959 2014 3523 229*372^217261-1 558482 L4876 2019 3524 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 3525 126072*31^374323-1 558257 L2054 2012 3526 3^1170000+3^364398+1 558232 x44 2017 3527 4918*3^1169850+1 558164 L5410 2021 3528a 19*932^187910+1 557985 L5410 2022 3529 435*2^1853363-1 557921 L4036 2015 3530 1229*2^1853192-1 557870 L1828 2014 3531 3161*618^199877+1 557858 L4714 2018 3532 333*2^1853115-1 557846 L1830 2012 3533 87*2^1852590-1 557688 L2055 2011 3534 765*2^1849609+1 556791 L1792 2013 3535 137*2^1849238-1 556679 L321 2007 3536 639*2^1848903+1 556579 L3439 2013 3537 1061*268^229202-1 556537 L5410 2019 3538 261*2^1848217+1 556372 L1983 2013 3539 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 3540a 465*2^1847589-1 556183 L5516 2022 3541 88*107^273915-1 555881 L4444 2021 3542 275*2^1846390-1 555822 L2444 2014 3543 1011*2^1846173+1 555757 L3221 2013 3544a 575*2^1845718-1 555620 L5516 2022 3545 1029*2^1844975+1 555396 L2626 2013 3546 133*2^1843619-1 554987 L1959 2014 3547 261*2^1843555-1 554968 L1828 2013 3548 2^120*611953#*611957^50000+1 554832 p383 2015 3549 73246*1027^184192+1 554713 L4001 2018 3550a 503*2^1842034-1 554511 L5516 2022 3551 953*2^1841461+1 554338 L3612 2013 3552 4171*2^1841157-1 554248 L1959 2016 3553 1089*2^1840695-1 554108 L1828 2014 3554 105*2^1840262-1 553977 L1959 2014 3555 1009*2^1840225-1 553966 L1828 2014 3556 1323*2^1839623-1 553785 L1828 2014 3557 681*2^1839269+1 553678 L3141 2013 3558 399*2^1839019-1 553603 L1809 2014 3559 779*2^1838955+1 553584 L3640 2013 3560a 503*2^1838444-1 553430 L5545 2022 3561 135*2^1838124+1 553333 L3472 2013 3562 15*2^1837873-1 553257 L632 2008 3563 28*392^213295-1 553137 L4001 2017 3564 1111*792^190801-1 553083 L5426 2021 3565 379*2^1837291-1 553083 L1809 2014 3566 333*2^1837105+1 553027 L3470 2013 3567 4167*2^1836466-1 552835 L1959 2015 3568e 523061!5+1 552801 x46 2022 Multifactorial 3569 309*2^1836139+1 552736 L3460 2013 3570 271018852^65536+1 552666 L4704 2019 Generalized Fermat 3571 4061*2^1835582-1 552569 L1959 2014 3572 423*2^1835585+1 552569 L2873 2013 3573 1181*2^1834802-1 552334 L1828 2014 3574 73*2^1834526+1 552250 L1513 2011 3575 309*2^1834379+1 552206 L3471 2013 3576 3748*333^218908+1 552187 L4575 2017 3577 87*2^1834098+1 552121 L1513 2011 3578 26*578^199886-1 552073 L5415 2021 3579 1021*2^1833459-1 551930 L1828 2014 3580 34*813^189659-1 551927 L4001 2018 3581a 489*2^1833431-1 551921 L5545 2022 3582 121458*151^253264-1 551862 L4001 2018 3583 1485*2^1832651-1 551687 L1134 2014 3584 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 3585 549*2^1832457+1 551628 L3641 2013 3586 295*2^1832129-1 551529 L2444 2014 3587 761*2^1831569+1 551361 L2117 2013 3588 519*2^1831415+1 551314 L3277 2013 3589a 517*2^1831257-1 551267 L5516 2022 3590 21*2^1830919+1 551163 g279 2004 3591a 489*2^1830584-1 551064 L5516 2022 3592 197*2^1830255+1 550964 L1360 2013 3593 4*3^1154598+1 550884 L4962 2019 Generalized Fermat 3594 63708*151^252785-1 550818 L4001 2018 3595 10*3^1153674+1 550444 L4965 2020 3596 6297*46^330940-1 550277 L4001 2019 3597 220*848^187868+1 550155 L5436 2021 3598 1021*2^1827279-1 550069 L1828 2013 3599a 573*2^1827066-1 550005 L5184 2022 3600 825*2^1825439+1 549515 L3289 2013 3601 679*2^1824918+1 549358 L2100 2013 3602 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 3603a 439*2^1824841-1 549335 L5184 2022 3604 4029*2^1824569-1 549254 L1959 2015 3605 235*2^1824515-1 549237 L2444 2014 3606 162668*5^785748-1 549220 L3190 2012 3607 389*2^1824385+1 549198 L1487 2013 3608 1135*2^1824103-1 549113 L1828 2013 3609 4005*2^1823819-1 549028 L1959 2015 3610 91179*2^1823580-1 548958 L2777 2016 3611 3874*253^228394+1 548862 L5410 2020 3612 991*2^1822216+1 548545 L1312 2013 3613 13984*24^397259+1 548306 L4806 2019 3614 1089*2^1821417+1 548305 L1741 2013 3615 552*1006^182599-1 548275 L4064 2021 3616 993*2^1821088+1 548206 L2131 2013 3617 513*2^1820982+1 548173 L2826 2013 3618a 591*2^1820118-1 547913 L5516 2022 3619 933*2^1820068+1 547899 L2895 2013 3620 921*2^1819560+1 547746 L1741 2013 3621 557*2^1819191+1 547634 L2526 2013 3622 20*317^218953+1 547616 L541 2020 3623 593*2^1818825+1 547524 L3630 2013 3624 1161*2^1818637+1 547468 L2399 2013 3625 1387*2^1818593-1 547455 L1828 2012 3626 875*2^1818427+1 547405 L3035 2013 3627 229*2^1818078+1 547299 L3456 2013 3628e 323473!3+1 547270 x46 2022 Multifactorial 3629 454483*2^1817935-1 547259 p77 2014 3630 127*2^1817862+1 547234 L3452 2013 3631 4065*2^1817502-1 547127 L1959 2015 3632 35*2^1817486-1 547120 L2074 2011 3633 1155*2^1816779-1 546909 L1828 2012 3634 69*2^1816739+1 546895 L1204 2011 3635 4101*2^1816007-1 546677 L1959 2015 3636 875*2^1814911+1 546346 L3691 2013 3637 18092*565^198465-1 546190 L4001 2017 3638 1029*2^1813839+1 546023 L3378 2013 3639 555*2^1813556+1 545938 L3233 2013 3640d 138*273^224093-1 545930 L4444 2022 3641 33*2^1813526-1 545928 L621 2008 3642 1347*2^1813433-1 545901 L1828 2012 3643 1143*2^1813125+1 545809 L3514 2013 3644 1197*2^1811852+1 545425 L3035 2013 3645 10007*2^1811598-1 545350 L1751 2018 3646 693*2^1811517+1 545324 L2967 2013 3647 1099*2^1810686+1 545074 L3458 2013 3648 92*10^544905-1 544907 L3735 2015 Near-repdigit 3649 1305*2^1809766-1 544797 L1828 2011 3650 1185*2^1809466-1 544707 L1828 2011 3651 659*2^1808691+1 544474 L3625 2013 3652 145*2^1807767-1 544195 L840 2013 3653 9*2^1807574+1 544135 L2419 2011 Generalized Fermat 3654 4117*2^1807085-1 543991 L1959 2014 3655 375*2^1806591+1 543841 L3233 2013 3656 889*2^1806470+1 543805 L2967 2013 3657 1033*2^1805844+1 543617 L1502 2013 3658b 561*2^1805767-1 543593 L5516 2022 3659 4039*2^1805627-1 543552 L1959 2015 3660 981*2^1805368+1 543473 L2413 2013 3661 915*2^1805031+1 543372 L1741 2013 3662 691*2^1804332+1 543161 L3625 2013 3663 4089*2^1803463-1 542901 L1959 2016 3664 1965*2^1803256-1 542838 L4113 2017 3665 385*2^1802362+1 542568 L3279 2013 3666 661*2^1802024+1 542467 L2967 2013 3667 96*439^205245-1 542355 L5410 2021 3668 2415*2^1801615-1 542344 L2484 2018 3669 985*2^1801582+1 542334 L3035 2013 3670 285*2^1801236-1 542229 L5313 2021 3671 301*2^1801207-1 542220 p281 2010 3672 1193*2^1801112-1 542192 L1828 2011 3673 513755!5-1 542165 x46 2019 Multifactorial 3674 417643*2^1800787-1 542097 L134 2005 3675 1045*2^1800784+1 542094 L3141 2013 3676 4017*2^1800617-1 542044 L1959 2014 3677 33910*1027^179973+1 542006 L4700 2018 3678 320607*2^1800434-1 541991 g337 2019 3679 1045*2^1800025-1 541865 L1828 2011 3680 4009*2^1799073-1 541579 L1959 2015 3681 43*2^1799016+1 541560 L2562 2011 3682b 437*2^1798830-1 541505 L5516 2022 3683 4079*2^1798192-1 541314 L1959 2014 3684 3271*372^210566-1 541273 L5410 2019 3685 19683*2^1797997+1 541256 L4970 2019 3686 220502!2+1 541239 p394 2017 Multifactorial 3687 1047*2^1797890+1 541222 L3473 2013 3688 1965*2^1797877-1 541219 L4113 2017 3689b 423*2^1797511-1 541108 L5516 2022 3690 3^1134000+3^360654+1 541056 x44 2017 3691 319*2^1797261-1 541032 L1819 2013 3692 1712*333^214484+1 541028 L4575 2017 3693 1103*2^1796969+1 540945 L2826 2013 3694 197*2^1796284-1 540738 L1862 2015 3695 4137*2^1796226-1 540722 L1959 2015 3696b 537*2^1796196-1 540712 L5516 2022 3697 174*643^192540-1 540696 L4001 2018 3698 10041*2^1795990-1 540651 p168 2017 3699 43*2^1795628+1 540540 L1129 2011 3700 11682*1027^179399+1 540277 L4001 2018 3701 383*2^1794636-1 540242 L1809 2014 3702 14172*1027^179381-1 540223 L4001 2018 3703 4119*2^1794544-1 540216 L1959 2015 3704 423*2^1794546+1 540215 L3131 2013 3705 736663*2^1794419-1 540180 L541 2021 3706 1101*2^1794417-1 540177 L1828 2014 3707 387*2^1793857-1 540008 L2519 2014 3708 Phi(3,-311095^49152) 539974 L4142 2016 Generalized unique 3709 105*2^1793519-1 539906 L1959 2014 3710 1223*618^193431+1 539867 L4001 2018 3711 33*20^414757+1 539613 L4789 2021 3712 1103*2^1792513+1 539604 L3262 2013 3713 431*2^1791441+1 539281 L3453 2013 3714 1185*2^1791429-1 539277 L1828 2014 3715b 429*2^1791163-1 539197 L5516 2022 3716 13460*171^241448+1 539157 L5410 2019 3717 16*140^251178+1 539062 L4940 2019 Generalized Fermat 3718 607*2^1790196+1 538906 L4123 2013 3719a 167061856^65536+1 538895 L5548 2022 Generalized Fermat 3720 1293991*2^1790128+1 538889 L4789 2019 3721a 166987494^65536+1 538882 L5544 2022 Generalized Fermat 3722a 166787224^65536+1 538848 L5101 2022 Generalized Fermat 3723a 166707658^65536+1 538835 L4245 2022 Generalized Fermat 3724a 166695390^65536+1 538832 L5101 2022 Generalized Fermat 3725a 166444082^65536+1 538790 L5322 2022 Generalized Fermat 3726 143157*2^1789798+1 538789 L4504 2016 3727a 166245178^65536+1 538756 L5544 2022 Generalized Fermat 3728a 166199362^65536+1 538748 L5526 2022 Generalized Fermat 3729a 166133392^65536+1 538736 L5101 2022 Generalized Fermat 3730b 165758598^65536+1 538672 L5355 2022 Generalized Fermat 3731b 165693636^65536+1 538661 L5543 2022 Generalized Fermat 3732 1059*2^1789353+1 538652 L1130 2013 3733 975*2^1789341+1 538649 L2085 2013 3734b 165300848^65536+1 538593 L4201 2022 Generalized Fermat 3735b 165182046^65536+1 538573 L5539 2022 Generalized Fermat 3736b 165119758^65536+1 538562 L5542 2022 Generalized Fermat 3737b 165107060^65536+1 538560 L4201 2022 Generalized Fermat 3738b 165071282^65536+1 538554 L4861 2022 Generalized Fermat 3739b 165042714^65536+1 538549 L4299 2022 Generalized Fermat 3740b 165035994^65536+1 538548 L4861 2022 Generalized Fermat 3741b 165006098^65536+1 538543 L5539 2022 Generalized Fermat 3742b 164975524^65536+1 538537 L5538 2022 Generalized Fermat 3743b 164961074^65536+1 538535 L5347 2022 Generalized Fermat 3744b 164947166^65536+1 538532 L4201 2022 Generalized Fermat 3745 273*2^1788926-1 538523 L1828 2013 3746b 164688674^65536+1 538488 L5526 2022 Generalized Fermat 3747b 164664420^65536+1 538484 L4201 2022 Generalized Fermat 3748b 164634446^65536+1 538478 L5512 2022 Generalized Fermat 3749b 164607472^65536+1 538474 L5512 2022 Generalized Fermat 3750b 164585942^65536+1 538470 L5386 2022 Generalized Fermat 3751b 164541530^65536+1 538462 L5128 2022 Generalized Fermat 3752 4125*2^1788660-1 538444 L1959 2015 3753b 164410268^65536+1 538440 L5533 2022 Generalized Fermat 3754b 164331980^65536+1 538426 L5101 2022 Generalized Fermat 3755b 163984990^65536+1 538366 L4753 2022 Generalized Fermat 3756b 163837248^65536+1 538340 L5347 2022 Generalized Fermat 3757c 163714676^65536+1 538319 L5101 2022 Generalized Fermat 3758c 163667476^65536+1 538311 L5025 2022 Generalized Fermat 3759 289184*5^770116-1 538294 p353 2012 3760b 163415294^65536+1 538267 L5416 2022 Generalized Fermat 3761c 163384952^65536+1 538262 L5332 2022 Generalized Fermat 3762c 163335900^65536+1 538253 L4584 2022 Generalized Fermat 3763 1065*2^1787993-1 538243 L1828 2014 3764c 163241232^65536+1 538237 L5528 2022 Generalized Fermat 3765c 163148472^65536+1 538220 L5025 2022 Generalized Fermat 3766c 163096432^65536+1 538211 L5526 2022 Generalized Fermat 3767c 162990842^65536+1 538193 L5370 2022 Generalized Fermat 3768c 162936076^65536+1 538183 L5525 2022 Generalized Fermat 3769 441*2^1787789+1 538181 L1209 2013 3770c 162841028^65536+1 538167 L5522 2022 Generalized Fermat 3771c 162722282^65536+1 538146 L5521 2022 Generalized Fermat 3772c 162521980^65536+1 538111 L5070 2022 Generalized Fermat 3773c 162512058^65536+1 538109 L5070 2022 Generalized Fermat 3774c 162494828^65536+1 538106 L5070 2022 Generalized Fermat 3775c 162423200^65536+1 538094 L4737 2022 Generalized Fermat 3776c 162341418^65536+1 538079 L4747 2022 Generalized Fermat 3777c 162244902^65536+1 538062 L5520 2022 Generalized Fermat 3778 565*2^1787136+1 537985 L1512 2013 3779 247*2^1786968+1 537934 L2533 2013 3780 227*2^1786779+1 537877 L2058 2013 3781 11812*5^769343-1 537752 p341 2012 3782 933*2^1786320+1 537739 L1505 2013 3783 507*2^1786194+1 537701 L3422 2013 3784 921*2^1785808+1 537585 L3262 2013 3785 179114*151^246711-1 537583 L4700 2018 3786 1187*2^1785707+1 537555 L1753 2013 3787 55555*2^1785446+1 537478 L4828 2018 3788c 158595406^65536+1 537415 L4861 2022 Generalized Fermat 3789c 158534146^65536+1 537404 L5374 2022 Generalized Fermat 3790c 158375834^65536+1 537375 L4726 2022 Generalized Fermat 3791c 158345700^65536+1 537370 L5416 2022 Generalized Fermat 3792c 158184126^65536+1 537341 L4894 2022 Generalized Fermat 3793c 158097404^65536+1 537325 L4694 2022 Generalized Fermat 3794 256*14^468784+1 537289 L3802 2014 Generalized Fermat 3795d 157878038^65536+1 537286 L5030 2022 Generalized Fermat 3796d 157792502^65536+1 537270 L5515 2022 Generalized Fermat 3797d 157778292^65536+1 537268 L5483 2022 Generalized Fermat 3798d 157696604^65536+1 537253 L5024 2022 Generalized Fermat 3799d 157640030^65536+1 537243 L5030 2022 Generalized Fermat 3800d 157582320^65536+1 537232 L4774 2022 Generalized Fermat 3801d 157568692^65536+1 537230 L4737 2022 Generalized Fermat 3802d 157479388^65536+1 537214 L4904 2022 Generalized Fermat 3803d 157372184^65536+1 537194 L5512 2022 Generalized Fermat 3804 63*2^1784498+1 537190 L1415 2011 3805 158*911^181509+1 537182 L5410 2019 3806d 157254464^65536+1 537173 L4410 2022 Generalized Fermat 3807d 157080152^65536+1 537142 L4763 2022 Generalized Fermat 3808 117134*151^246492-1 537106 L4001 2018 3809d 156882252^65536+1 537106 L5273 2022 Generalized Fermat 3810d 156830996^65536+1 537096 L4733 2022 Generalized Fermat 3811d 156828668^65536+1 537096 L5069 2022 Generalized Fermat 3812 1333*2^1784103-1 537072 L1828 2014 3813d 156614630^65536+1 537057 L4726 2022 Generalized Fermat 3814d 156606194^65536+1 537055 L4544 2022 Generalized Fermat 3815d 156566756^65536+1 537048 L4774 2022 Generalized Fermat 3816d 156491914^65536+1 537035 L5057 2022 Generalized Fermat 3817d 156414678^65536+1 537021 L4726 2022 Generalized Fermat 3818d 156413292^65536+1 537020 L4942 2022 Generalized Fermat 3819d 156400210^65536+1 537018 L4726 2022 Generalized Fermat 3820d 156384608^65536+1 537015 L5022 2022 Generalized Fermat 3821 2060*135^252066-1 536989 L5410 2019 3822 231*2^1783821+1 536986 L3262 2013 3823d 155990522^65536+1 536943 L5204 2022 Generalized Fermat 3824d 155883376^65536+1 536924 L5483 2022 Generalized Fermat 3825d 155788986^65536+1 536907 L4656 2022 Generalized Fermat 3826d 155750578^65536+1 536900 L4726 2022 Generalized Fermat 3827d 155257984^65536+1 536809 L4904 2022 Generalized Fermat 3828d 155253336^65536+1 536809 L4245 2022 Generalized Fermat 3829 3098*565^195049-1 536788 L4001 2017 3830 4416*217^229737-1 536775 L5410 2020 3831 216*558^195427-1 536769 L5196 2021 3832b 563*2^1782872-1 536701 L2519 2022 3833d 154546726^65536+1 536679 L4755 2022 Generalized Fermat 3834d 154210752^65536+1 536617 L4308 2022 Generalized Fermat 3835d 154011386^65536+1 536580 L5500 2022 Generalized Fermat 3836d 153760922^65536+1 536534 L5005 2022 Generalized Fermat 3837d 153583464^65536+1 536501 L5500 2022 Generalized Fermat 3838d 153431116^65536+1 536473 L5500 2022 Generalized Fermat 3839 968*837^183539-1 536438 L5410 2021 3840d 153012732^65536+1 536395 L5453 2022 Generalized Fermat 3841d 152967836^65536+1 536386 L4201 2022 Generalized Fermat 3842d 152899418^65536+1 536374 L5251 2022 Generalized Fermat 3843d 152866426^65536+1 536368 L5251 2022 Generalized Fermat 3844 4069*2^1781691-1 536347 L1959 2014 3845d 152702128^65536+1 536337 L5275 2022 Generalized Fermat 3846d 152482638^65536+1 536296 L4245 2022 Generalized Fermat 3847d 152329200^65536+1 536267 L4905 2022 Generalized Fermat 3848d 152257544^65536+1 536254 L4245 2022 Generalized Fermat 3849d 152246980^65536+1 536252 L4245 2022 Generalized Fermat 3850d 152143536^65536+1 536233 L4745 2022 Generalized Fermat 3851 575*2^1781313+1 536232 L3262 2013 3852d 152024526^65536+1 536210 L4544 2022 Generalized Fermat 3853d 151770050^65536+1 536163 L5467 2022 Generalized Fermat 3854d 151648712^65536+1 536140 L4201 2022 Generalized Fermat 3855d 151556938^65536+1 536123 L4745 2022 Generalized Fermat 3856d 151514532^65536+1 536115 L5498 2022 Generalized Fermat 3857d 151336498^65536+1 536081 L4245 2022 Generalized Fermat 3858d 151009320^65536+1 536020 L5495 2022 Generalized Fermat 3859d 150994194^65536+1 536017 L4760 2022 Generalized Fermat 3860d 150809098^65536+1 535982 L4734 2022 Generalized Fermat 3861d 150722260^65536+1 535966 L4245 2022 Generalized Fermat 3862d 150644616^65536+1 535951 L4201 2022 Generalized Fermat 3863d 150591018^65536+1 535941 L4201 2022 Generalized Fermat 3864 883*2^1780324+1 535934 L2963 2013 3865d 150482286^65536+1 535920 L5019 2022 Generalized Fermat 3866 391*2^1780155-1 535883 L1809 2014 3867b 479*2^1780112-1 535870 L5516 2022 3868d 150142948^65536+1 535856 L5491 2022 Generalized Fermat 3869d 150132248^65536+1 535854 L4914 2022 Generalized Fermat 3870d 150098876^65536+1 535848 L5469 2022 Generalized Fermat 3871d 150078542^65536+1 535844 L5490 2022 Generalized Fermat 3872d 150061008^65536+1 535840 L5470 2022 Generalized Fermat 3873d 150034754^65536+1 535835 L4550 2022 Generalized Fermat 3874d 149996492^65536+1 535828 L4544 2022 Generalized Fermat 3875 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 3876d 149957710^65536+1 535821 L4905 2022 Generalized Fermat 3877d 149814764^65536+1 535794 L4201 2022 Generalized Fermat 3878 357659*2^1779748-1 535764 L47 2005 3879d 149621682^65536+1 535757 L5297 2022 Generalized Fermat 3880 123*2^1779728-1 535754 L3967 2014 3881d 149579792^65536+1 535749 L5265 2022 Generalized Fermat 3882d 149578510^65536+1 535749 L4692 2022 Generalized Fermat 3883d 149495200^65536+1 535733 L5030 2022 Generalized Fermat 3884d 149491768^65536+1 535732 L4550 2022 Generalized Fermat 3885d 149465356^65536+1 535727 L4245 2022 Generalized Fermat 3886 1061*2^1779595+1 535715 L3445 2013 3887d 149265044^65536+1 535689 L5275 2022 Generalized Fermat 3888 455*2^1779315+1 535630 L2121 2013 3889d 148896558^65536+1 535619 L5485 2022 Generalized Fermat 3890c 71899*1234547#+1 535609 p195 2022 3891c 26864*1234547#+1 535609 p195 2022 3892d 148806450^65536+1 535601 L5391 2022 Generalized Fermat 3893 45*20^411657+1 535580 L4789 2021 3894d 148402470^65536+1 535524 L4245 2022 Generalized Fermat 3895d 148366966^65536+1 535517 L4245 2022 Generalized Fermat 3896 663251*2^1778899+1 535508 L4789 2018 3897 31521*2^1778899-1 535507 L3519 2015 3898d 148302820^65536+1 535505 L4760 2022 Generalized Fermat 3899d 148275334^65536+1 535500 L4760 2022 Generalized Fermat 3900d 148221832^65536+1 535489 L4773 2022 Generalized Fermat 3901 863*2^1778737+1 535457 L1505 2013 3902 316594*5^766005-1 535421 L3157 2012 3903d 147834014^65536+1 535415 L4245 2022 Generalized Fermat 3904d 147796196^65536+1 535408 L5460 2022 Generalized Fermat 3905d 147761138^65536+1 535401 L4245 2022 Generalized Fermat 3906 1468*3^1122083+1 535373 L5410 2021 3907d 147570204^65536+1 535364 L4245 2022 Generalized Fermat 3908d 147512094^65536+1 535353 L4544 2022 Generalized Fermat 3909d 147382164^65536+1 535328 L4898 2022 Generalized Fermat 3910d 147208122^65536+1 535294 L5030 2022 Generalized Fermat 3911d 147202056^65536+1 535293 L5460 2022 Generalized Fermat 3912d 147170456^65536+1 535287 L5483 2022 Generalized Fermat 3913 2016*991^178654+1 535264 L5410 2021 3914d 146933674^65536+1 535241 L4245 2022 Generalized Fermat 3915d 146925950^65536+1 535239 L4956 2022 Generalized Fermat 3916d 146924772^65536+1 535239 L4245 2022 Generalized Fermat 3917d 146826798^65536+1 535220 L4245 2022 Generalized Fermat 3918d 146780644^65536+1 535211 L4245 2022 Generalized Fermat 3919d 146680212^65536+1 535192 L4956 2022 Generalized Fermat 3920d 146653986^65536+1 535187 L4245 2022 Generalized Fermat 3921d 146504914^65536+1 535158 L4905 2022 Generalized Fermat 3922d 146425914^65536+1 535142 L5265 2022 Generalized Fermat 3923 99*2^1777688-1 535140 L1862 2011 3924 1806*213^229825+1 535124 L5410 2020 3925 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 3926 511*2^1777488+1 535080 L2873 2013 3927 243*2^1777467-1 535074 L2055 2011 3928d 145932888^65536+1 535046 L5469 2022 Generalized Fermat 3929d 145585776^65536+1 534979 L4774 2022 Generalized Fermat 3930 66*163^241811+1 534934 L5410 2019 3931d 145072510^65536+1 534878 L5425 2022 Generalized Fermat 3932d 145066756^65536+1 534877 L5460 2022 Generalized Fermat 3933 112*281^218429-1 534871 L4001 2018 3934d 145016656^65536+1 534867 L5078 2022 Generalized Fermat 3935d 144973634^65536+1 534859 L5460 2022 Generalized Fermat 3936d 144973524^65536+1 534859 L5072 2022 Generalized Fermat 3937d 144882226^65536+1 534841 L5460 2022 Generalized Fermat 3938d 144756106^65536+1 534816 L5470 2022 Generalized Fermat 3939d 144716102^65536+1 534808 L5460 2022 Generalized Fermat 3940d 144684440^65536+1 534802 L5474 2022 Generalized Fermat 3941d 144675274^65536+1 534800 L5474 2022 Generalized Fermat 3942d 144585734^65536+1 534782 L5277 2022 Generalized Fermat 3943d 144568054^65536+1 534779 L5460 2022 Generalized Fermat 3944d 144485588^65536+1 534763 L5016 2022 Generalized Fermat 3945d 144470894^65536+1 534760 L5025 2022 Generalized Fermat 3946d 144386092^65536+1 534743 L5473 2022 Generalized Fermat 3947d 144248374^65536+1 534716 L4892 2022 Generalized Fermat 3948d 144128416^65536+1 534692 L5234 2022 Generalized Fermat 3949d 144086288^65536+1 534684 L4905 2022 Generalized Fermat 3950d 144084846^65536+1 534684 L4977 2022 Generalized Fermat 3951d 143986848^65536+1 534664 L5255 2022 Generalized Fermat 3952d 143963966^65536+1 534660 L4899 2022 Generalized Fermat 3953d 143877852^65536+1 534643 L5460 2022 Generalized Fermat 3954d 143862854^65536+1 534640 L5254 2022 Generalized Fermat 3955d 143735714^65536+1 534615 L5265 2022 Generalized Fermat 3956d 143676278^65536+1 534603 L4387 2022 Generalized Fermat 3957d 143620534^65536+1 534592 L5297 2022 Generalized Fermat 3958d 143476918^65536+1 534563 L5460 2022 Generalized Fermat 3959 177*2^1775674-1 534534 L2101 2012 3960d 143258560^65536+1 534520 L4742 2022 Generalized Fermat 3961d 143228594^65536+1 534514 L5460 2022 Generalized Fermat 3962d 143155562^65536+1 534500 L4905 2022 Generalized Fermat 3963 293*2^1775450-1 534467 L2074 2014 3964d 142911028^65536+1 534451 L4550 2022 Generalized Fermat 3965d 142840816^65536+1 534437 L5470 2022 Generalized Fermat 3966d 142701560^65536+1 534409 L4737 2022 Generalized Fermat 3967b 593*2^1775256-1 534409 L5516 2022 3968 1005*2^1775235-1 534402 L1828 2014 3969 773*138^249730-1 534395 L5092 2020 3970d 142563056^65536+1 534382 L5036 2022 Generalized Fermat 3971d 142505312^65536+1 534370 L4899 2022 Generalized Fermat 3972d 142306284^65536+1 534330 L4726 2022 Generalized Fermat 3973d 142293110^65536+1 534328 L5297 2022 Generalized Fermat 3974e 142036092^65536+1 534276 L5254 2022 Generalized Fermat 3975e 142015204^65536+1 534272 L4737 2022 Generalized Fermat 3976 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 3977e 141868280^65536+1 534242 L5025 2022 Generalized Fermat 3978e 141821432^65536+1 534233 L5297 2022 Generalized Fermat 3979e 141477572^65536+1 534164 L5051 2022 Generalized Fermat 3980e 141368280^65536+1 534142 L4249 2022 Generalized Fermat 3981e 141176792^65536+1 534103 L5297 2022 Generalized Fermat 3982e 141159612^65536+1 534100 L5467 2022 Generalized Fermat 3983e 141127960^65536+1 534094 L5297 2022 Generalized Fermat 3984e 140825230^65536+1 534032 L4726 2022 Generalized Fermat 3985e 140596486^65536+1 533986 L5101 2022 Generalized Fermat 3986e 140563252^65536+1 533979 L5005 2022 Generalized Fermat 3987e 140561102^65536+1 533979 L4950 2022 Generalized Fermat 3988e 140278338^65536+1 533922 L5432 2022 Generalized Fermat 3989e 140182506^65536+1 533902 L5005 2022 Generalized Fermat 3990e 140173342^65536+1 533900 L4249 2022 Generalized Fermat 3991e 140069668^65536+1 533879 L5374 2022 Generalized Fermat 3992e 139976206^65536+1 533860 L5457 2022 Generalized Fermat 3993e 139948998^65536+1 533855 L4747 2022 Generalized Fermat 3994e 139878242^65536+1 533840 L5453 2022 Generalized Fermat 3995e 139530936^65536+1 533770 L5005 2022 Generalized Fermat 3996e 139462208^65536+1 533756 L4245 2022 Generalized Fermat 3997 4053*2^1773028-1 533739 L1959 2015 3998f 139295348^65536+1 533722 L4371 2021 Generalized Fermat 3999f 139275160^65536+1 533717 L4249 2021 Generalized Fermat 4000f 139241582^65536+1 533711 L5205 2021 Generalized Fermat 4001f 139168954^65536+1 533696 L4245 2021 Generalized Fermat 4002f 139145838^65536+1 533691 L4245 2021 Generalized Fermat 4003f 139138610^65536+1 533689 L4249 2021 Generalized Fermat 4004f 139082038^65536+1 533678 L4249 2021 Generalized Fermat 4005f 139065554^65536+1 533675 L5312 2021 Generalized Fermat 4006f 139061582^65536+1 533674 L5455 2021 Generalized Fermat 4007 1471*2^1772755-1 533656 L1830 2020 4008f 138973204^65536+1 533656 L5101 2021 Generalized Fermat 4009f 138793926^65536+1 533619 L4747 2021 Generalized Fermat 4010f 138710732^65536+1 533602 L4774 2021 Generalized Fermat 4011f 138688732^65536+1 533597 L5157 2021 Generalized Fermat 4012f 138628730^65536+1 533585 L5101 2021 Generalized Fermat 4013f 138554746^65536+1 533570 L4774 2021 Generalized Fermat 4014 24328*52^310932+1 533565 L5410 2019 4015f 138484612^65536+1 533555 L4249 2021 Generalized Fermat 4016f 137963452^65536+1 533448 L5441 2021 Generalized Fermat 4017f 137907846^65536+1 533437 L4774 2021 Generalized Fermat 4018f 137877692^65536+1 533430 L4774 2021 Generalized Fermat 4019f 137817880^65536+1 533418 L4774 2021 Generalized Fermat 4020f 137781496^65536+1 533411 L4774 2021 Generalized Fermat 4021f 137657614^65536+1 533385 L5332 2021 Generalized Fermat 4022f 137591622^65536+1 533371 L5347 2021 Generalized Fermat 4023f 137461508^65536+1 533344 L4249 2021 Generalized Fermat 4024 163*2^1771524+1 533285 L1741 2013 4025f 137162364^65536+1 533282 L5441 2021 Generalized Fermat 4026f 137160034^65536+1 533282 L4249 2021 Generalized Fermat 4027 381*2^1771493+1 533276 L3444 2013 4028f 137017216^65536+1 533252 L4249 2021 Generalized Fermat 4029 136992032^65536+1 533247 L4747 2021 Generalized Fermat 4030 136884136^65536+1 533225 L5441 2021 Generalized Fermat 4031 136787614^65536+1 533204 L4267 2021 Generalized Fermat 4032 136637696^65536+1 533173 L5416 2021 Generalized Fermat 4033 136632020^65536+1 533172 L5157 2021 Generalized Fermat 4034 136440590^65536+1 533132 L4584 2021 Generalized Fermat 4035f 136342206^65536+1 533112 L5416 2021 Generalized Fermat 4036 136292214^65536+1 533101 L4905 2021 Generalized Fermat 4037 136268486^65536+1 533096 L4905 2021 Generalized Fermat 4038 795*2^1770840+1 533079 L1505 2013 4039 136030188^65536+1 533046 L5157 2021 Generalized Fermat 4040 135915704^65536+1 533022 L5332 2021 Generalized Fermat 4041 135811052^65536+1 533001 L5157 2021 Generalized Fermat 4042 135805928^65536+1 532999 L4249 2021 Generalized Fermat 4043 135731100^65536+1 532984 L4249 2021 Generalized Fermat 4044 Phi(3,-264017^49152) 532969 L4142 2016 Generalized unique 4045 135579990^65536+1 532952 L4249 2021 Generalized Fermat 4046 135367280^65536+1 532907 L5374 2021 Generalized Fermat 4047 135237122^65536+1 532880 L5432 2021 Generalized Fermat 4048 135052616^65536+1 532841 L5332 2021 Generalized Fermat 4049 134819600^65536+1 532792 L5430 2021 Generalized Fermat 4050 134719104^65536+1 532771 L5430 2021 Generalized Fermat 4051 134695448^65536+1 532766 L4249 2021 Generalized Fermat 4052 134624202^65536+1 532751 L4249 2021 Generalized Fermat 4053 134584144^65536+1 532742 L4249 2021 Generalized Fermat 4054 134346884^65536+1 532692 L5374 2021 Generalized Fermat 4055 134343600^65536+1 532691 L5416 2021 Generalized Fermat 4056 134117398^65536+1 532643 L4249 2021 Generalized Fermat 4057 134014306^65536+1 532621 L5428 2021 Generalized Fermat 4058 665*2^1769303+1 532617 L3441 2013 4059 133971864^65536+1 532612 L4773 2021 Generalized Fermat 4060 133931782^65536+1 532604 L5425 2021 Generalized Fermat 4061 133853526^65536+1 532587 L4942 2021 Generalized Fermat 4062 133718586^65536+1 532559 L5157 2021 Generalized Fermat 4063 473*2^1769101+1 532556 L3459 2013 4064 133629454^65536+1 532540 L5420 2021 Generalized Fermat 4065 133593704^65536+1 532532 L4584 2021 Generalized Fermat 4066 133555442^65536+1 532524 L5419 2021 Generalized Fermat 4067 133476288^65536+1 532507 L5101 2021 Generalized Fermat 4068 133433854^65536+1 532498 L5321 2021 Generalized Fermat 4069 133400670^65536+1 532491 L5347 2021 Generalized Fermat 4070 133350482^65536+1 532480 L5416 2021 Generalized Fermat 4071 133334188^65536+1 532477 L5101 2021 Generalized Fermat 4072 133271846^65536+1 532463 L4788 2021 Generalized Fermat 4073 133215546^65536+1 532451 L5157 2021 Generalized Fermat 4074 133140712^65536+1 532435 L4737 2021 Generalized Fermat 4075 133065238^65536+1 532419 L4299 2021 Generalized Fermat 4076 855*2^1768644+1 532418 L1675 2013 4077 133048112^65536+1 532416 L5101 2021 Generalized Fermat 4078 132987318^65536+1 532403 L4865 2021 Generalized Fermat 4079 132970814^65536+1 532399 L5157 2021 Generalized Fermat 4080 132488280^65536+1 532296 L5101 2021 Generalized Fermat 4081 132429416^65536+1 532283 L4672 2021 Generalized Fermat 4082 99*2^1768187+1 532280 L2517 2011 4083 132385596^65536+1 532273 L5157 2021 Generalized Fermat 4084 132372878^65536+1 532271 L5412 2021 Generalized Fermat 4085 132358424^65536+1 532268 L4672 2021 Generalized Fermat 4086 132285402^65536+1 532252 L5403 2021 Generalized Fermat 4087 132266908^65536+1 532248 L5333 2021 Generalized Fermat 4088 132186042^65536+1 532231 L4672 2021 Generalized Fermat 4089 132120644^65536+1 532216 L5333 2021 Generalized Fermat 4090 132003152^65536+1 532191 L5403 2021 Generalized Fermat 4091 131814642^65536+1 532150 L5101 2021 Generalized Fermat 4092 131796386^65536+1 532146 L4672 2021 Generalized Fermat 4093 131775982^65536+1 532142 L4865 2021 Generalized Fermat 4094 131728816^65536+1 532132 L5254 2021 Generalized Fermat 4095 131714718^65536+1 532129 L4672 2021 Generalized Fermat 4096 131691588^65536+1 532124 L5254 2021 Generalized Fermat 4097 131450430^65536+1 532072 L5101 2021 Generalized Fermat 4098 131419368^65536+1 532065 L5398 2021 Generalized Fermat 4099 131255146^65536+1 532029 L5157 2021 Generalized Fermat 4100 131130622^65536+1 532002 L4359 2021 Generalized Fermat 4101 131123850^65536+1 532001 L5312 2021 Generalized Fermat 4102 131105428^65536+1 531997 L4865 2021 Generalized Fermat 4103 130897212^65536+1 531952 L5395 2021 Generalized Fermat 4104 130660644^65536+1 531900 L5396 2021 Generalized Fermat 4105 130612142^65536+1 531890 L4939 2021 Generalized Fermat 4106 130585094^65536+1 531884 L5371 2021 Generalized Fermat 4107 130452302^65536+1 531855 L5391 2021 Generalized Fermat 4108 273*2^1766747-1 531847 L1828 2013 4109 130408582^65536+1 531845 L4737 2021 Generalized Fermat 4110 130271172^65536+1 531815 L4737 2021 Generalized Fermat 4111 130181574^65536+1 531796 L5391 2021 Generalized Fermat 4112 130060566^65536+1 531769 L4820 2021 Generalized Fermat 4113 129984458^65536+1 531752 L5157 2021 Generalized Fermat 4114 129834872^65536+1 531720 L5383 2021 Generalized Fermat 4115 129811608^65536+1 531715 L4865 2021 Generalized Fermat 4116d 86*488^197778-1 531713 L4444 2022 4117 129790924^65536+1 531710 L4371 2021 Generalized Fermat 4118 129750926^65536+1 531701 L5101 2021 Generalized Fermat 4119 129697198^65536+1 531690 L5157 2021 Generalized Fermat 4120 191*2^1766221+1 531688 L2539 2013 4121 129640544^65536+1 531677 L5101 2021 Generalized Fermat 4122 129630358^65536+1 531675 L4773 2021 Generalized Fermat 4123 129574744^65536+1 531663 L5386 2021 Generalized Fermat 4124 129448306^65536+1 531635 L5374 2021 Generalized Fermat 4125 129420854^65536+1 531629 L4865 2021 Generalized Fermat 4126 129358462^65536+1 531615 L5193 2021 Generalized Fermat 4127 129320968^65536+1 531607 L5333 2021 Generalized Fermat 4128 4045*2^1765913-1 531597 L1959 2015 4129 129254948^65536+1 531592 L4839 2021 Generalized Fermat 4130 129232776^65536+1 531587 L4201 2021 Generalized Fermat 4131 129053932^65536+1 531548 L5101 2021 Generalized Fermat 4132 129047526^65536+1 531547 L5157 2021 Generalized Fermat 4133 108*20^408551+1 531540 L4789 2021 4134 128990040^65536+1 531534 L5321 2021 Generalized Fermat 4135 128965452^65536+1 531528 L4201 2021 Generalized Fermat 4136 128866024^65536+1 531507 L5101 2021 Generalized Fermat 4137 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 4138 128663166^65536+1 531462 L5371 2021 Generalized Fermat 4139 1005*2^1765454-1 531458 L1828 2014 4140 35*2^1765449+1 531455 L1204 2011 4141 128565012^65536+1 531440 L5370 2021 Generalized Fermat 4142 1347*2^1765384-1 531437 L1828 2014 4143 128445376^65536+1 531413 L5369 2021 Generalized Fermat 4144 128375820^65536+1 531398 L4865 2021 Generalized Fermat 4145 981*2^1765221+1 531388 L1204 2013 4146 128212560^65536+1 531362 L5157 2021 Generalized Fermat 4147 128210296^65536+1 531361 L5157 2021 Generalized Fermat 4148 255*2^1765113+1 531355 L2085 2013 4149 128144964^65536+1 531347 L4903 2021 Generalized Fermat 4150 128132420^65536+1 531344 L5361 2021 Generalized Fermat 4151 127973506^65536+1 531309 L5322 2021 Generalized Fermat 4152 127951638^65536+1 531304 L5347 2021 Generalized Fermat 4153 399*2^1764851-1 531276 L1809 2014 4154 65*2^1764687+1 531226 L1125 2011 4155 127405738^65536+1 531182 L5359 2021 Generalized Fermat 4156 127252554^65536+1 531148 L4737 2021 Generalized Fermat 4157 127201666^65536+1 531137 L5357 2021 Generalized Fermat 4158 127034204^65536+1 531099 L4903 2021 Generalized Fermat 4159 127023728^65536+1 531097 L5101 2021 Generalized Fermat 4160 126973536^65536+1 531085 L5355 2021 Generalized Fermat 4161 126867872^65536+1 531062 L5157 2021 Generalized Fermat 4162 126861078^65536+1 531060 L4903 2021 Generalized Fermat 4163 126749898^65536+1 531035 L4456 2021 Generalized Fermat 4164 126713710^65536+1 531027 L4865 2021 Generalized Fermat 4165 126681288^65536+1 531020 L4456 2021 Generalized Fermat 4166 126474178^65536+1 530973 L4865 2021 Generalized Fermat 4167 126416802^65536+1 530960 L5351 2021 Generalized Fermat 4168 126171566^65536+1 530905 L5349 2021 Generalized Fermat 4169 126041092^65536+1 530876 L5347 2021 Generalized Fermat 4170 125998694^65536+1 530866 L5332 2021 Generalized Fermat 4171 125988718^65536+1 530864 L5204 2021 Generalized Fermat 4172 125961714^65536+1 530858 L4862 2021 Generalized Fermat 4173 717*2^1763367+1 530830 L3440 2013 4174 125772166^65536+1 530815 L4903 2021 Generalized Fermat 4175 255*2^1763221-1 530785 L2484 2015 4176 125564488^65536+1 530768 L5157 2021 Generalized Fermat 4177 125540838^65536+1 530762 L5341 2021 Generalized Fermat 4178 125515108^65536+1 530757 L5339 2021 Generalized Fermat 4179 125489168^65536+1 530751 L5157 2021 Generalized Fermat 4180 125472480^65536+1 530747 L5077 2021 Generalized Fermat 4181 125469830^65536+1 530746 L5077 2021 Generalized Fermat 4182 125418570^65536+1 530735 L4299 2021 Generalized Fermat 4183 43809*6^681994-1 530700 L4521 2018 4184 125238224^65536+1 530694 L4299 2021 Generalized Fermat 4185 125045320^65536+1 530650 L4584 2021 Generalized Fermat 4186 124801100^65536+1 530594 L4853 2021 Generalized Fermat 4187 335*2^1762548-1 530583 L1809 2014 4188 124703608^65536+1 530572 L4753 2021 Generalized Fermat 4189 124698848^65536+1 530571 L5333 2021 Generalized Fermat 4190 124583790^65536+1 530545 L5322 2021 Generalized Fermat 4191 124575028^65536+1 530543 L5321 2021 Generalized Fermat 4192 124490560^65536+1 530523 L4753 2021 Generalized Fermat 4193 124389098^65536+1 530500 L5332 2021 Generalized Fermat 4194 1399*2^1762191-1 530476 L1828 2014 4195 2895*2^1762011-1 530422 L2484 2018 4196 16193*22^395119-1 530421 p255 2013 4197 123999938^65536+1 530411 L5205 2021 Generalized Fermat 4198 531*2^1761689+1 530324 L3458 2013 4199 123590068^65536+1 530317 L5312 2021 Generalized Fermat 4200 123507760^65536+1 530298 L4853 2021 Generalized Fermat 4201 123440486^65536+1 530282 L5205 2021 Generalized Fermat 4202 123388310^65536+1 530270 L4249 2021 Generalized Fermat 4203 123364798^65536+1 530265 L4905 2021 Generalized Fermat 4204 123133394^65536+1 530211 L4747 2021 Generalized Fermat 4205 123104850^65536+1 530205 L5007 2021 Generalized Fermat 4206 122938900^65536+1 530166 L5271 2021 Generalized Fermat 4207 122873426^65536+1 530151 L4726 2021 Generalized Fermat 4208 122809274^65536+1 530136 L5304 2021 Generalized Fermat 4209 963*2^1761050+1 530132 L1204 2013 4210 122745454^65536+1 530122 L5030 2021 Generalized Fermat 4211 122700492^65536+1 530111 L5030 2021 Generalized Fermat 4212 122691846^65536+1 530109 L5206 2021 Generalized Fermat 4213 1253*2^1760738-1 530039 L1828 2014 4214 122354882^65536+1 530031 L4308 2021 Generalized Fermat 4215 122264264^65536+1 530010 L4659 2021 Generalized Fermat 4216 122011650^65536+1 529951 L4880 2021 Generalized Fermat 4217 121974060^65536+1 529942 L5275 2021 Generalized Fermat 4218 121857822^65536+1 529915 L5275 2021 Generalized Fermat 4219 62176*1027^175956+1 529909 L4001 2018 4220 4199*2^1760292-1 529905 L1959 2014 4221 1037*2^1760216-1 529881 L1828 2014 4222 121568608^65536+1 529847 L4880 2021 Generalized Fermat 4223 121372932^65536+1 529802 L4341 2021 Generalized Fermat 4224 121281656^65536+1 529780 L5025 2021 Generalized Fermat 4225 121238358^65536+1 529770 L5157 2021 Generalized Fermat 4226 121237796^65536+1 529770 L5234 2021 Generalized Fermat 4227 121140458^65536+1 529747 L5275 2021 Generalized Fermat 4228 121086190^65536+1 529734 L5056 2021 Generalized Fermat 4229 121075332^65536+1 529732 L4672 2021 Generalized Fermat 4230 121000342^65536+1 529714 L4945 2021 Generalized Fermat 4231 120749884^65536+1 529655 L5005 2021 Generalized Fermat 4232 969*2^1759430+1 529645 L3262 2013 4233 120681448^65536+1 529639 L4308 2021 Generalized Fermat 4234 119*2^1759247+1 529589 L3035 2013 4235 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 4236 417*2^1759055+1 529531 L2623 2013 4237 120186908^65536+1 529522 L4285 2021 Generalized Fermat 4238 2565*2^1758906-1 529487 L2484 2018 4239 119738978^65536+1 529416 L5040 2021 Generalized Fermat 4240 119717536^65536+1 529411 L4942 2021 Generalized Fermat 4241 119690728^65536+1 529404 L4308 2021 Generalized Fermat 4242 119624454^65536+1 529389 L5255 2021 Generalized Fermat 4243 119491626^65536+1 529357 L5039 2021 Generalized Fermat 4244 3846*24^383526+1 529351 L4806 2019 4245 119452152^65536+1 529347 L4308 2021 Generalized Fermat 4246 119418048^65536+1 529339 L4977 2021 Generalized Fermat 4247 119298770^65536+1 529311 L4904 2021 Generalized Fermat 4248 119199112^65536+1 529287 L4977 2021 Generalized Fermat 4249 119063128^65536+1 529255 L4672 2021 Generalized Fermat 4250 119032648^65536+1 529247 L5030 2021 Generalized Fermat 4251 118708030^65536+1 529170 L4726 2021 Generalized Fermat 4252 118641422^65536+1 529154 L5025 2021 Generalized Fermat 4253 118589830^65536+1 529141 L4672 2021 Generalized Fermat 4254 787*2^1757702+1 529124 L3436 2013 4255 118270626^65536+1 529065 L4760 2021 Generalized Fermat 4256 118264992^65536+1 529063 L5025 2021 Generalized Fermat 4257 118192550^65536+1 529046 L4760 2021 Generalized Fermat 4258 118147416^65536+1 529035 L5025 2021 Generalized Fermat 4259 118050932^65536+1 529012 L5289 2021 Generalized Fermat 4260 2386*52^308276+1 529007 L5410 2019 4261 117874676^65536+1 528969 L4308 2021 Generalized Fermat 4262 117805866^65536+1 528952 L4308 2021 Generalized Fermat 4263 117701722^65536+1 528927 L5165 2021 Generalized Fermat 4264 117686134^65536+1 528924 L4308 2021 Generalized Fermat 4265 117457872^65536+1 528868 L4905 2021 Generalized Fermat 4266 357*2^1756764-1 528842 L2519 2014 4267 57*2^1756702+1 528822 L1741 2011 4268 117048732^65536+1 528769 L4550 2021 Generalized Fermat 4269 135*2^1756478+1 528755 L3127 2013 4270 116954070^65536+1 528746 L5025 2021 Generalized Fermat 4271 116911588^65536+1 528736 L5254 2021 Generalized Fermat 4272 855*2^1756269+1 528693 L2636 2013 4273 116720780^65536+1 528689 L5288 2021 Generalized Fermat 4274 116701162^65536+1 528684 L4210 2021 Generalized Fermat 4275 603*2^1756142+1 528655 L2559 2013 4276 116572908^65536+1 528653 L4720 2021 Generalized Fermat 4277 116501302^65536+1 528636 L4904 2021 Generalized Fermat 4278 116462144^65536+1 528626 L5234 2021 Generalized Fermat 4279 71*2^1755965+1 528600 L1741 2011 4280 485*2^1755887+1 528578 L3262 2013 4281 116249158^65536+1 528574 L4308 2021 Generalized Fermat 4282 115797490^65536+1 528463 L4308 2021 Generalized Fermat 4283 115709936^65536+1 528442 L5234 2021 Generalized Fermat 4284 115707022^65536+1 528441 L5234 2021 Generalized Fermat 4285 31*2^1755317-1 528405 L330 2011 4286 955*2^1755312+1 528405 L1741 2013 4287b 471*2^1755262-1 528390 L2519 2022 4288 115457324^65536+1 528379 L4747 2021 Generalized Fermat 4289 115408880^65536+1 528367 L4920 2021 Generalized Fermat 4290 115357190^65536+1 528355 L4599 2021 Generalized Fermat 4291 115354566^65536+1 528354 L4871 2021 Generalized Fermat 4292 115347856^65536+1 528352 L4726 2021 Generalized Fermat 4293 115294854^65536+1 528339 L4544 2021 Generalized Fermat 4294 115268620^65536+1 528333 L4308 2021 Generalized Fermat 4295 115220208^65536+1 528321 L5234 2021 Generalized Fermat 4296 115157240^65536+1 528305 L5040 2021 Generalized Fermat 4297 1391*2^1754922-1 528288 L1828 2014 4298 114722794^65536+1 528198 L4591 2021 Generalized Fermat 4299 114698234^65536+1 528192 L5057 2021 Generalized Fermat 4300 114681358^65536+1 528187 L5234 2021 Generalized Fermat 4301 114630516^65536+1 528175 L5033 2021 Generalized Fermat 4302 4111*2^1754463-1 528150 L1959 2016 4303 114387906^65536+1 528114 L4742 2021 Generalized Fermat 4304 114302338^65536+1 528093 L5271 2021 Generalized Fermat 4305 114277670^65536+1 528087 L5016 2021 Generalized Fermat 4306 114250806^65536+1 528080 L4308 2021 Generalized Fermat 4307 161*2^1754223+1 528076 L3014 2013 4308 114119336^65536+1 528048 L4245 2021 Generalized Fermat 4309 114065784^65536+1 528034 L4530 2021 Generalized Fermat 4310b 545*2^1754062-1 528029 L5516 2022 4311 4171*2^1754017-1 528016 L1959 2016 4312 113950766^65536+1 528006 L5057 2021 Generalized Fermat 4313 113930586^65536+1 528000 L4550 2021 Generalized Fermat 4314 113912436^65536+1 527996 L5281 2021 Generalized Fermat 4315 113899746^65536+1 527993 L4387 2021 Generalized Fermat 4316b 447*2^1753942-1 527992 L5516 2022 4317 113856050^65536+1 527982 L5280 2021 Generalized Fermat 4318 113821900^65536+1 527973 L4977 2021 Generalized Fermat 4319 113766500^65536+1 527959 L5040 2021 Generalized Fermat 4320 113743984^65536+1 527954 L4308 2021 Generalized Fermat 4321 113743008^65536+1 527954 L5056 2021 Generalized Fermat 4322 113630364^65536+1 527925 L4726 2021 Generalized Fermat 4323 113583948^65536+1 527914 L4963 2021 Generalized Fermat 4324 113547832^65536+1 527905 L5023 2021 Generalized Fermat 4325 113499172^65536+1 527893 L5057 2021 Generalized Fermat 4326 113441586^65536+1 527878 L4755 2021 Generalized Fermat 4327 113430012^65536+1 527875 L5234 2021 Generalized Fermat 4328 113399408^65536+1 527867 L4755 2021 Generalized Fermat 4329 113385930^65536+1 527864 L5234 2021 Generalized Fermat 4330 113296320^65536+1 527842 L5277 2021 Generalized Fermat 4331 113290542^65536+1 527840 L4308 2021 Generalized Fermat 4332 113219876^65536+1 527822 L5275 2021 Generalized Fermat 4333 5077*2^1753317-1 527805 L251 2008 4334 113148382^65536+1 527804 L4308 2021 Generalized Fermat 4335 113106664^65536+1 527794 L4308 2021 Generalized Fermat 4336 113006358^65536+1 527769 L4308 2021 Generalized Fermat 4337 112904842^65536+1 527743 L4905 2021 Generalized Fermat 4338 112897156^65536+1 527741 L4308 2021 Generalized Fermat 4339 112832188^65536+1 527725 L4726 2021 Generalized Fermat 4340 112822300^65536+1 527722 L4308 2021 Generalized Fermat 4341 1261*2^1753021-1 527716 L1828 2014 4342 112707138^65536+1 527693 L5275 2021 Generalized Fermat 4343 387*2^1752919+1 527684 L2636 2013 4344 65*2^1752885+1 527673 L1204 2011 4345 355*2^1752713-1 527622 L2519 2014 4346 112155968^65536+1 527554 L5274 2021 Generalized Fermat 4347 112138030^65536+1 527549 L4977 2021 Generalized Fermat 4348 111979738^65536+1 527509 L4977 2021 Generalized Fermat 4349 111841318^65536+1 527474 L5054 2021 Generalized Fermat 4350 4*5^754611-1 527452 L4881 2019 4351 111749388^65536+1 527450 L4963 2021 Generalized Fermat 4352 363*2^1752116+1 527443 L2085 2013 4353 111402066^65536+1 527362 L4326 2021 Generalized Fermat 4354 111391036^65536+1 527359 L4410 2021 Generalized Fermat 4355 641*2^1751823+1 527355 L3459 2013 4356 Phi(3,-231255^49152) 527312 L4142 2016 Generalized unique 4357 111149164^65536+1 527297 L4963 2021 Generalized Fermat 4358 111075226^65536+1 527278 L5271 2021 Generalized Fermat 4359 111001326^65536+1 527259 L5011 2021 Generalized Fermat 4360 110980170^65536+1 527254 L4772 2021 Generalized Fermat 4361 110835044^65536+1 527216 L4737 2021 Generalized Fermat 4362 261*2^1751160+1 527155 L3192 2013 4363 32*905^178286-1 527131 L541 2017 4364 110431446^65536+1 527113 L4659 2021 Generalized Fermat 4365 110395028^65536+1 527103 L5270 2021 Generalized Fermat 4366 110280272^65536+1 527074 L5234 2021 Generalized Fermat 4367b 545*2^1750858-1 527064 L2519 2022 4368 1179*2^1750847+1 527061 g387 2009 4369 110139930^65536+1 527037 L5265 2021 Generalized Fermat 4370 110077040^65536+1 527021 L4738 2021 Generalized Fermat 4371 109986750^65536+1 526998 L5025 2021 Generalized Fermat 4372 1293*2^1750532-1 526966 L1828 2014 4373 109655942^65536+1 526912 L5268 2021 Generalized Fermat 4374 109649344^65536+1 526910 L5206 2021 Generalized Fermat 4375 109564026^65536+1 526888 L5255 2021 Generalized Fermat 4376 340168*5^753789-1 526882 p323 2012 4377 109464346^65536+1 526862 L4672 2021 Generalized Fermat 4378 109323574^65536+1 526826 L5025 2021 Generalized Fermat 4379 109287254^65536+1 526816 L4905 2021 Generalized Fermat 4380 109144682^65536+1 526779 L5057 2021 Generalized Fermat 4381 109034994^65536+1 526750 L4898 2021 Generalized Fermat 4382 109031182^65536+1 526749 L5255 2021 Generalized Fermat 4383 109000284^65536+1 526741 L4892 2021 Generalized Fermat 4384 108618244^65536+1 526641 L4308 2021 Generalized Fermat 4385 108551550^65536+1 526624 L4308 2021 Generalized Fermat 4386b 483*2^1749283-1 526590 L5516 2022 4387 108306062^65536+1 526560 L5068 2021 Generalized Fermat 4388 108244272^65536+1 526543 L4861 2021 Generalized Fermat 4389 108153408^65536+1 526519 L4880 2021 Generalized Fermat 4390 2955*2^1748957-1 526492 L2484 2018 4391 107970076^65536+1 526471 L4956 2021 Generalized Fermat 4392 107894268^65536+1 526451 L5011 2021 Generalized Fermat 4393 107747194^65536+1 526412 L4308 2021 Generalized Fermat 4394 107658460^65536+1 526389 L4308 2021 Generalized Fermat 4395 4147*2^1748201-1 526265 L1959 2016 4396 107167054^65536+1 526259 L4672 2021 Generalized Fermat 4397 107137714^65536+1 526251 L5143 2021 Generalized Fermat 4398 107058940^65536+1 526230 L5057 2021 Generalized Fermat 4399 106997372^65536+1 526213 L5025 2021 Generalized Fermat 4400 106967132^65536+1 526205 L4963 2021 Generalized Fermat 4401 106913102^65536+1 526191 L5025 2021 Generalized Fermat 4402 106830890^65536+1 526169 L4726 2021 Generalized Fermat 4403 106795692^65536+1 526160 L4308 2021 Generalized Fermat 4404 106679112^65536+1 526129 L4550 2021 Generalized Fermat 4405 106665218^65536+1 526125 L4210 2021 Generalized Fermat 4406 106616682^65536+1 526112 L5126 2021 Generalized Fermat 4407 106599192^65536+1 526107 L5234 2021 Generalized Fermat 4408 106579844^65536+1 526102 L5259 2021 Generalized Fermat 4409 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 4410 106449610^65536+1 526067 L5025 2021 Generalized Fermat 4411 106297214^65536+1 526027 L5070 2021 Generalized Fermat 4412 106206510^65536+1 526002 L4308 2021 Generalized Fermat 4413 106125374^65536+1 525981 L5252 2021 Generalized Fermat 4414 105956334^65536+1 525935 L5251 2021 Generalized Fermat 4415 105831918^65536+1 525902 L4905 2021 Generalized Fermat 4416 105830180^65536+1 525901 L4526 2021 Generalized Fermat 4417 105825012^65536+1 525900 L4526 2021 Generalized Fermat 4418 105814272^65536+1 525897 L5255 2021 Generalized Fermat 4419 105629226^65536+1 525847 L4308 2021 Generalized Fermat 4420 105579852^65536+1 525834 L4760 2021 Generalized Fermat 4421 105542202^65536+1 525824 L4904 2021 Generalized Fermat 4422 105352114^65536+1 525772 L4308 2021 Generalized Fermat 4423 105317236^65536+1 525763 L4308 2021 Generalized Fermat 4424 105253618^65536+1 525746 L4905 2021 Generalized Fermat 4425 105201924^65536+1 525732 L4905 2021 Generalized Fermat 4426 105121886^65536+1 525710 L5025 2021 Generalized Fermat 4427 105109090^65536+1 525707 L5011 2021 Generalized Fermat 4428 1700*471^196669+1 525704 L5397 2021 4429 104985656^65536+1 525673 L5033 2021 Generalized Fermat 4430b 507*2^1746026-1 525609 L5184 2022 4431 104719178^65536+1 525601 L4308 2021 Generalized Fermat 4432 1485*2^1745772+1 525533 L1134 2014 4433 104397268^65536+1 525513 L5047 2021 Generalized Fermat 4434 104153644^65536+1 525447 L4326 2021 Generalized Fermat 4435 265*2^1745450+1 525436 L3423 2013 4436 297*2^1745377-1 525414 L2074 2014 4437 103980898^65536+1 525400 L5070 2021 Generalized Fermat 4438 103965794^65536+1 525395 L4956 2021 Generalized Fermat 4439 103917532^65536+1 525382 L5206 2021 Generalized Fermat 4440 103917130^65536+1 525382 L4726 2021 Generalized Fermat 4441b 433*2^1745267-1 525381 L5516 2022 4442 103793686^65536+1 525348 L5070 2021 Generalized Fermat 4443 103607034^65536+1 525297 L5051 2021 Generalized Fermat 4444 1293*2^1744930-1 525280 L1828 2014 4445 103410380^65536+1 525243 L5057 2021 Generalized Fermat 4446 158670*151^241039-1 525224 L4001 2018 4447 103244358^65536+1 525197 L5057 2021 Generalized Fermat 4448 103232286^65536+1 525194 L4963 2021 Generalized Fermat 4449 103014016^65536+1 525134 L5234 2021 Generalized Fermat 4450 1485*2^1744384+1 525116 L1134 2014 4451 102936406^65536+1 525112 L4249 2021 Generalized Fermat 4452 102927846^65536+1 525110 L4249 2021 Generalized Fermat 4453 102905922^65536+1 525104 L4853 2021 Generalized Fermat 4454 102871184^65536+1 525094 L4424 2021 Generalized Fermat 4455 102820362^65536+1 525080 L4308 2021 Generalized Fermat 4456 102815216^65536+1 525079 L4308 2021 Generalized Fermat 4457 325034*151^240969-1 525072 L4001 2018 4458 102770410^65536+1 525066 L4599 2021 Generalized Fermat 4459 495*2^1744183+1 525055 L1933 2013 4460 102413650^65536+1 524967 L5225 2021 Generalized Fermat 4461 102290630^65536+1 524933 L5202 2021 Generalized Fermat 4462 327*2^1743751+1 524924 L1130 2013 4463 102240736^65536+1 524919 L5222 2021 Generalized Fermat 4464 102179404^65536+1 524902 L4456 2021 Generalized Fermat 4465 102152180^65536+1 524895 L5202 2021 Generalized Fermat 4466 102077788^65536+1 524874 L5202 2021 Generalized Fermat 4467 102001552^65536+1 524853 L5221 2021 Generalized Fermat 4468 101940908^65536+1 524836 L5202 2021 Generalized Fermat 4469 28198*52^305828+1 524807 L5410 2019 4470 101833680^65536+1 524806 L5202 2021 Generalized Fermat 4471b 589*2^1743325-1 524796 L5516 2022 4472 415*2^1743176+1 524751 L3428 2013 4473 101588976^65536+1 524737 L5202 2021 Generalized Fermat 4474 101542004^65536+1 524724 L5202 2021 Generalized Fermat 4475 11*10^524706-1 524708 L1958 2021 4476 101373072^65536+1 524677 L4853 2020 Generalized Fermat 4477 101330432^65536+1 524665 L4747 2020 Generalized Fermat 4478 101328148^65536+1 524664 L4747 2020 Generalized Fermat 4479 695*2^1742755+1 524625 L1741 2013 4480 1285*2^1742735-1 524619 L1828 2014 4481 243*2^1742689+1 524605 L1204 2013 4482 345*2^1742652-1 524594 L1830 2012 4483 101053038^65536+1 524587 L4747 2020 Generalized Fermat 4484 867*2^1742474+1 524540 L3188 2013 4485 100809238^65536+1 524518 L5206 2020 Generalized Fermat 4486 170*709^183988-1 524487 L5410 2021 4487 100635028^65536+1 524469 L5202 2020 Generalized Fermat 4488 100547206^65536+1 524444 L4387 2020 Generalized Fermat 4489 100541736^65536+1 524442 L5205 2020 Generalized Fermat 4490 100492452^65536+1 524428 L5204 2020 Generalized Fermat 4491 100480774^65536+1 524425 L4387 2020 Generalized Fermat 4492 91*2^1742093-1 524425 L2338 2012 4493 100445354^65536+1 524415 L4853 2020 Generalized Fermat 4494 905*2^1742026-1 524406 L2012 2014 4495 100394394^65536+1 524401 L4387 2020 Generalized Fermat 4496 100366730^65536+1 524393 L4245 2020 Generalized Fermat 4497 100292652^65536+1 524372 L5202 2020 Generalized Fermat 4498 100278340^65536+1 524368 L5157 2020 Generalized Fermat 4499 1295*2^1741794-1 524336 L1828 2014 4500 100061390^65536+1 524306 L4530 2020 Generalized Fermat 4501 100033834^65536+1 524298 L4249 2020 Generalized Fermat 4502 99985498^65536+1 524284 L5198 2020 Generalized Fermat 4503 99949404^65536+1 524274 L4245 2020 Generalized Fermat 4504 99938996^65536+1 524271 L4252 2020 Generalized Fermat 4505 99873084^65536+1 524252 L4963 2020 Generalized Fermat 4506 99812398^65536+1 524235 L4963 2020 Generalized Fermat 4507 99811816^65536+1 524235 L4963 2020 Generalized Fermat 4508 99717520^65536+1 524208 L4963 2020 Generalized Fermat 4509 315*2^1741334-1 524197 L1830 2012 4510 99605982^65536+1 524176 L4747 2020 Generalized Fermat 4511 99605678^65536+1 524176 L4963 2020 Generalized Fermat 4512 99543174^65536+1 524158 L4963 2020 Generalized Fermat 4513 99458608^65536+1 524134 L5193 2020 Generalized Fermat 4514 99443134^65536+1 524130 L4747 2020 Generalized Fermat 4515 99416780^65536+1 524122 L4747 2020 Generalized Fermat 4516 99316110^65536+1 524093 L5156 2020 Generalized Fermat 4517 99184362^65536+1 524055 L4747 2020 Generalized Fermat 4518 99086572^65536+1 524027 L4245 2020 Generalized Fermat 4519 98752904^65536+1 523931 L4787 2020 Generalized Fermat 4520 98679336^65536+1 523910 L4747 2020 Generalized Fermat 4521 98638136^65536+1 523898 L5127 2020 Generalized Fermat 4522b 525*2^1740079-1 523819 L5516 2022 4523 525*2^1740056+1 523812 L1204 2013 4524 319*2^1740047-1 523809 L1819 2013 4525 1157*2^1739902-1 523766 L1828 2014 4526 98174624^65536+1 523764 L5157 2020 Generalized Fermat 4527 98165150^65536+1 523761 L5163 2020 Generalized Fermat 4528 98160134^65536+1 523760 L5165 2020 Generalized Fermat 4529 98087154^65536+1 523739 L4747 2020 Generalized Fermat 4530 98046450^65536+1 523727 L5157 2020 Generalized Fermat 4531 98014656^65536+1 523718 L4245 2020 Generalized Fermat 4532 357*2^1739732+1 523715 L3427 2013 4533 97876302^65536+1 523678 L4245 2020 Generalized Fermat 4534 97796840^65536+1 523654 L4456 2020 Generalized Fermat 4535 97789752^65536+1 523652 L4245 2020 Generalized Fermat 4536 97784106^65536+1 523651 L5157 2020 Generalized Fermat 4537 97689780^65536+1 523623 L5152 2020 Generalized Fermat 4538 97647644^65536+1 523611 L5156 2020 Generalized Fermat 4539 97646596^65536+1 523611 L5155 2020 Generalized Fermat 4540 36481*2^1739380+1 523611 L4789 2021 Generalized Fermat 4541 97610728^65536+1 523600 L4495 2020 Generalized Fermat 4542 687*2^1739343+1 523598 L2117 2013 4543 97496720^65536+1 523567 L4267 2020 Generalized Fermat 4544 1041*2^1739189-1 523552 L1828 2014 4545 627*2^1738864+1 523454 L2117 2013 4546 97104830^65536+1 523452 L5152 2020 Generalized Fermat 4547 141*138^244616+1 523451 L4444 2020 4548 96763400^65536+1 523352 L5121 2020 Generalized Fermat 4549 96670202^65536+1 523325 L4672 2020 Generalized Fermat 4550 95*2^1738427+1 523321 L2085 2011 4551 793*2^1738400+1 523314 L3035 2013 4552 96534690^65536+1 523285 L5143 2020 Generalized Fermat 4553 144*648^186106+1 523254 L3886 2015 Generalized Fermat 4554 96338398^65536+1 523227 L5124 2020 Generalized Fermat 4555 96255150^65536+1 523202 L5127 2020 Generalized Fermat 4556 96228408^65536+1 523194 L4205 2020 Generalized Fermat 4557 729*2^1737901+1 523164 L2603 2013 4558 96048808^65536+1 523141 L4387 2020 Generalized Fermat 4559 95740866^65536+1 523050 L5132 2020 Generalized Fermat 4560 95668512^65536+1 523028 L5130 2020 Generalized Fermat 4561 95658826^65536+1 523025 L4245 2020 Generalized Fermat 4562 95485038^65536+1 522974 L5128 2020 Generalized Fermat 4563 95476682^65536+1 522971 L5127 2020 Generalized Fermat 4564 95330936^65536+1 522928 L5126 2020 Generalized Fermat 4565 95306976^65536+1 522920 L4729 2020 Generalized Fermat 4566 95060694^65536+1 522847 L5124 2020 Generalized Fermat 4567 95031090^65536+1 522838 L4245 2020 Generalized Fermat 4568 95020906^65536+1 522835 L4245 2020 Generalized Fermat 4569 94683814^65536+1 522734 L4861 2020 Generalized Fermat 4570 94560386^65536+1 522697 L5121 2020 Generalized Fermat 4571 1065*2^1736222+1 522658 L1204 2013 4572 94395438^65536+1 522647 L4853 2020 Generalized Fermat 4573 94371750^65536+1 522640 L5117 2020 Generalized Fermat 4574 94238958^65536+1 522600 L4267 2020 Generalized Fermat 4575 111*618^187244+1 522598 L4444 2018 4576 94148218^65536+1 522572 L5088 2020 Generalized Fermat 4577 94134450^65536+1 522568 L4659 2020 Generalized Fermat 4578 94127096^65536+1 522566 L4986 2020 Generalized Fermat 4579 93899840^65536+1 522497 L5005 2020 Generalized Fermat 4580 93838842^65536+1 522479 L4764 2020 Generalized Fermat 4581 93815892^65536+1 522472 L4245 2020 Generalized Fermat 4582 93786286^65536+1 522463 L4267 2020 Generalized Fermat 4583 93780678^65536+1 522461 L4928 2020 Generalized Fermat 4584 93680368^65536+1 522430 L4677 2020 Generalized Fermat 4585 573*2^1735454+1 522427 L2675 2013 4586 93294956^65536+1 522313 L4308 2020 Generalized Fermat 4587 545*2^1735043+1 522303 L2131 2013 4588 93229866^65536+1 522293 L5023 2020 Generalized Fermat 4589 93218152^65536+1 522290 L5103 2020 Generalized Fermat 4590 61*2^1734983-1 522284 L2055 2011 4591 93125776^65536+1 522261 L5101 2020 Generalized Fermat 4592 93098062^65536+1 522253 L5098 2020 Generalized Fermat 4593 93063952^65536+1 522243 L5098 2020 Generalized Fermat 4594 1125*2^1734821-1 522237 L1828 2014 4595 93043462^65536+1 522236 L5099 2020 Generalized Fermat 4596 92966428^65536+1 522213 L5096 2020 Generalized Fermat 4597 92914244^65536+1 522197 L4308 2020 Generalized Fermat 4598 92914140^65536+1 522197 L4753 2020 Generalized Fermat 4599 92766842^65536+1 522152 L4920 2020 Generalized Fermat 4600 6*10^522127+1 522128 p342 2012 4601 92690940^65536+1 522128 L4747 2020 Generalized Fermat 4602 92674306^65536+1 522123 L4308 2020 Generalized Fermat 4603 92548750^65536+1 522085 L5094 2020 Generalized Fermat 4604 92102646^65536+1 521947 L4205 2020 Generalized Fermat 4605 92081038^65536+1 521940 L4920 2020 Generalized Fermat 4606 92048794^65536+1 521930 L4747 2020 Generalized Fermat 4607 91987174^65536+1 521911 L4620 2020 Generalized Fermat 4608 91903298^65536+1 521885 L5088 2020 Generalized Fermat 4609 1113*2^1733627-1 521877 L1828 2014 4610 91842670^65536+1 521867 L4747 2020 Generalized Fermat 4611 91771676^65536+1 521845 L5093 2020 Generalized Fermat 4612 741*2^1733507+1 521841 L2549 2013 4613 91744150^65536+1 521836 L4623 2020 Generalized Fermat 4614 999*2^1733065-1 521708 L4518 2020 4615 53184*1027^173223+1 521678 L4001 2018 4616 91217580^65536+1 521672 L4871 2020 Generalized Fermat 4617 91087586^65536+1 521632 L4591 2020 Generalized Fermat 4618 91048790^65536+1 521619 L4387 2020 Generalized Fermat 4619 90961322^65536+1 521592 L4387 2020 Generalized Fermat 4620 90888234^65536+1 521569 L4747 2020 Generalized Fermat 4621 471*2^1732587+1 521564 L2085 2013 4622 90825332^65536+1 521550 L4387 2020 Generalized Fermat 4623 90825194^65536+1 521550 L5078 2020 Generalized Fermat 4624 6102*162^236042+1 521543 L5410 2019 4625 90705094^65536+1 521512 L4747 2020 Generalized Fermat 4626 90692090^65536+1 521508 L4747 2020 Generalized Fermat 4627 90486274^65536+1 521443 L5078 2020 Generalized Fermat 4628 387*2^1732185-1 521443 L1809 2014 4629d 118*488^193957-1 521440 L4444 2022 4630 90330702^65536+1 521394 L5078 2020 Generalized Fermat 4631 90277882^65536+1 521377 L4387 2020 Generalized Fermat 4632 90240344^65536+1 521366 L4747 2020 Generalized Fermat 4633 90033898^65536+1 521300 L4928 2020 Generalized Fermat 4634 90014942^65536+1 521294 L4387 2020 Generalized Fermat 4635 90013258^65536+1 521294 L5078 2020 Generalized Fermat 4636 89973416^65536+1 521281 L5077 2020 Generalized Fermat 4637 89929872^65536+1 521268 L4747 2020 Generalized Fermat 4638 89923590^65536+1 521266 L4914 2020 Generalized Fermat 4639 89783122^65536+1 521221 L4747 2020 Generalized Fermat 4640 89657350^65536+1 521181 L4591 2020 Generalized Fermat 4641 547*2^1731248+1 521161 L2873 2013 4642 89571726^65536+1 521154 L4920 2020 Generalized Fermat 4643 89539970^65536+1 521144 L4774 2020 Generalized Fermat 4644 89510134^65536+1 521134 L4773 2020 Generalized Fermat 4645 89443326^65536+1 521113 L4861 2020 Generalized Fermat 4646 89420980^65536+1 521106 L5067 2020 Generalized Fermat 4647 89136336^65536+1 521015 L4898 2020 Generalized Fermat 4648 89024442^65536+1 520980 L5057 2020 Generalized Fermat 4649 4059*2^1730611-1 520970 L1959 2014 4650 88875524^65536+1 520932 L4622 2020 Generalized Fermat 4651 88837150^65536+1 520920 L4526 2020 Generalized Fermat 4652 88753612^65536+1 520893 L5044 2020 Generalized Fermat 4653 88732114^65536+1 520886 L4892 2020 Generalized Fermat 4654 88596754^65536+1 520842 L4870 2020 Generalized Fermat 4655 245*2^1730188-1 520841 L1862 2014 4656 88583112^65536+1 520838 L5047 2020 Generalized Fermat 4657 88320078^65536+1 520753 L5007 2020 Generalized Fermat 4658 88271606^65536+1 520738 L4909 2020 Generalized Fermat 4659 937*48^309725+1 520726 L5410 2019 4660 55*2^1729777-1 520717 L2074 2013 4661 88167594^65536+1 520704 L4905 2020 Generalized Fermat 4662 88121890^65536+1 520690 L4772 2020 Generalized Fermat 4663 Phi(3,-197845^49152) 520650 L4506 2016 Generalized unique 4664 87955518^65536+1 520636 L4765 2020 Generalized Fermat 4665 87758254^65536+1 520572 L5005 2020 Generalized Fermat 4666d 87*488^193624-1 520545 L4444 2022 4667 421*2^1729092+1 520512 L3234 2013 4668 87557214^65536+1 520507 L4745 2020 Generalized Fermat 4669 87514470^65536+1 520493 L4956 2020 Generalized Fermat 4670 87419762^65536+1 520462 L4530 2020 Generalized Fermat 4671 87409818^65536+1 520459 L4745 2020 Generalized Fermat 4672 193*2^1728894+1 520452 L2559 2013 4673 213*2^1728847-1 520438 L1863 2014 4674 87216048^65536+1 520395 L5070 2020 Generalized Fermat 4675 341*2^1728697+1 520393 L2981 2013 4676 87131084^65536+1 520368 L4914 2020 Generalized Fermat 4677 213*2^1728569+1 520354 L2520 2013 4678 87036596^65536+1 520337 L5069 2020 Generalized Fermat 4679 87033652^65536+1 520336 L4544 2020 Generalized Fermat 4680 86998958^65536+1 520324 L4387 2020 Generalized Fermat 4681 86990562^65536+1 520322 L5069 2020 Generalized Fermat 4682 86909560^65536+1 520295 L4871 2020 Generalized Fermat 4683 86892902^65536+1 520290 L4550 2020 Generalized Fermat 4684 24573*2^1728296+1 520274 p168 2018 4685 277*2^1728302+1 520274 L1130 2013 4686 86814912^65536+1 520264 L4909 2020 Generalized Fermat 4687 86796322^65536+1 520258 L5068 2020 Generalized Fermat 4688 86779344^65536+1 520253 L4201 2020 Generalized Fermat 4689 86736718^65536+1 520239 L4905 2020 Generalized Fermat 4690 997*2^1728146+1 520227 L1595 2013 4691 929*2^1728099+1 520213 L1745 2013 4692 86553044^65536+1 520178 L4909 2020 Generalized Fermat 4693 86470130^65536+1 520151 L4909 2020 Generalized Fermat 4694 4065*2^1727864-1 520143 L1959 2015 4695 86431122^65536+1 520138 L5005 2020 Generalized Fermat 4696 86254706^65536+1 520080 L4909 2020 Generalized Fermat 4697 879*2^1727602+1 520063 L1935 2013 4698 86160832^65536+1 520049 L4753 2020 Generalized Fermat 4699 338948*5^743996-1 520037 p352 2012 4700 86037836^65536+1 520008 L4530 2020 Generalized Fermat 4701 85908438^65536+1 519965 L4942 2020 Generalized Fermat 4702 600921*2^1727190-1 519942 g337 2013 4703 85770052^65536+1 519920 L4530 2020 Generalized Fermat 4704 4129*2^1727119-1 519919 L1959 2015 4705 85636536^65536+1 519875 L5061 2020 Generalized Fermat 4706 85598554^65536+1 519863 L4745 2020 Generalized Fermat 4707 85516188^65536+1 519835 L4620 2020 Generalized Fermat 4708 85316028^65536+1 519769 L5025 2020 Generalized Fermat 4709 85209154^65536+1 519733 L4909 2020 Generalized Fermat 4710 85143326^65536+1 519711 L5024 2020 Generalized Fermat 4711 85003716^65536+1 519664 L4909 2020 Generalized Fermat 4712 597*2^1726268+1 519662 L2520 2013 4713 84930776^65536+1 519640 L5029 2020 Generalized Fermat 4714 1151*2^1726187+1 519638 L3262 2013 4715 84881776^65536+1 519623 L4950 2020 Generalized Fermat 4716 84876466^65536+1 519622 L4550 2020 Generalized Fermat 4717 84860922^65536+1 519616 L5059 2020 Generalized Fermat 4718 84720600^65536+1 519569 L4530 2020 Generalized Fermat 4719 813*2^1725925+1 519559 L3171 2013 4720 84580630^65536+1 519522 L5025 2020 Generalized Fermat 4721 84490864^65536+1 519492 L5005 2020 Generalized Fermat 4722 4179*2^1725552-1 519447 L1959 2015 4723 84332576^65536+1 519439 L4745 2020 Generalized Fermat 4724 84221130^65536+1 519401 L4400 2020 Generalized Fermat 4725c 465*2^1725401-1 519401 L5516 2022 4726 84216216^65536+1 519399 L4914 2020 Generalized Fermat 4727 84182766^65536+1 519388 L4909 2020 Generalized Fermat 4728 84178554^65536+1 519387 L5056 2020 Generalized Fermat 4729 27*634^185354+1 519380 L4001 2018 4730 84088876^65536+1 519356 L4887 2020 Generalized Fermat 4731 84063046^65536+1 519347 L4550 2020 Generalized Fermat 4732 84020394^65536+1 519333 L4909 2020 Generalized Fermat 4733 83816404^65536+1 519264 L4756 2020 Generalized Fermat 4734 83811756^65536+1 519262 L4530 2020 Generalized Fermat 4735 83728230^65536+1 519234 L4387 2020 Generalized Fermat 4736 84114*151^238241-1 519127 L4001 2018 4737 729*2^1724434+1 519110 L1484 2013 Generalized Fermat 4738 615*2^1724209+1 519042 L2967 2013 4739 4157*2^1724202-1 519041 L1959 2015 4740 4177*2^1724161-1 519028 L1959 2014 4741 83007704^65536+1 518988 L4745 2020 Generalized Fermat 4742 82883694^65536+1 518945 L4905 2020 Generalized Fermat 4743 82853956^65536+1 518935 L5057 2020 Generalized Fermat 4744 82727298^65536+1 518892 L5027 2020 Generalized Fermat 4745 82664200^65536+1 518870 L4905 2020 Generalized Fermat 4746 82615290^65536+1 518853 L4899 2020 Generalized Fermat 4747 82608282^65536+1 518851 L4741 2020 Generalized Fermat 4748 82585780^65536+1 518843 L5029 2020 Generalized Fermat 4749 82516824^65536+1 518819 L4530 2020 Generalized Fermat 4750 82481836^65536+1 518807 L4942 2020 Generalized Fermat 4751 82476416^65536+1 518805 L4201 2020 Generalized Fermat 4752 82409922^65536+1 518782 L4905 2020 Generalized Fermat 4753 82328650^65536+1 518754 L4909 2020 Generalized Fermat 4754 1089*2^1723121-1 518715 L1828 2014 4755 547*2^1723020+1 518684 L1745 2013 4756 82102578^65536+1 518676 L4400 2020 Generalized Fermat 4757 82055998^65536+1 518660 L4530 2020 Generalized Fermat 4758 81992548^65536+1 518638 L5027 2020 Generalized Fermat 4759 81976552^65536+1 518632 L5056 2020 Generalized Fermat 4760 81868890^65536+1 518595 L5054 2020 Generalized Fermat 4761 81791240^65536+1 518568 L5039 2020 Generalized Fermat 4762 253*2^1722623-1 518564 L145 2007 4763 81760016^65536+1 518557 L4909 2020 Generalized Fermat 4764 81712996^65536+1 518540 L4905 2020 Generalized Fermat 4765 81495116^65536+1 518464 L4898 2020 Generalized Fermat 4766 81379624^65536+1 518424 L4909 2020 Generalized Fermat 4767 81312044^65536+1 518400 L5052 2020 Generalized Fermat 4768 81301530^65536+1 518397 L5027 2020 Generalized Fermat 4769 81254306^65536+1 518380 L5051 2020 Generalized Fermat 4770 81126070^65536+1 518335 L5027 2020 Generalized Fermat 4771 81065064^65536+1 518314 L4733 2020 Generalized Fermat 4772 99461233889495567276...(518269 other digits)...53126433719371038957 518309 p384 2015 4773 81033034^65536+1 518303 L5025 2020 Generalized Fermat 4774 1000039*2^1721722+1 518296 p420 2021 4775 80976720^65536+1 518283 L4745 2020 Generalized Fermat 4776 80961052^65536+1 518277 L4530 2020 Generalized Fermat 4777 80954588^65536+1 518275 L4747 2020 Generalized Fermat 4778 80795988^65536+1 518219 L5027 2020 Generalized Fermat 4779 2*3^1086112+1 518208 p199 2010 4780 113*2^1721438-1 518207 L2484 2011 4781 1299*2^1721369-1 518187 L1828 2014 4782 4071*2^1721361-1 518185 L1959 2015 4783 80658514^65536+1 518171 L4904 2020 Generalized Fermat 4784 80573056^65536+1 518141 L4909 2020 Generalized Fermat 4785 80350524^65536+1 518062 L4758 2020 Generalized Fermat 4786 80317468^65536+1 518050 L5049 2020 Generalized Fermat 4787 80304896^65536+1 518046 L5027 2020 Generalized Fermat 4788 80243888^65536+1 518024 L4909 2020 Generalized Fermat 4789 80243510^65536+1 518024 L4549 2020 Generalized Fermat 4790 80008854^65536+1 517941 L4909 2020 Generalized Fermat 4791 (42^159530+1)^2-2 517914 p424 2021 4792 79871216^65536+1 517892 L5027 2020 Generalized Fermat 4793 1195*2^1720342+1 517878 L1935 2013 4794 465*2^1720310+1 517868 L2938 2013 4795 79697298^65536+1 517830 L4904 2020 Generalized Fermat 4796 79633084^65536+1 517807 L4909 2020 Generalized Fermat 4797 79483110^65536+1 517753 L5025 2020 Generalized Fermat 4798 79461958^65536+1 517745 L4905 2020 Generalized Fermat 4799 1159*2^1719862+1 517734 L3035 2013 4800 79343116^65536+1 517703 L4899 2020 Generalized Fermat 4801 79321064^65536+1 517695 L4745 2020 Generalized Fermat 4802 79265412^65536+1 517675 L5027 2020 Generalized Fermat 4803 79225864^65536+1 517661 L5047 2020 Generalized Fermat 4804 79183586^65536+1 517645 L5027 2020 Generalized Fermat 4805 79172346^65536+1 517641 L4585 2020 Generalized Fermat 4806 545*2^1719517+1 517629 L2583 2013 4807 79056616^65536+1 517600 L5039 2020 Generalized Fermat 4808 78884478^65536+1 517538 L5027 2020 Generalized Fermat 4809 78794796^65536+1 517505 L5040 2020 Generalized Fermat 4810 57257*2^1719090-1 517503 L4812 2018 4811 78726134^65536+1 517481 L4909 2020 Generalized Fermat 4812 78635388^65536+1 517448 L4720 2020 Generalized Fermat 4813 78622096^65536+1 517443 L4909 2020 Generalized Fermat 4814 78567948^65536+1 517423 L4909 2020 Generalized Fermat 4815 78562090^65536+1 517421 L4904 2020 Generalized Fermat 4816 235*2^1718787-1 517409 L2444 2014 4817 78504140^65536+1 517400 L5027 2020 Generalized Fermat 4818 78450806^65536+1 517381 L4905 2020 Generalized Fermat 4819 78294900^65536+1 517324 L4410 2020 Generalized Fermat 4820 78034592^65536+1 517229 L5007 2020 Generalized Fermat 4821 77796830^65536+1 517143 L5025 2020 Generalized Fermat 4822 77781726^65536+1 517137 L4745 2020 Generalized Fermat 4823 77744918^65536+1 517124 L4905 2020 Generalized Fermat 4824 77704986^65536+1 517109 L5040 2020 Generalized Fermat 4825 77507298^65536+1 517036 L5041 2020 Generalized Fermat 4826 77372478^65536+1 516987 L4660 2020 Generalized Fermat 4827 77355598^65536+1 516981 L4387 2020 Generalized Fermat 4828 77306490^65536+1 516963 L4905 2020 Generalized Fermat 4829c 469*2^1717297-1 516961 L2519 2022 4830 77264234^65536+1 516947 L4341 2020 Generalized Fermat 4831 371*2^1717250-1 516947 L3844 2014 4832 77177176^65536+1 516915 L5040 2020 Generalized Fermat 4833 77169226^65536+1 516912 L5041 2020 Generalized Fermat 4834 76937478^65536+1 516826 L4747 2020 Generalized Fermat 4835 897*2^1716807+1 516814 L2322 2013 4836 383*2^1716780-1 516805 L2519 2014 4837 76785568^65536+1 516770 L5007 2020 Generalized Fermat 4838 76780072^65536+1 516768 L4904 2020 Generalized Fermat 4839 76766300^65536+1 516763 L4387 2020 Generalized Fermat 4840 1307*2^1716556-1 516738 L1828 2014 4841 76596200^65536+1 516700 L4745 2020 Generalized Fermat 4842 76580342^65536+1 516694 L4904 2020 Generalized Fermat 4843 76467064^65536+1 516652 L4909 2020 Generalized Fermat 4844 76387412^65536+1 516622 L5039 2020 Generalized Fermat 4845 76382388^65536+1 516620 L4550 2020 Generalized Fermat 4846 4179*2^1716052-1 516587 L1959 2015 4847 76067780^65536+1 516503 L4210 2020 Generalized Fermat 4848 76057320^65536+1 516499 L5036 2020 Generalized Fermat 4849 75869946^65536+1 516429 L4861 2020 Generalized Fermat 4850 75802920^65536+1 516404 L4591 2020 Generalized Fermat 4851 75707404^65536+1 516368 L4530 2020 Generalized Fermat 4852 75605586^65536+1 516329 L5034 2020 Generalized Fermat 4853 1017*2^1715060+1 516288 L1204 2013 4854 75333588^65536+1 516227 L4738 2020 Generalized Fermat 4855 423*2^1714680+1 516173 L1204 2013 4856 75151890^65536+1 516158 L5033 2020 Generalized Fermat 4857 75029382^65536+1 516112 L4909 2020 Generalized Fermat 4858 74897306^65536+1 516062 L4956 2020 Generalized Fermat 4859 74851056^65536+1 516044 L5030 2020 Generalized Fermat 4860 70714*1027^171342+1 516014 L4001 2018 4861 975*2^1714004+1 515970 L2117 2012 4862 74581688^65536+1 515941 L4767 2020 Generalized Fermat 4863 74561982^65536+1 515934 L4734 2020 Generalized Fermat 4864 74316862^65536+1 515840 L4899 2020 Generalized Fermat 4865 74111056^65536+1 515761 L4550 2020 Generalized Fermat 4866 74036056^65536+1 515732 L4741 2020 Generalized Fermat 4867 74019600^65536+1 515726 L4909 2020 Generalized Fermat 4868 73948090^65536+1 515698 L4410 2020 Generalized Fermat 4869 73910008^65536+1 515684 L4909 2020 Generalized Fermat 4870 34900*3^1080805+1 515680 L5410 2021 4871 73861084^65536+1 515665 L4909 2020 Generalized Fermat 4872 1338*177^229389+1 515664 L5410 2020 4873 73770820^65536+1 515630 L4849 2020 Generalized Fermat 4874 73735306^65536+1 515616 L4308 2020 Generalized Fermat 4875 1101*2^1712807+1 515610 L1935 2012 4876 73611228^65536+1 515569 L5027 2020 Generalized Fermat 4877 73579576^65536+1 515556 L5027 2020 Generalized Fermat 4878 73527600^65536+1 515536 L4909 2020 Generalized Fermat 4879 73458528^65536+1 515509 L4747 2020 Generalized Fermat 4880 73314542^65536+1 515454 L5025 2020 Generalized Fermat 4881 73175654^65536+1 515400 L4984 2020 Generalized Fermat 4882 72987012^65536+1 515326 L5024 2020 Generalized Fermat 4883 72986366^65536+1 515326 L5024 2020 Generalized Fermat 4884 175*2^1711779-1 515300 L384 2014 4885 72905222^65536+1 515294 L4267 2020 Generalized Fermat 4886 72835678^65536+1 515267 L5023 2020 Generalized Fermat 4887 72832432^65536+1 515266 L4623 2020 Generalized Fermat 4888 72734952^65536+1 515228 L5021 2020 Generalized Fermat 4889 72708334^65536+1 515217 L4530 2020 Generalized Fermat 4890 72656320^65536+1 515197 L5021 2020 Generalized Fermat 4891 72589302^65536+1 515171 L5021 2020 Generalized Fermat 4892 72583992^65536+1 515169 L5022 2020 Generalized Fermat 4893 1485*2^1711331-1 515166 L1134 2014 4894 72489324^65536+1 515131 L5021 2020 Generalized Fermat 4895 72477906^65536+1 515127 L5021 2020 Generalized Fermat 4896 1029*2^1711100-1 515096 L1828 2014 4897 72189436^65536+1 515013 L5019 2020 Generalized Fermat 4898 491*2^1710497+1 514914 L3271 2013 4899 237*2^1710490+1 514912 L1408 2013 4900 71830642^65536+1 514872 L5017 2020 Generalized Fermat 4901 71729282^65536+1 514831 L5016 2020 Generalized Fermat 4902 1967*2^1710052-1 514781 L4113 2017 4903a 815*2^1709998-1 514764 L5545 2022 4904 71533230^65536+1 514754 L4917 2020 Generalized Fermat 4905 71453170^65536+1 514722 L4853 2020 Generalized Fermat 4906 71422068^65536+1 514709 L4917 2020 Generalized Fermat 4907 71419208^65536+1 514708 L4672 2020 Generalized Fermat 4908 71411244^65536+1 514705 L4738 2020 Generalized Fermat 4909 2415*288^209272+1 514686 L5410 2020 4910 71256288^65536+1 514643 L5011 2020 Generalized Fermat 4911 387*2^1709440-1 514596 L3844 2014 4912 71083738^65536+1 514574 L5010 2019 Generalized Fermat 4913 71042934^65536+1 514558 L4977 2019 Generalized Fermat 4914 70800832^65536+1 514461 L4747 2019 Generalized Fermat 4915 70788928^65536+1 514456 L5007 2019 Generalized Fermat 4916 833*2^1708797+1 514403 L1935 2012 4917 70569854^65536+1 514368 L5006 2019 Generalized Fermat 4918 1035*2^1708648+1 514358 L2973 2012 4919 70527284^65536+1 514350 L5006 2019 Generalized Fermat 4920 70492424^65536+1 514336 L4747 2019 Generalized Fermat 4921 70431290^65536+1 514312 L4747 2019 Generalized Fermat 4922 70313466^65536+1 514264 L4530 2019 Generalized Fermat 4923 70278190^65536+1 514250 L5005 2019 Generalized Fermat 4924 333*2^1708106+1 514194 L3154 2013 4925 203*762^178410+1 514172 L541 2020 4926 69967876^65536+1 514124 L4870 2019 Generalized Fermat 4927 69921942^65536+1 514105 L4956 2019 Generalized Fermat 4928 69718316^65536+1 514022 L4747 2019 Generalized Fermat 4929 69691840^65536+1 514011 L4853 2019 Generalized Fermat 4930 69649212^65536+1 513994 L4747 2019 Generalized Fermat 4931 18656*5^735326-1 513976 p280 2012 4932 69504360^65536+1 513935 L4864 2019 Generalized Fermat 4933 183*2^1707182-1 513916 L384 2014 4934 935*2^1707129+1 513901 L1300 2012 4935 69415014^65536+1 513898 L4787 2019 Generalized Fermat 4936 889*2^1707094+1 513890 L3262 2012 4937 1520*61^287837-1 513888 p328 2015 4938 69385726^65536+1 513886 L4853 2019 Generalized Fermat 4939 69255526^65536+1 513833 L4853 2019 Generalized Fermat 4940 69177340^65536+1 513800 L4726 2019 Generalized Fermat 4941 69145164^65536+1 513787 L4500 2019 Generalized Fermat 4942 68923948^65536+1 513696 L4737 2019 Generalized Fermat 4943 68887742^65536+1 513681 L4950 2019 Generalized Fermat 4944 68876616^65536+1 513676 L4853 2019 Generalized Fermat 4945 68825266^65536+1 513655 L4774 2019 Generalized Fermat 4946 68819462^65536+1 513653 L4950 2019 Generalized Fermat 4947 68787794^65536+1 513640 L4853 2019 Generalized Fermat 4948 68699002^65536+1 513603 L4747 2019 Generalized Fermat 4949 68634098^65536+1 513576 L4853 2019 Generalized Fermat 4950 68535830^65536+1 513535 L4747 2019 Generalized Fermat 4951 68519002^65536+1 513528 L4747 2019 Generalized Fermat 4952 267*2^1705793-1 513498 L1828 2013 4953 68417666^65536+1 513486 L4853 2019 Generalized Fermat 4954 68353724^65536+1 513459 L4672 2019 Generalized Fermat 4955 68332062^65536+1 513450 L4747 2019 Generalized Fermat 4956b 945*2^1705554-1 513426 L3844 2022 4957 (2^852770+1)^2-2 513419 p405 2019 4958 68022564^65536+1 513321 L4747 2019 Generalized Fermat 4959 291*2^1705173-1 513311 L2484 2013 4960 67988572^65536+1 513307 L4853 2019 Generalized Fermat 4961 67946296^65536+1 513289 L4672 2019 Generalized Fermat 4962 165*2^1705093+1 513287 L1158 2013 4963 67886910^65536+1 513264 L4205 2019 Generalized Fermat 4964 67797528^65536+1 513227 L4774 2019 Generalized Fermat 4965 67659536^65536+1 513169 L4267 2019 Generalized Fermat 4966 67641884^65536+1 513162 L4989 2019 Generalized Fermat 4967 109*2^1704658+1 513156 L1751 2012 4968 67607058^65536+1 513147 L4984 2019 Generalized Fermat 4969 5754*313^205617-1 513131 L5410 2020 4970 67437280^65536+1 513075 L4747 2019 Generalized Fermat 4971 727*2^1704196+1 513017 L1741 2012 4972 67291176^65536+1 513014 L4853 2019 Generalized Fermat 4973 67254608^65536+1 512998 L4853 2019 Generalized Fermat 4974 67226590^65536+1 512986 L4986 2019 Generalized Fermat 4975 4035*2^1704089-1 512986 L1959 2014 4976 67217514^65536+1 512982 L4984 2019 Generalized Fermat 4977 67182906^65536+1 512968 L4747 2019 Generalized Fermat 4978 67174482^65536+1 512964 L4853 2019 Generalized Fermat 4979 67135830^65536+1 512948 L4774 2019 Generalized Fermat 4980 67128624^65536+1 512945 L4359 2019 Generalized Fermat 4981 67115446^65536+1 512939 L4982 2019 Generalized Fermat 4982 67095494^65536+1 512931 L4705 2019 Generalized Fermat 4983 67074678^65536+1 512922 L4774 2019 Generalized Fermat 4984 66968818^65536+1 512877 L4747 2019 Generalized Fermat 4985 2*3^1074726+1 512775 p199 2010 4986 165*2^1703392+1 512775 L2131 2013 4987 66659348^65536+1 512745 L4705 2019 Generalized Fermat 4988 66657214^65536+1 512744 L4905 2019 Generalized Fermat 4989 66656676^65536+1 512744 L4977 2019 Generalized Fermat 4990 1195*2^1703221-1 512724 L1828 2014 4991b 813*2^1703134-1 512698 L3844 2022 4992c 507*2^1703122-1 512694 L5516 2022 4993 313*2^1703119-1 512693 L1809 2013 4994 66537066^65536+1 512693 L4905 2019 Generalized Fermat 4995 855*2^1703065+1 512677 L1741 2012 4996 30710*3^1074305+1 512579 L5410 2021 4997 283*2^1702599-1 512536 L426 2010 4998 851*2^1702569+1 512528 L3344 2012 4999 10071*2^1702501+1 512508 p168 2017 5000 30*171^229506+1 512488 L5410 2019 5001 5*10^511056-1 511057 p297 2011 Near-repdigit 5002 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5003 110059!+1 507082 p312 2011 Factorial 5004 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5005 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 5006 30981*14^433735-1 497121 p77 2015 Generalized Woodall 5007 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 5008 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5009 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 5010 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5011 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 5012 1098133#-1 476311 p346 2012 Primorial 5013 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 5014 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5015 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 5016 103040!-1 471794 p301 2010 Factorial 5017 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5018 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 5019 341351*22^341351-1 458243 p260 2017 Generalized Woodall 5020 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5021 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5022 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 5023 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5024 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 5025 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 5026 176660*18^353320-1 443519 p325 2011 Generalized Woodall 5027 1467763*2^1467763-1 441847 L381 2007 Woodall 5028 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 5029 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5030 94550!-1 429390 p290 2010 Factorial 5031 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5032 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 5033 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5034 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5035 2^1398269-1 420921 G1 1996 Mersenne 35 5036 182402*14^364804-1 418118 p325 2011 Generalized Woodall 5037 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5038 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 5039 338707*2^1354830+1 407850 L124 2005 Cullen 5040 11*2^1343347+1 404389 p169 2005 Divides GF(1343346,6) 5041 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5042 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5043 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5044 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5045 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 5046 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5047 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5048 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5049 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5050 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5051 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5052 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5053 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5054 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5055 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5056 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5057 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5058 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 5059 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5060 1268979*2^1268979-1 382007 L201 2007 Woodall 5061 2^1257787-1 378632 SG 1996 Mersenne 34 5062 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5063 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 5064 843301#-1 365851 p302 2010 Primorial 5065 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5066 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5067 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5068 1195203*2^1195203-1 359799 L124 2005 Woodall 5069 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 5070 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5071 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 5072 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 5073 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5074 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5075 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5076 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 5077 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5078 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 5079 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5080 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5081 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5082 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5083 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5084 3*2^916773+1 275977 g245 2001 Divides GF(916771,3), GF(916772,10) 5085 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5086 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5087 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5088 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5089 2^859433-1 258716 SG 1994 Mersenne 33 5090 2^756839-1 227832 SG 1992 Mersenne 32 5091 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5092 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 5093 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5094 667071*2^667071-1 200815 g55 2000 Woodall 5095 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5096 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5097 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5098 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5099 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 5100 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 5101 392113#+1 169966 p16 2001 Primorial 5102 366439#+1 158936 p16 2001 Primorial 5103 481899*2^481899+1 145072 gm 1998 Cullen 5104 34790!-1 142891 p85 2002 Factorial 5105 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5106 361275*2^361275+1 108761 DS 1998 Cullen 5107 26951!+1 107707 p65 2002 Factorial 5108 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5109 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5110 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5111 21480!-1 83727 p65 2001 Factorial 5112 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5113 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5114 262419*2^262419+1 79002 DS 1998 Cullen 5115 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5116 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5117 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5118 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5119 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5120 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5121 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5122 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5123 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5124 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5125 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5126 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5127 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5128 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5129 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5130 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5131 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5132 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5133 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5134 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5135 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5136 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 5137 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 5138 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5139 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 5140 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 5141d 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5142d 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5143d 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5144d 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5145 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5146 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5147 145823#+1 63142 p21 2000 Primorial 5148 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5149 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5150 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5151 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5152 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5153 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5154 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5155 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5156 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5157 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5158 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5159 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5160 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5161 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5162 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5163 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5164 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5165 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5166 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5167 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5168 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5169 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5170 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5171 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5172 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5173 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5174 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5175 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5176 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5177 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5178 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5179 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5180 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5181 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5182a 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5183a 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5184 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5185 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5186 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5187 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5188 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5189 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5190 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5191 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5192 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5193 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5194 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5195 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5196 33218925*2^169690-1 51090 g259 2002 Twin (p) 5197 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5198c R(49081) 49081 c70 2022 Repunit, unique, ECPP 5199 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5200 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5201 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5202 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5203 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5204 110427610*3^100003-1 47722 p415 2021 Twin (p) 5205 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5206 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5207 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 5208 3706785456*13^42069-1 46873 p412 2020 Twin (p) 5209 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5210 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5211 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5212 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5213 151023*2^151023-1 45468 g25 1998 Woodall 5214 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5215 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5216 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5217 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5218 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5219 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5220 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5221 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5222 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5223 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5224 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5225 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 5226 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 5227 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5228 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5229 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5230 p(1289844341) 40000 c84 2020 Partitions, ECPP 5231 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5232 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5233 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5234 2^116224-15905 34987 c87 2017 ECPP 5235 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5236 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5237 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5238 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5239 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 5240 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5241 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5242 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5243 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5244 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5245 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5246 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5247b (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5248 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5249 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5250 V(148091) 30950 c81 2015 Lucas number, ECPP 5251 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5252 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5253 49363*2^98727-1 29725 Y 1997 Woodall 5254 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5255 -τ(331^2128) 29492 c80 2015 ECPP 5256 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5257 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5258 V(140057) 29271 c76 2014 Lucas number,ECPP 5259 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5260 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5261 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5262 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5263 primV(205011) 28552 x39 2009 Lucas primitive part 5264 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5265 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5266 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5267 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5268 (10^27669+7)/8313493832818655929448065598763458531111 27630 c96 2021 ECPP 5269 90825*2^90825+1 27347 Y 1997 Cullen 5270 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5271 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5272 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5273 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5274 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5275 tau(157^2206) 26643 FE1 2011 ECPP 5276b 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5277b 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5278 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5279 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5280 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5281 1036053977*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10664254*60013#) 5282 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5283 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5284 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5285 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5286 10^25333-2*10^5182-3 25333 c95 2020 ECPP 5287 Phi(12345,7176)/31531760245313526865033921 25331 c54 2017 ECPP 5288 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5289 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5290 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5291 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5292 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5293 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5294 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5295 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5296 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5297 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5298f Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5299 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5300 6917!-1 23560 g1 1998 Factorial 5301 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5302 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5303 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5304 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5305 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5306 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5307 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5308 6380!+1 21507 g1 1998 Factorial 5309 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5310 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5311 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5312 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5313 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5314 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5315 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5316 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5317 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5318 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5319 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5320 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5321 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5322 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5323 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5324 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5325 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5326 V(94823) 19817 c73 2014 Lucas number, ECPP 5327 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5328 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5329 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5330 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5331 V(89849) 18778 c70 2014 Lucas number, ECPP 5332 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5333 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5334 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5335a primV(153279) 18283 x50 2022 Lucas primitive part, ECPP 5336 42209#+1 18241 p8 1999 Primorial 5337 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5338 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5339 7457*2^59659+1 17964 Y 1997 Cullen 5340a primV(148197) 17696 x50 2022 Lucas primitive part, ECPP 5341 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5342 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5343a primV(169830) 17335 x50 2022 Lucas primitive part, ECPP 5344 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5345 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5346 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5347 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5348 U(81839) 17103 p54 2001 Fibonacci number 5349 V(81671) 17069 c66 2013 Lucas number, ECPP 5350a primV(101510) 16970 x50 2022 Lucas primitive part, ECPP 5351 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5352 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5353 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5354 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5355 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5356 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5357 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5358 p(221444161) 16569 c77 2017 Partitions, ECPP 5359 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5360 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 5361 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5362 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5363 U(2554,-1,4751) 16185 CH3 2005 Generalized Lucas number 5364 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5365 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5366 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5367 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5368 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5369 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5370 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5371 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5372 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5373 (V(824,1,5277)-1)/(V(824,1,3)-1) 15379 x25 2013 Lehmer primitive part 5374 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5375 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5376 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5377 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5378 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5379b 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5380b 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5381b 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5382 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5383 (V(42995,1,3231)+1)/(V(42995,1,9)+1) 14929 x25 2012 Lehmer primitive part 5384 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5385 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5386 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5387 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5388 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5389 (V(8003,1,3771)+1)/(V(8003,1,9)+1) 14685 x25 2013 Lehmer primitive part 5390 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5391 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5392 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5393 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5394 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5395 (V(5111,1,3789)+1)/(V(5111,1,9)+1) 14019 x25 2013 Lehmer primitive part 5396 (V(5763,1,3753)+1)/(V(5763,1,27)+1) 14013 x25 2011 Lehmer primitive part 5397 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5398 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5399 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5400 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5401 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5402 (V(5132,1,3753)+1)/(V(5132,1,27)+1) 13825 x25 2011 Lehmer primitive part 5403 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5404 (V(4527,1,3771)+1)/(V(4527,1,9)+1) 13754 x25 2013 Lehmer primitive part 5405 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5406 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5407b 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5408b 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5409b 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5410 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5411 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5412 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5413 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5414 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5415 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5416 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5417 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5418 p(131328565) 12758 c77 2017 Partitions, ECPP 5419 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5420 p(130249452) 12705 c85 2017 Partitions, ECPP 5421 p(130243561) 12705 c85 2017 Partitions, ECPP 5422 p(130242827) 12705 c85 2017 Partitions, ECPP 5423 p(130232271) 12705 c85 2017 Partitions, ECPP 5424 p(130201087) 12703 c85 2017 Partitions, ECPP 5425 p(130168020) 12701 c85 2017 Partitions, ECPP 5426 p(130142600) 12700 c85 2017 Partitions, ECPP 5427 p(130123073) 12699 c85 2017 Partitions, ECPP 5428 p(130086648) 12697 c85 2017 Partitions, ECPP 5429 p(130085878) 12697 c85 2017 Partitions, ECPP 5430 p(130060601) 12696 c85 2016 Partitions, ECPP 5431 p(130000231) 12693 c59 2016 Partitions, ECPP 5432 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5433 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5434 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5435 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5436 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5437 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5438 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5439 p(122110618) 12302 c77 2015 Partitions, ECPP 5440 p(120052058) 12198 c59 2012 Partitions, ECPP 5441 p(120037981) 12197 c59 2014 Partitions, ECPP 5442 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5443 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5444 primV(57724) 12063 p54 2001 Lucas primitive part, cyclotomy 5445 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5446 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5447 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5448 primV(59018) 11789 c74 2015 Lucas primitive part, ECPP 5449 V(56003) 11704 p193 2006 Lucas number 5450 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5451 p(110030755) 11677 c59 2014 Partitions, ECPP 5452 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5453 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5454 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5455 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5456 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5457 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5458 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5459 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5460 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5461 primU(67825) 11336 x23 2007 Fibonacci primitive part 5462 3610!-1 11277 C 1993 Factorial 5463 p(100115477) 11138 c59 2016 Partitions, ECPP 5464 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5465 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5466 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5467 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5468 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5469 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5470 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5471 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5472 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5473 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5474 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5475 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5476 3507!-1 10912 C 1992 Factorial 5477 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5478 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5479 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5480 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5481 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5482 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5483 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5484 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5485 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5486 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5487 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5488 V(51169) 10694 p54 2001 Lucas number 5489 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5490 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5491 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5492 U(50833) 10624 CH4 2005 Fibonacci number 5493 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5494 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5495 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5496 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5497 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5498 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5499 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5500 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5501 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5502 24029#+1 10387 C 1993 Primorial 5503 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5504 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5505 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5506 195262026*24001#+1 10377 p155 2018 Arithmetic progression (5,d=10601738*24001#) 5507 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5508 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5509 23801#+1 10273 C 1993 Primorial 5510 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5511 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5512 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5513 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5514 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5515 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5516 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5517 32469*2^32469+1 9779 MM 1997 Cullen 5518 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5519 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5520 8073*2^32294+1 9726 MM 1997 Cullen 5521 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5522 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5523 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5524 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5525 V(44507) 9302 CH3 2005 Lucas number 5526 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5527 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5528 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5529 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5530 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 5531 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5532 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5533 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 5534 (2^28759-1)/226160777 8649 c60 2012 Mersenne cofactor, ECPP 5535 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5536 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5537 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5538 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5539 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5540 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5541 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5542 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5543 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5544 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5545 primB(119945) 8165 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5546 primB(99835) 8126 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5547 primB(96545) 8070 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5548 (2^26903-1)/1113285395642134415541632833178044793 8063 c55 2011 Mersenne cofactor, ECPP 5549 18523#+1 8002 D 1989 Primorial 5550 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5551 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5552 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5553 U(37511) 7839 x13 2005 Fibonacci number 5554 primB(145545) 7824 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5555 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5556 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5557 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5558 (2^25933-1)/1343522383641330719274248287/55891374030173104216060503792\ 56829183569 7740 c86 2017 Mersenne cofactor 5559 V(36779) 7687 CH3 2005 Lucas number 5560 (2^25243-1)/252431/403889/43014073/449245236879223161338352589831 7551 c84 2016 Mersenne cofactor, ECPP 5561 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5562 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5563 V(35449) 7409 p12 2001 Lucas number 5564 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5565 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5566 V(34759)/27112021 7257 c33 2005 Lucas cofactor, ECPP 5567 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5568 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5569 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 5570 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP 5571 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5572 U(33997)/8119544695419968014626314520991088099382355441843013 7053 c8 2013 Fibonacci cofactor, ECPP 5573 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5574 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5575 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5576 V(33353)/279902102741094707003083072429 6941 c8 2013 Lucas cofactor, ECPP 5577 23005*2^23005-1 6930 Y 1997 Woodall 5578 22971*2^22971-1 6920 Y 1997 Woodall 5579 Phi(2405,-10000) 6912 c47 2009 Unique, ECPP 5580 15877#-1 6845 CD 1992 Primorial 5581 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5582 primU(40295) 6737 p12 2001 Fibonacci primitive part 5583 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5584 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5585 primU(43653) 6082 CH7 2010 Fibonacci primitive part 5586 primU(70455) 6019 c8 2013 Fibonacci primitive part, ECPP 5587 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5588 primU(43359) 5939 c8 2013 Fibonacci primitive part, ECPP 5589 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5590 13649#+1 5862 D 1987 Primorial 5591 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5592 18885*2^18885-1 5690 K 1987 Woodall 5593 1963!-1 5614 CD 1992 Factorial 5594 13033#-1 5610 CD 1992 Primorial 5595 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5596 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5597 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5598 U(25561) 5342 p54 2001 Fibonacci number 5599 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5600 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5601 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5602 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5603 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5604 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5605 11549#+1 4951 D 1986 Primorial 5606 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5607 7911*2^15823-1 4768 K 1987 Woodall 5608 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5609 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5610 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5611 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5612 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5613 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5614 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5615 1477!+1 4042 D 1984 Factorial 5616 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5617 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5618 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 5619 12379*2^12379-1 3731 K 1984 Woodall 5620 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5621 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5622 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5623 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5624 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5625 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5626 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5627 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5628 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5629 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5630 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5631 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 5632 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 5633 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 5634 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 5635 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5636 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5637 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5638c 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5639c 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5640c 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5641c 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5642c 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5643 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5644 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5645 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5646 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5647 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5648 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5649 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5650 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5651 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5652 V(14449) 3020 DK 1995 Lucas number 5653 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5654 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5655 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5656 U(14431) 3016 p54 2001 Fibonacci number 5657 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5658 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5659 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5660 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5661 V(13963) 2919 c11 2002 Lucas number, ECPP 5662 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5663 9531*2^9531-1 2874 K 1984 Woodall 5664 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5665 6569#-1 2811 D 1992 Primorial 5666 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5667 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5668 V(12251) 2561 p54 2001 Lucas number 5669 974!-1 2490 CD 1992 Factorial 5670 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5671 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 5672 7755*2^7755-1 2339 K 1984 Woodall 5673 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5674 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5675 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5676 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5677 115624080541*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10462990078*5303#) 5678 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5679 V(10691) 2235 DK 1995 Lucas number 5680 872!+1 2188 D 1983 Factorial 5681 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 5682 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 5683 -E(886)/68689 2051 c4 2002 Euler irregular, ECPP 5684 4787#+1 2038 D 1984 Primorial 5685 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5686 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5687 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5688 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5689 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5690 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5691 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5692 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5693 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5694 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5695 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5696 6611*2^6611+1 1994 K 1984 Cullen 5697 4583#-1 1953 D 1992 Primorial 5698 U(9311) 1946 DK 1995 Fibonacci number 5699 4547#+1 1939 D 1984 Primorial 5700 4297#-1 1844 D 1992 Primorial 5701e 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5702 V(8467) 1770 c2 2000 Lucas number, ECPP 5703 4093#-1 1750 CD 1992 Primorial 5704 5795*2^5795+1 1749 K 1984 Cullen 5705 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5706 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5707 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5708 V(7741) 1618 DK 1995 Lucas number 5709 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5710 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5711 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5712 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5713 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5714 83*2^5318-1 1603 K 1984 Woodall 5715 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5716 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5717 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5718 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5719 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5720 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5721 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5722 4713*2^4713+1 1423 K 1984 Cullen 5723 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5724 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5725 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5726 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5727 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5728 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5729 V(5851) 1223 DK 1995 Lucas number 5730 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5731 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 5732 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5733 U(5387) 1126 WM 1990 Fibonacci number 5734 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5735 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 5736 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5737 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5738 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5739 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5740 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5741 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5742 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5743 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5744 R(1031) 1031 WD 1985 Repunit 5745 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5746 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5747 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5748 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5749 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5750 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5751 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5752 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5753 V(4793) 1002 DK 1995 Lucas number 5754 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5755 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5756 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5757 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5758 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5759 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c80 Lygeros, Rozier, Anonymous, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c85 Lasher, Broadhurst, Primo c86 Polzer, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c96 Reich2, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH7 Broadhurst, OpenPFGW, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe FE1 Morain, FastECPP FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g387 Muzik, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L47 Bishop_D, ProthSieve, RieselSieve, LLR L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L134 Childers, ProthSieve, RieselSieve, LLR L137 Jaworski, Rieselprime, LLR L145 Minovic, Ksieve, NewPGen, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L330 Tjung, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L621 Sutton1, Srsieve, Rieselprime, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L840 Vogel, Srsieve, Rieselprime, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1312 Nye, PSieve, Srsieve, PrimeGrid, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1415 Englund, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1484 Morris, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1487 Krompolc, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1505 Watanabe, PSieve, Srsieve, PrimeGrid, LLR L1512 Obara, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1753 Iwasaki, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1819 Gunn, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1933 Ingram, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1958 DUrso, Srsieve, NewPGen, OpenPFGW, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2058 Sas, PSieve, Srsieve, PrimeGrid, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2101 Tutusaus, PSieve, Srsieve, Rieselprime, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2131 Johnson4, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2399 Bouch, PSieve, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2419 Gathright, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2533 Yoshikawa, PSieve, Srsieve, PrimeGrid, LLR L2539 Gielkens, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2559 Watanabe1, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2623 Pabis, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2636 Fick, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2895 Leonard1, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2938 VanLeeuwen, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2963 Newberry, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3014 Janda, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3127 Gilles, PSieve, Srsieve, PrimeGrid, LLR L3131 Kopp, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3157 Becker2, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3188 Oenen, PSieve, Srsieve, PrimeGrid, LLR L3190 Vogel, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3192 Gundermann, PSieve, Srsieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3271 Hedlund, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3277 Wijnen, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3279 Hollander, PSieve, Srsieve, PrimeGrid, LLR L3289 Evans1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3344 Fausten, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3423 Collins, PSieve, Srsieve, PrimeGrid, LLR L3427 Pasanen, PSieve, Srsieve, PrimeGrid, LLR L3428 Cristian, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3436 Linder, PSieve, Srsieve, PrimeGrid, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3441 Ilves, PSieve, Srsieve, PrimeGrid, LLR L3444 Crane, PSieve, Srsieve, PrimeGrid, LLR L3445 Bishopp, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3452 Resto, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3456 Murai, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3473 Mizelle, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3630 Brebois, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3641 Adams4, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3691 Williams5, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3844 Sorbera, PSieve, Srsieve, NPLB, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4299 Ertemalp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4400 Norman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4495 Ostaszewski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4500 Pagola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4705 Jessen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4734 Howe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4767 Jones4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4788 Griffin1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4820 Clinton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4828 Gahan, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4853 Jackson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4862 McNary, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4865 Schmeisser, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4887 Hernas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4894 Bredl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4940 Baur, Srsieve, CRUS, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4950 Baur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4982 Milligan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4986 Bertelloni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4989 Wei, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5006 Eisler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5010 Karpin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5017 Ueda, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5034 Miller6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5040 Heyward, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5049 Stephens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5052 Staunton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5054 Drager, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5059 Kopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5092 Javens1, Srsieve, CRUS, LLR L5093 Kasuya1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5096 Mauno, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5098 Trice1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5103 Foulher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5121 Spinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5124 Nitobe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5128 Gulla, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5132 Clemence, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5152 Carpenter2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5163 Kawamura1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5165 AnkerRasch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5193 Tapper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5204 Lachance, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5221 NeSmith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5222 Wolff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5225 Barr1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5251 Bowe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5252 Sheridan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5255 Hochwald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5259 Mccausland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5268 Polansky, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5271 Hicks3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5274 Streifel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5280 Fries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5281 Keimer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5289 Nemeth1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5304 Smith11, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5333 Jurgen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5339 Middleton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5341 Toenjes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5349 Piliksers, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5351 Daniel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5357 Ivanek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5369 Schnur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5371 Tisdell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5374 Yanev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5383 Johnson8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5386 Greubel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5396 Andrade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5397 Chaplin, Srsieve, CRUS, LLR L5398 Mittelstadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5419 Straub, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5420 Gaillard2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5428 Akimori, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5430 TakashitaBynum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5436 Dewar1, Srsieve, CRUS, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5455 Shtov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5474 Burns1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5483 DeRoest, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5495 Gauch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5498 Shimizu1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5515 Pollak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5520 Bennett1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5521 Terwisscha, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5522 Lynch1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5525 Ou1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5528 Hebr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5533 Schadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5538 Derrera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5539 Choliy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5542 Rauso, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p169 Eaton, NewPGen, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p195 Ogawa, NewPGen, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p280 Vogel, Srsieve, SierpinskiRiesel, OpenPFGW p281 Domanov1, Srsieve, NPLB, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p323 Myllyvirta, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p328 Gruenewald, Srsieve, CRUS, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p341 Schmidt2, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p352 Hubbard, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p353 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p420 Alex, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p424 Liiv, Cksieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 CM, Batalov, Unknown Y Young