THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Fri Jan 15 20:50:42 CST 2021) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: http://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: http://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48? 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13 2^20996011-1 6320430 G6 2003 Mersenne 40 14 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 15 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 16 168451*2^19375200+1 5832522 L4676 2017 17d 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 18 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 19 7*6^6772401+1 5269954 L4965 2019 20 8508301*2^17016603-1 5122515 L4784 2018 Woodall 21d 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 22 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 23 6*5^6546983+1 4576146 L4965 2020 24 6962*31^2863120-1 4269952 L4944 2020 25 99739*2^14019102+1 4220176 L5008 2019 26 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 27 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 28 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 29 2^13466917-1 4053946 G5 2001 Mersenne 39 30 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 31 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 32 19249*2^13018586+1 3918990 SB10 2007 33 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 34 3*2^11895718-1 3580969 L4159 2015 35 3*2^11731850-1 3531640 L4103 2015 36b 69*2^11718455-1 3527609 L4965 2020 37b 69*2^11604348-1 3493259 L4965 2020 38 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 39 3*2^11484018-1 3457035 L3993 2014 40 193997*2^11452891+1 3447670 L4398 2018 41 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 42 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 43 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 44c 146561*2^11280802-1 3395865 L5181 2020 45 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 46 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 47 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 48 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 49 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 50 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 51 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 52 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 53 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 54 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 55 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 56 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 57 475856^524288+1 2976633 L3230 2012 Generalized Fermat 58f 9*2^9778263+1 2943552 L4965 2020 59 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 60 356926^524288+1 2911151 L3209 2012 Generalized Fermat 61 341112^524288+1 2900832 L3184 2012 Generalized Fermat 62c 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 63 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 64 27653*2^9167433+1 2759677 SB8 2005 65 90527*2^9162167+1 2758093 L1460 2010 66 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 67 13*2^8989858+1 2706219 L4965 2020 68 273809*2^8932416-1 2688931 L1056 2017 69 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 70 2038*366^1028507-1 2636562 L2054 2016 71 75898^524288+1 2558647 p334 2011 Generalized Fermat 72 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 73 11*2^7971110-1 2399545 L2484 2019 74a 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 75 7*6^3072198+1 2390636 L4965 2019 76a 3765*2^7904593-1 2379524 L4965 2021 77a 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 78 28433*2^7830457+1 2357207 SB7 2004 79a 2545*2^7732265-1 2327648 L4965 2021 80a 5539*2^7730709-1 2327180 L4965 2021 81 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 82b 45*2^7661004+1 2306194 L5200 2020 83b 15*2^7619838+1 2293801 L5192 2020 84a 3597*2^7580693-1 2282020 L4965 2021 85c 45*2^7513661+1 2261839 L5179 2020 86 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 87d 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 88f 109838*5^3168862-1 2214945 L5129 2020 89 101*2^7345194-1 2211126 L1884 2019 90d 15*2^7300254+1 2197597 L5167 2020 91 737*2^7269322-1 2188287 L4665 2017 92 118568*5^3112069+1 2175248 L690 2020 93 502573*2^7181987-1 2162000 L3964 2014 94 402539*2^7173024-1 2159301 L3961 2014 95 3343*2^7166019-1 2157191 L1884 2016 96 161041*2^7107964+1 2139716 L4034 2015 97 27*2^7046834+1 2121310 L3483 2018 98a 327*2^7044001-1 2120459 L4965 2021 99 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 100 33661*2^7031232+1 2116617 SB11 2007 101 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 102 207494*5^3017502-1 2109149 L5083 2020 103 2^6972593-1 2098960 G4 1999 Mersenne 38 104a 6219*2^6958945-1 2094855 L4965 2021 105 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 106 238694*5^2979422-1 2082532 L5081 2020 107 4*72^1119849-1 2079933 L4444 2016 108 146264*5^2953282-1 2064261 L1056 2020 109 69*2^6838971-1 2058738 L5037 2020 110 35816*5^2945294-1 2058677 L5076 2020 111 127*2^6836153-1 2057890 L1862 2018 112d 19*2^6833086+1 2056966 L5166 2020 113 40597*2^6808509-1 2049571 L3749 2013 114 283*2^6804731-1 2048431 L2484 2020 115b 1861709*2^6789999+1 2044000 L5191 2020 116a 5781*2^6789459-1 2043835 L4965 2021 117a 8435*2^6786180-1 2042848 L4965 2021 118 51*2^6753404+1 2032979 L4965 2020 119b 9995*2^6711008-1 2020219 L4965 2020 120d 39*2^6684941+1 2012370 L5162 2020 121 6679881*2^6679881+1 2010852 L917 2009 Cullen 122 37*2^6660841-1 2005115 L3933 2014 123d 39*2^6648997+1 2001550 L5161 2020 124 304207*2^6643565-1 1999918 L3547 2013 125 69*2^6639971-1 1998833 L5037 2020 126 322498*5^2800819-1 1957694 L4954 2019 127 88444*5^2799269-1 1956611 L3523 2019 128 13*2^6481780+1 1951212 L4965 2020 129 138514*5^2771922+1 1937496 L4937 2019 130 398023*2^6418059-1 1932034 L3659 2013 131 1582137*2^6328550+1 1905090 L801 2009 Cullen 132a 3303*2^6264946-1 1885941 L4965 2021 133 7*6^2396573+1 1864898 L4965 2019 134a 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 135b 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 136b 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 137b 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 138f 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 139e 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 140f 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 141 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 142 194368*5^2638045-1 1843920 L690 2018 143 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 144 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 145 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 146 66916*5^2628609-1 1837324 L690 2018 147 3*2^6090515-1 1833429 L1353 2010 148 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 149 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 150 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 151 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 152 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 153 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 154a 9999*2^6037057-1 1817340 L4965 2021 155 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 156 1583*2^5989282-1 1802957 L4036 2015 157 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 158 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 159 327926*5^2542838-1 1777374 L4807 2018 160 81556*5^2539960+1 1775361 L4809 2018 161 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 162 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 163f 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 164 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 165 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 166 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 167 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 168 7*2^5775996+1 1738749 L3325 2012 169 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 170 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 171 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 172 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 173 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 174 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 175f 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 176 1243*2^5686715-1 1711875 L1828 2016 177 41*2^5651731+1 1701343 L1204 2020 178 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 179 9*2^5642513+1 1698567 L3432 2013 180e 10*3^3550446+1 1693995 L4965 2020 181 2622*11^1621920-1 1689060 L2054 2015 182 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 183 301562*5^2408646-1 1683577 L4675 2017 184 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 185 171362*5^2400996-1 1678230 L4669 2017 186 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 187 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 188 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 189 252191*2^5497878-1 1655032 L3183 2012 190 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 191 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 192 258317*2^5450519+1 1640776 g414 2008 193 7*6^2104746+1 1637812 L4965 2019 194 5*2^5429494-1 1634442 L3345 2017 195 43*2^5408183-1 1628027 L1884 2018 196 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 197 1349*2^5385004-1 1621051 L1828 2017 198 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 199 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 200 45*2^5308037+1 1597881 L4761 2019 201 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 202 180062*5^2249192-1 1572123 L4435 2016 203 124125*6^2018254+1 1570512 L4001 2019 204 27*2^5213635+1 1569462 L3760 2015 205f 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 206 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 207 25*2^5152151-1 1550954 L1884 2020 208 53546*5^2216664-1 1549387 L4398 2016 209 773620^262144+1 1543643 L3118 2012 Generalized Fermat 210 39*2^5119458+1 1541113 L1204 2019 211 223*2^5105835-1 1537012 L2484 2019 212 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 213 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 214 51*2^5085142-1 1530782 L760 2014 215 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 216 676754^262144+1 1528413 L2975 2012 Generalized Fermat 217 296024*5^2185270-1 1527444 L671 2016 218 5359*2^5054502+1 1521561 SB6 2003 219 13*2^4998362+1 1504659 L3917 2014 220 525094^262144+1 1499526 p338 2012 Generalized Fermat 221 92158*5^2145024+1 1499313 L4348 2016 222 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 223 77072*5^2139921+1 1495746 L4340 2016 224 2*3^3123036+1 1490068 L5043 2020 225 306398*5^2112410-1 1476517 L4274 2016 226 265711*2^4858008+1 1462412 g414 2008 227 154222*5^2091432+1 1461854 L3523 2015 228 1271*2^4850526-1 1460157 L1828 2012 229 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 230 361658^262144+1 1457075 p332 2011 Generalized Fermat 231 100186*5^2079747-1 1453686 L4197 2015 232 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 233 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 234b 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 235 653*10^1435026-1 1435029 p355 2014 236 188*468^535963+1 1431156 L4832 2019 237e 100*406^543228+1 1417027 L4944 2020 Generalized Fermat 238 1229*2^4703492-1 1415896 L1828 2018 239 144052*5^2018290+1 1410730 L4146 2015 240 9*2^4683555-1 1409892 L1828 2012 241 31*2^4673544+1 1406879 L4990 2019 242 34*993^469245+1 1406305 L4806 2018 243 79*2^4658115-1 1402235 L1884 2018 244 39*2^4657951+1 1402185 L1823 2019 245 11*2^4643238-1 1397755 L2484 2014 246 68*995^465908-1 1396712 L4001 2017 247 7*6^1793775+1 1395830 L4965 2019 248 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 249 27*2^4583717-1 1379838 L2992 2014 250 121*2^4553899-1 1370863 L3023 2012 251 27*2^4542344-1 1367384 L1204 2014 252 29*2^4532463+1 1364409 L4988 2019 253 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 254 145310^262144+1 1353265 p314 2011 Generalized Fermat 255 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 256 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 257 36772*6^1723287-1 1340983 L1301 2014 258 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 259 151*2^4424321-1 1331856 L1884 2016 260c 195*2^4373994-1 1316706 L5175 2020 261 49*2^4365175-1 1314051 L1959 2017 262 49*2^4360869-1 1312755 L1959 2017 263 13*2^4333087-1 1304391 L1862 2018 264 353159*2^4331116-1 1303802 L2408 2011 265 23*2^4300741+1 1294654 L4147 2019 266 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 267 141941*2^4299438-1 1294265 L689 2011 268 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 269 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 270 3*2^4235414-1 1274988 L606 2008 271 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 272b 45*436^481613+1 1271213 L4944 2020 273 109208*5^1816285+1 1269534 L3523 2014 274 1091*2^4215518-1 1269001 L1828 2018 275 191*2^4203426-1 1265360 L2484 2012 276 1259*2^4196028-1 1263134 L1828 2016 277 325918*5^1803339-1 1260486 L3567 2014 278 133778*5^1785689+1 1248149 L3903 2014 279 17*2^4107544-1 1236496 L4113 2015 280 24032*5^1768249+1 1235958 L3925 2014 281 172*159^561319-1 1235689 L4001 2017 282 97*2^4066717-1 1224206 L2484 2019 283 1031*2^4054974-1 1220672 L1828 2017 284 37*2^4046360+1 1218078 L2086 2019 285 39653*430^460397-1 1212446 L4187 2016 286 40734^262144+1 1208473 p309 2011 Generalized Fermat 287 9*2^4005979-1 1205921 L1828 2012 288 12*68^656921+1 1203815 L4001 2016 289 67*688^423893+1 1202836 L4001 2017 290 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 291 138172*5^1714207-1 1198185 L3904 2014 292 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 293 29*2^3964697+1 1193495 L1204 2019 294 39*2^3961129+1 1192421 L1486 2019 295 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 296 22478*5^1675150-1 1170884 L3903 2014 297 1199*2^3889576-1 1170883 L1828 2018 298 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 299 94*872^397354+1 1168428 L4944 2019 300 27*2^3855094-1 1160501 L3033 2012 301 164*978^387920-1 1160015 L4700 2018 302 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 303 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 304 30*514^424652-1 1151218 L4001 2017 305 24518^262144+1 1150678 g413 2008 Generalized Fermat 306 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 307 241*2^3815727-1 1148651 L2484 2019 308 109*980^383669-1 1147643 L4001 2018 309 123547*2^3804809-1 1145367 L2371 2011 310 2564*75^610753+1 1145203 L3610 2014 311 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 312 166*443^432000+1 1143249 L4944 2020 313 326834*5^1634978-1 1142807 L3523 2014 314d 43*182^502611-1 1135939 L4064 2020 315 415267*2^3771929-1 1135470 L2373 2011 316 11*2^3771821+1 1135433 p286 2013 317 265*2^3765189-1 1133438 L2484 2018 318 938237*2^3752950-1 1129757 L521 2007 Woodall 319 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 320 207394*5^1612573-1 1127146 L3869 2014 321 684*10^1127118+1 1127121 L4036 2017 322 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 323 104944*5^1610735-1 1125861 L3849 2014 324 23451*2^3739388+1 1125673 L591 2015 325 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 326 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 327 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 328 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 329 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 330 119*2^3698412-1 1113336 L2484 2018 331 330286*5^1584399-1 1107453 L3523 2014 332 34*951^371834-1 1107391 L4944 2019 333 45*2^3677787+1 1107126 L1204 2019 334 13*2^3675223-1 1106354 L1862 2016 335 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 336 15*2^3668194-1 1104238 L3665 2013 337 13*2^3664703-1 1103187 L1862 2016 338 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 339 118*892^373012+1 1100524 L5071 2020 340 33300*430^417849-1 1100397 L4393 2016 341 33*2^3649810+1 1098704 L4958 2019 342 989*2^3640585+1 1095929 L5115 2020 343 567*2^3639287+1 1095538 L4959 2019 344 639*2^3635707+1 1094460 L1823 2019 345 753*2^3631472+1 1093185 L1823 2019 346 65531*2^3629342-1 1092546 L2269 2011 347 1121*2^3629201+1 1092502 L4761 2019 348 215*2^3628962-1 1092429 L2484 2018 349 113*2^3628034-1 1092150 L2484 2014 350 1175*2^3627541+1 1092002 L4840 2019 351 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 352 951*2^3623185+1 1090691 L1823 2019 353 29*920^367810-1 1090113 L4064 2015 354 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 355 485*2^3618563+1 1089299 L3924 2019 356 95*2^3614033+1 1087935 L1474 2019 357 1005*2^3612300+1 1087414 L1823 2019 358 861*2^3611815+1 1087268 L1745 2019 359 1087*2^3611476+1 1087166 L4834 2019 360 485767*2^3609357-1 1086531 L622 2008 361 675*2^3606447+1 1085652 L3278 2019 362 669*2^3606266+1 1085598 L1675 2019 363 65077*2^3605944+1 1085503 L4685 2020 364 851*2^3604395+1 1085034 L2125 2019 365 1143*2^3602429+1 1084443 L4754 2019 366 1183*2^3601898+1 1084283 L1823 2019 367 189*2^3596375+1 1082620 L3760 2016 368 1089*2^3593267+1 1081685 L3035 2019 369 1101*2^3589103+1 1080431 L1823 2019 370 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 371 275*2^3585539+1 1079358 L3803 2016 372 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 373 651*2^3579843+1 1077643 L3035 2018 374 583*2^3578402+1 1077210 L3035 2018 375 309*2^3577339+1 1076889 L4406 2016 376 1185*2^3574583+1 1076060 L4851 2018 377 251*2^3574535+1 1076045 L3035 2016 378 1019*2^3571635+1 1075173 L1823 2018 379 119*2^3571416-1 1075106 L2484 2018 380 35*2^3570777+1 1074913 L2891 2014 381 33*2^3570132+1 1074719 L2552 2014 382 5*2^3569154-1 1074424 L503 2009 383 81*492^399095-1 1074352 L4001 2015 384 22934*5^1536762-1 1074155 L3789 2014 385 265*2^3564373-1 1072986 L2484 2018 386 771*2^3564109+1 1072907 L2125 2018 387 381*2^3563676+1 1072776 L4190 2016 388 555*2^3563328+1 1072672 L4850 2018 389 1183*2^3560584+1 1071846 L1823 2018 390 415*2^3559614+1 1071554 L3035 2016 391 1103*2^3558176-1 1071121 L1828 2018 392 1379*2^3557072-1 1070789 L1828 2018 393 681*2^3553141+1 1069605 L3035 2018 394 599*2^3551793+1 1069200 L3824 2018 395 621*2^3551472+1 1069103 L4687 2018 396 773*2^3550373+1 1068772 L1808 2018 397 1199*2^3548380-1 1068172 L1828 2018 398 191*2^3548117+1 1068092 L4203 2015 399 867*2^3547711+1 1067971 L4155 2018 400 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 401 351*2^3545752+1 1067381 L4082 2016 402 93*2^3544744+1 1067077 L1728 2014 403 1159*2^3543702+1 1066764 L1823 2018 404 178658*5^1525224-1 1066092 L3789 2014 405 1085*2^3539671+1 1065551 L3035 2018 406 465*2^3536871+1 1064707 L4459 2016 407 1019*2^3536312-1 1064539 L1828 2012 408 1179*2^3534450+1 1063979 L3035 2018 409 447*2^3533656+1 1063740 L4457 2016 410 1059*2^3533550+1 1063708 L1823 2018 411 345*2^3532957+1 1063529 L4314 2016 412 553*2^3532758+1 1063469 L1823 2018 413 141*2^3529287+1 1062424 L4185 2015 414 13*2^3527315-1 1061829 L1862 2016 415 1393*2^3525571-1 1061306 L1828 2017 416 1071*2^3523944+1 1060816 L1675 2018 417 329*2^3518451+1 1059162 L1823 2016 418 135*2^3518338+1 1059128 L4045 2015 419 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 420 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 421 599*2^3515959+1 1058412 L1823 2018 422 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 423 1135*2^3510890+1 1056887 L1823 2018 424 428639*2^3506452-1 1055553 L2046 2011 425 555*2^3502765+1 1054441 L1823 2018 426 643*2^3501974+1 1054203 L1823 2018 427 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 428 1159*2^3501490+1 1054057 L2125 2018 429 1189*2^3499042+1 1053320 L4724 2018 430 609*2^3497474+1 1052848 L1823 2018 431 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 432 87*2^3496188+1 1052460 L1576 2014 433 783*2^3494129+1 1051841 L3824 2018 434 51*2^3490971+1 1050889 L1823 2014 435 753*2^3488818+1 1050242 L1823 2018 436 699*2^3487253+1 1049771 L1204 2018 437 249*2^3486411+1 1049517 L4045 2015 438 195*2^3486379+1 1049507 L4108 2015 439 59912*5^1500861+1 1049062 L3772 2014 440 495*2^3484656+1 1048989 L3035 2016 441 323*2^3482789+1 1048427 L1204 2016 442 1149*2^3481694+1 1048098 L1823 2018 443 701*2^3479779+1 1047521 L2125 2018 444 813*2^3479728+1 1047506 L4724 2018 445 197*2^3477399+1 1046804 L2125 2015 446 491*2^3473837+1 1045732 L4343 2016 447 1061*2^3471354-1 1044985 L1828 2017 448 641*2^3464061+1 1042790 L1444 2018 449 453*2^3461688+1 1042075 L3035 2016 450 571*2^3460216+1 1041632 L3035 2018 451 1155*2^3455254+1 1040139 L4711 2017 452 37292*5^1487989+1 1040065 L3553 2013 453 1273*2^3448551-1 1038121 L1828 2012 454 1065*2^3447906+1 1037927 L4664 2017 455 1155*2^3446253+1 1037429 L3035 2017 456a 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 457a 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 458a 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 459b 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 460b 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 461b 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 462 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 463 943*2^3442990+1 1036447 L4687 2017 464c 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 465c 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 466c 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 467c 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 468c 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 469 943*2^3440196+1 1035606 L1448 2017 470d 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 471d 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 472d 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 473d 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 474 543*2^3438810+1 1035188 L3035 2017 475 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 476d 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 477d 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 478d 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 479d 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 480 74*941^348034-1 1034913 L4944 2020 481d 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 482 113*2^3437145+1 1034686 L4045 2015 483e 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 484e 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 485e 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 486e 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 487 1147*2^3435970+1 1034334 L3035 2017 488e 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 489f 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 490 911*2^3432643+1 1033332 L1355 2017 491 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 492 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 493 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 494 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 495 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 496 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 497 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 498 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 499 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 500 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 501 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 502 1127*2^3427219+1 1031699 L3035 2017 503 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 504 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 505 159*2^3425766+1 1031261 L4045 2015 506 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 507 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 508 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 509 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 510 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 511 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 512 1119*2^3422189+1 1030185 L1355 2017 513 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 514 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 515 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 516 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 517 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 518 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 519 975*2^3419230+1 1029294 L3545 2017 520 999*2^3418885+1 1029190 L3035 2017 521 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 522 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 523 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 524 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 525 907*2^3417890+1 1028891 L3035 2017 526 191249*2^3417696-1 1028835 L1949 2010 527 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 528 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 529 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 530 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 531 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 532 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 533 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 534 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 535 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 536 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 537 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 538 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 539 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 540 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 541 479*2^3411975+1 1027110 L2873 2016 542 245*2^3411973+1 1027109 L1935 2015 543 177*2^3411847+1 1027071 L4031 2015 544 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 545 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 546 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 547 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 548 113*2^3409934-1 1026495 L2484 2014 549 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 550 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 551 59*2^3408416-1 1026038 L426 2010 552 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 553 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 554 953*2^3405729+1 1025230 L3035 2017 555 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 556 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 557 373*2^3404702+1 1024921 L3924 2016 558 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 559 833*2^3403765+1 1024639 L3035 2017 560 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 561 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 562 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 563 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 564 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 565 24*414^391179+1 1023717 L4273 2016 566 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 567 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 568 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 569 1167*2^3399748+1 1023430 L3545 2017 570 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 571 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 572 611*2^3398273+1 1022985 L3035 2017 573 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 574 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 575 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 576 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 577 255*2^3395661+1 1022199 L3898 2014 578 1049*2^3395647+1 1022195 L3035 2017 579 342924651*2^3394939-1 1021988 L4166 2017 580 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 581 555*2^3393389+1 1021515 L2549 2017 582 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 583 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 584 609*2^3392301+1 1021188 L3035 2017 585 303*2^3391977+1 1021090 L2602 2016 586 805*2^3391818+1 1021042 L4609 2017 587 67*2^3391385-1 1020911 L1959 2014 588 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 589 663*2^3390469+1 1020636 L4316 2017 590 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 591 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 592 3329*2^3388472-1 1020036 L4841 2020 593 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 594 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 595 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 596 453*2^3387048+1 1019606 L2602 2016 597 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 598 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 599 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 600 173198*5^1457792-1 1018959 L3720 2013 601 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 602 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 603 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 604 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 605 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 606 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 607 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 608 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 609 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 610 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 611d 1425*2^3379921+1 1017461 L1134 2020 612 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 613 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 614 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 615 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 616 621*2^3378148+1 1016927 L3035 2017 617 1093*2^3378000+1 1016883 L4583 2017 618 861*2^3377601+1 1016763 L4582 2017 619 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 620 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 621 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 622 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 623 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 624 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 625 208003!-1 1015843 p394 2016 Factorial 626 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 627 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 628 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 629 179*2^3371145+1 1014819 L3763 2014 630 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 631 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 632 839*2^3369383+1 1014289 L2891 2017 633 677*2^3369115+1 1014208 L2103 2017 634 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 635 715*2^3368210+1 1013936 L4527 2017 636 617*2^3368119+1 1013908 L4552 2017 637 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 638 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 639 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 640 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 641 777*2^3367372+1 1013683 L4408 2017 642 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 643 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 644 61*2^3366033-1 1013279 L4405 2017 645 369*2^3365614+1 1013154 L4364 2016 646 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 647 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 648 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 649 533*2^3362857+1 1012324 L3171 2017 650 619*2^3362814+1 1012311 L4527 2017 651 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 652 104*873^344135-1 1012108 L4700 2018 653 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 654 3^2120580-3^623816-1 1011774 CH9 2019 655 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 656 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 657 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 658 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 659 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 660 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 661 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 662 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 663 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 664 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 665 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 666 1183*2^3353058+1 1009375 L3824 2017 667 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 668 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 669 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 670 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 671 543*2^3351686+1 1008961 L4198 2017 672 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 673 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 674 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 675 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 676 393*2^3349525+1 1008311 L3101 2016 677 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 678 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 679 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 680 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 681 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 682 5*326^400785+1 1007261 L4786 2019 683 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 684 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 685a 6823*2^3344692+1 1006857 L5223 2021 686a 4839*2^3344453+1 1006785 L5188 2021 687a 7527*2^3344332+1 1006749 L5220 2021 688a 7555*2^3344240+1 1006721 L5188 2021 689a 6265*2^3344080+1 1006673 L5197 2021 690a 1299*2^3343943+1 1006631 L5217 2021 691a 2815*2^3343754+1 1006574 L5216 2021 692a 5349*2^3343734+1 1006568 L5174 2021 693b 2863*2^3342920+1 1006323 L5179 2020 694b 7387*2^3342848+1 1006302 L5208 2020 695b 9731*2^3342447+1 1006181 L5203 2020 696b 7725*2^3341708+1 1005959 L5195 2020 697b 7703*2^3341625+1 1005934 L5178 2020 698b 7047*2^3341482+1 1005891 L5194 2020 699b 4839*2^3341309+1 1005838 L5192 2020 700 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 701 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 702c 8989*2^3340866+1 1005705 L5189 2020 703c 6631*2^3340808+1 1005688 L5188 2020 704c 1341*2^3340681+1 1005649 L5188 2020 705 733*2^3340464+1 1005583 L3035 2016 706 3679815*2^3340001+1 1005448 L4922 2019 707 57*2^3339932-1 1005422 L3519 2015 708 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 709 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 710 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 711c 3651*2^3339341+1 1005246 L5177 2020 712c 3853*2^3339296+1 1005232 L5178 2020 713c 8015*2^3339267+1 1005224 L5176 2020 714c 3027*2^3339182+1 1005198 L5174 2020 715c 9517*2^3339002+1 1005144 L5172 2020 716d 4003*2^3338588+1 1005019 L3035 2020 717d 6841*2^3338336+1 1004944 L1474 2020 718e 2189*2^3338209+1 1004905 L5031 2020 719 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 720 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 721 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 722e 2957*2^3337667+1 1004742 L5144 2020 723f 1515*2^3337389+1 1004658 L1474 2020 724f 7933*2^3337270+1 1004623 L4666 2020 725f 1251*2^3337116+1 1004576 L4893 2020 726 651*2^3337101+1 1004571 L3260 2016 727 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 728f 8397*2^3336654+1 1004437 L5125 2020 729 8145*2^3336474+1 1004383 L5110 2020 730 1087*2^3336385-1 1004355 L1828 2012 731 5325*2^3336120+1 1004276 L2125 2020 732 849*2^3335669+1 1004140 L3035 2016 733 8913*2^3335216+1 1004005 L5079 2020 734 7725*2^3335213+1 1004004 L3035 2020 735 611*2^3334875+1 1003901 L3813 2016 736 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 737 403*2^3334410+1 1003761 L4293 2016 738 5491*2^3334392+1 1003756 L4815 2020 739 6035*2^3334341+1 1003741 L2125 2020 740 1725*2^3334341+1 1003740 L2125 2020 741 4001*2^3334031+1 1003647 L1203 2020 742 2315*2^3333969+1 1003629 L2125 2020 743 6219*2^3333810+1 1003581 L4582 2020 744 8063*2^3333721+1 1003554 L1823 2020 745 9051*2^3333677+1 1003541 L3924 2020 746 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 747 4091*2^3333153+1 1003383 L1474 2020 748 9949*2^3332750+1 1003262 L5090 2020 749 3509*2^3332649+1 1003231 L5085 2020 750 3781*2^3332436+1 1003167 L1823 2020 751 4425*2^3332394+1 1003155 L3431 2020 752 6459*2^3332086+1 1003062 L2629 2020 753 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 754 5257*2^3331758+1 1002963 L1188 2020 755 2939*2^3331393+1 1002853 L1823 2020 756 6959*2^3331365+1 1002845 L1675 2020 757 8815*2^3330748+1 1002660 L3329 2020 758 4303*2^3330652+1 1002630 L4730 2020 759 8595*2^3330649+1 1002630 L4723 2020 760 673*2^3330436+1 1002564 L3035 2016 761 8163*2^3330042+1 1002447 L3278 2020 762 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 763 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 764 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 765 2829*2^3329061+1 1002151 L4343 2020 766 5775*2^3329034+1 1002143 L1188 2020 767 7101*2^3328905+1 1002105 L4568 2020 768 7667*2^3328807+1 1002075 L4087 2020 769 129*2^3328805+1 1002073 L3859 2014 770 7261*2^3328740+1 1002055 L2914 2020 771 4395*2^3328588+1 1002009 L3924 2020 772 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 773 143183*2^3328297+1 1001923 L4504 2017 774 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 775 9681*2^3327987+1 1001828 L1204 2020 776 2945*2^3327987+1 1001828 L2158 2020 777 5085*2^3327789+1 1001769 L1823 2020 778 8319*2^3327650+1 1001727 L1204 2020 779 4581*2^3327644+1 1001725 L2142 2020 780 655*2^3327518+1 1001686 L4490 2016 781 8863*2^3327406+1 1001653 L1675 2020 782 659*2^3327371+1 1001642 L3502 2016 783 3411*2^3327343+1 1001634 L1675 2020 784 4987*2^3327294+1 1001619 L3924 2020 785 821*2^3327003+1 1001531 L3035 2016 786 2435*2^3326969+1 1001521 L3035 2020 787 2277*2^3326794+1 1001469 L5014 2020 788 6779*2^3326639+1 1001422 L3924 2020 789 6195*2^3325993+1 1001228 L1474 2019 790 555*2^3325925+1 1001206 L4414 2016 791 9041*2^3325643+1 1001123 L3924 2019 792 1993*2^3325302+1 1001019 L3662 2019 793 6179*2^3325027+1 1000937 L3048 2019 794 4485*2^3324900+1 1000899 L1355 2019 795 3559*2^3324650+1 1000823 L3035 2019 796 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 797 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 798 6927*2^3324387+1 1000745 L3091 2019 799 9575*2^3324287+1 1000715 L3824 2019 800 1797*2^3324259+1 1000705 L3895 2019 801 4483*2^3324048+1 1000642 L3035 2019 802 791*2^3323995+1 1000626 L3035 2016 803 6987*2^3323926+1 1000606 L4973 2019 804 3937*2^3323886+1 1000593 L3035 2019 805 2121*2^3323852+1 1000583 L1823 2019 806 1571*2^3323493+1 1000475 L3035 2019 807 2319*2^3323402+1 1000448 L4699 2019 808 2829*2^3323341+1 1000429 L4754 2019 809 4335*2^3323323+1 1000424 L1823 2019 810 8485*2^3322938+1 1000308 L4858 2019 811 6505*2^3322916+1 1000302 L4858 2019 812 597*2^3322871+1 1000287 L3035 2016 813 9485*2^3322811+1 1000270 L2603 2019 814 8619*2^3322774+1 1000259 L3035 2019 815 387*2^3322763+1 1000254 L1455 2016 816 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 817 5553507*2^3322000+1 1000029 p391 2016 818 3659465685*2^3321910-1 1000005 L4960 2020 819 3652932033*2^3321910-1 1000005 L4960 2020 820 3603204333*2^3321910-1 1000005 L4960 2020 821 3543733545*2^3321910-1 1000005 L4960 2020 822 3191900133*2^3321910-1 1000005 L4960 2020 823 3174957723*2^3321910-1 1000005 L4960 2020 824 2973510903*2^3321910-1 1000005 L4960 2019 825 2848144257*2^3321910-1 1000005 L4960 2019 826 2820058827*2^3321910-1 1000005 L4960 2019 827 2611553775*2^3321910-1 1000004 L4960 2020 828 2601087525*2^3321910-1 1000004 L4960 2019 829 2386538565*2^3321910-1 1000004 L4960 2019 830 2272291887*2^3321910-1 1000004 L4960 2019 831 2167709265*2^3321910-1 1000004 L4960 2019 832 2087077797*2^3321910-1 1000004 L4960 2019 833 1848133623*2^3321910-1 1000004 L4960 2019 834 1825072257*2^3321910-1 1000004 L4960 2019 835 1633473837*2^3321910-1 1000004 L4960 2019 836 1228267623*2^3321910-1 1000004 L4808 2019 837 1148781333*2^3321910-1 1000004 L4808 2019 838 1065440787*2^3321910-1 1000004 L4808 2019 839 1055109357*2^3321910-1 1000004 L4960 2019 840 992309607*2^3321910-1 1000004 L4808 2019 841 926102325*2^3321910-1 1000004 L4808 2019 842 892610007*2^3321910-1 1000004 L4960 2019 843 763076757*2^3321910-1 1000004 L4960 2019 844 607766997*2^3321910-1 1000004 L4808 2019 845 539679177*2^3321910-1 1000004 L4808 2019 846 425521077*2^3321910-1 1000004 L4808 2019 847 132940575*2^3321910-1 1000003 L4808 2019 848 239378138685*2^3321891+1 1000001 L5104 2020 849 464253*2^3321908-1 1000000 L466 2013 850 3^2095902+3^647322-1 1000000 x44 2018 851 191273*2^3321908-1 1000000 L466 2013 852 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 853 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 854 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 855 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 856b 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 857b 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 858 3139*2^3321905-1 999997 L185 2008 859 4847*2^3321063+1 999744 SB9 2005 860 49*2^3309087-1 996137 L1959 2013 861 139413*6^1279992+1 996033 L4001 2015 862 51*2^3308171+1 995861 L2840 2015 863 245114*5^1424104-1 995412 L3686 2013 864 175124*5^1422646-1 994393 L3686 2013 865 1611*22^738988+1 992038 L4139 2015 866 2017*2^3292325-1 991092 L3345 2017 867 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 868 61*2^3286535-1 989348 L4405 2016 869 87*2^3279368+1 987191 L3458 2015 870 65*2^3270127+1 984409 L3924 2015 871 5*2^3264650-1 982759 L384 2013 872 223*2^3264459-1 982703 L1884 2012 873 9*2^3259381-1 981173 L1828 2011 874 6*5^1403337+1 980892 L4965 2020 875 33*2^3242126-1 975979 L3345 2014 876 39*2^3240990+1 975637 L3432 2014 877 6*5^1392287+1 973168 L4965 2020 878 211195*2^3224974+1 970820 L2121 2013 879 7*6^1246814+1 970211 L4965 2019 880 35*832^332073-1 969696 L4001 2019 881 600921*2^3219922-1 969299 g337 2018 882 6*409^369832+1 965900 L4001 2015 883 94373*2^3206717+1 965323 L2785 2013 884 2751*2^3206569-1 965277 L4036 2015 885 113983*2^3201175-1 963655 L613 2008 886 34*888^326732-1 963343 L4001 2017 887b 22007146^131072+1 962405 L4245 2020 Generalized Fermat 888 4*3^2016951+1 962331 L4965 2020 889b 21917442^131072+1 962173 L4622 2020 Generalized Fermat 890b 21869554^131072+1 962048 L5061 2020 Generalized Fermat 891c 21757066^131072+1 961754 L4773 2020 Generalized Fermat 892c 21582550^131072+1 961296 L5068 2020 Generalized Fermat 893c 21517658^131072+1 961125 L5126 2020 Generalized Fermat 894e 20968936^131072+1 959654 L4245 2020 Generalized Fermat 895f 20674450^131072+1 958849 L4245 2020 Generalized Fermat 896 20234282^131072+1 957624 L4942 2020 Generalized Fermat 897 20227142^131072+1 957604 L4677 2020 Generalized Fermat 898 20185276^131072+1 957486 L4201 2020 Generalized Fermat 899 33*2^3176269+1 956154 L3432 2013 900 19464034^131072+1 955415 L4956 2020 Generalized Fermat 901 600921*2^3173683-1 955380 g337 2018 902 19216648^131072+1 954687 L5024 2020 Generalized Fermat 903 1414*95^482691-1 954633 L4877 2019 904d 78*236^402022-1 953965 L4944 2020 905 18968126^131072+1 953946 L5011 2020 Generalized Fermat 906 18813106^131072+1 953479 L4201 2020 Generalized Fermat 907 18608780^131072+1 952857 L4488 2020 Generalized Fermat 908 1087*2^3164677-1 952666 L1828 2012 909 18509226^131072+1 952552 L4884 2020 Generalized Fermat 910 18501600^131072+1 952528 L4875 2020 Generalized Fermat 911 15*2^3162659+1 952057 p286 2012 912 18309468^131072+1 951934 L4928 2020 Generalized Fermat 913 18298534^131072+1 951900 L4201 2020 Generalized Fermat 914 67*2^3161450+1 951694 L3223 2015 915f 58*117^460033+1 951436 L4944 2020 916 17958952^131072+1 950834 L4201 2020 Generalized Fermat 917 17814792^131072+1 950375 L4752 2020 Generalized Fermat 918 17643330^131072+1 949824 L4201 2020 Generalized Fermat 919 19*2^3155009-1 949754 L1828 2012 920 17141888^131072+1 948183 L4963 2019 Generalized Fermat 921 17138628^131072+1 948172 L4963 2019 Generalized Fermat 922 17119936^131072+1 948110 L4963 2019 Generalized Fermat 923 17052490^131072+1 947885 L4715 2019 Generalized Fermat 924 17025822^131072+1 947796 L4870 2019 Generalized Fermat 925 16985784^131072+1 947662 L4295 2019 Generalized Fermat 926 16741226^131072+1 946837 L4201 2019 Generalized Fermat 927 16329572^131072+1 945420 L4201 2019 Generalized Fermat 928 69*2^3140225-1 945304 L3764 2014 929 3*2^3136255-1 944108 L256 2007 930 15731520^131072+1 943296 L4245 2019 Generalized Fermat 931 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 932 15667716^131072+1 943064 L4387 2019 Generalized Fermat 933 15567144^131072+1 942698 L4918 2019 Generalized Fermat 934 15342502^131072+1 941870 L4245 2019 Generalized Fermat 935 15237960^131072+1 941481 L4898 2019 Generalized Fermat 936 15147290^131072+1 941141 L4861 2019 Generalized Fermat 937 15091270^131072+1 940930 L4760 2019 Generalized Fermat 938 3125*2^3124079+1 940445 L1160 2019 939 14790404^131072+1 939784 L4871 2019 Generalized Fermat 940 14613898^131072+1 939101 L4926 2019 Generalized Fermat 941 14217182^131072+1 937534 L4387 2019 Generalized Fermat 942 134*864^319246-1 937473 L4944 2020 943 14020004^131072+1 936739 L4249 2019 Generalized Fermat 944 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 945 13800346^131072+1 935840 L4880 2019 Generalized Fermat 946 13613070^131072+1 935062 L4245 2019 Generalized Fermat 947 13433028^131072+1 934305 L4868 2018 Generalized Fermat 948 1019*2^3103680-1 934304 L1828 2012 949 99*2^3102401-1 933918 L1862 2017 950 256612*5^1335485-1 933470 L1056 2013 951 13083418^131072+1 932803 L4747 2018 Generalized Fermat 952 69*2^3097340-1 932395 L3764 2014 953 12978952^131072+1 932347 L4849 2018 Generalized Fermat 954 12961862^131072+1 932272 L4245 2018 Generalized Fermat 955 12851074^131072+1 931783 L4670 2018 Generalized Fermat 956 45*2^3094632-1 931579 L1862 2018 957c 57*2^3093440-1 931220 L2484 2020 958 12687374^131072+1 931054 L4289 2018 Generalized Fermat 959 513*2^3092705+1 931000 L4329 2016 960 12661786^131072+1 930939 L4819 2018 Generalized Fermat 961 38*875^316292-1 930536 L4001 2019 962 5*2^3090860-1 930443 L1862 2012 963 12512992^131072+1 930266 L4814 2018 Generalized Fermat 964 12357518^131072+1 929554 L4295 2018 Generalized Fermat 965 12343130^131072+1 929488 L4720 2018 Generalized Fermat 966 373*520^342177+1 929357 L3610 2014 967 19401*2^3086450-1 929119 L541 2015 968 75*2^3086355+1 929088 L3760 2015 969c 65*2^3080952-1 927461 L2484 2020 970 11876066^131072+1 927292 L4737 2018 Generalized Fermat 971 271*2^3079189-1 926931 L2484 2018 972 766*33^610412+1 926923 L4001 2016 973 11778792^131072+1 926824 L4672 2018 Generalized Fermat 974 31*332^367560+1 926672 L4294 2018 975 167*2^3077568-1 926443 L1862 2019 976 10001*2^3075602-1 925853 L4405 2019 977 11292782^131072+1 924425 L4672 2018 Generalized Fermat 978 14844*430^350980-1 924299 L4001 2016 979 11267296^131072+1 924297 L4654 2017 Generalized Fermat 980 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 981 11195602^131072+1 923933 L4706 2017 Generalized Fermat 982 60849*2^3067914+1 923539 L591 2014 983 674*249^385359+1 923400 L4944 2019 984 11036888^131072+1 923120 L4660 2017 Generalized Fermat 985 10994460^131072+1 922901 L4704 2017 Generalized Fermat 986 21*2^3065701+1 922870 p286 2012 987 10962066^131072+1 922733 L4702 2017 Generalized Fermat 988 10921162^131072+1 922520 L4559 2017 Generalized Fermat 989 43*2^3063674+1 922260 L3432 2013 990 8460*241^387047-1 921957 L4944 2019 991 10765720^131072+1 921704 L4695 2017 Generalized Fermat 992c 111*2^3060238-1 921226 L2484 2020 993 5*2^3059698-1 921062 L503 2008 994 10453790^131072+1 920031 L4694 2017 Generalized Fermat 995 10368632^131072+1 919565 L4692 2017 Generalized Fermat 996 123*2^3049038+1 917854 L4119 2015 997 10037266^131072+1 917716 L4691 2017 Generalized Fermat 998 400*95^463883-1 917435 L4001 2019 999 9907326^131072+1 916975 L4690 2017 Generalized Fermat 1000 454*383^354814+1 916558 L2012 2020 1001 9785844^131072+1 916272 L4326 2017 Generalized Fermat 1002 291*2^3037904+1 914503 L3545 2015 1003 9419976^131072+1 914103 L4591 2017 Generalized Fermat 1004 9240606^131072+1 913009 L4591 2017 Generalized Fermat 1005f 99*2^3029959-1 912111 L1862 2020 1006d 26*3^1910099+1 911351 L4799 2020 1007f 99*2^3026660-1 911118 L1862 2020 1008 8343*42^560662+1 910099 L4444 2020 1009 8770526^131072+1 910037 L4245 2017 Generalized Fermat 1010 8704114^131072+1 909604 L4670 2017 Generalized Fermat 1011 383731*2^3021377-1 909531 L466 2011 1012 46821*2^3021380-374567 909531 p363 2013 1013 2^3021377-1 909526 G3 1998 Mersenne 37 1014 7*2^3015762+1 907836 g279 2008 1015 75*2^3012342+1 906808 L3941 2015 1016 8150484^131072+1 905863 L4249 2017 Generalized Fermat 1017 7926326^131072+1 904276 L4249 2017 Generalized Fermat 1018 7858180^131072+1 903784 L4201 2017 Generalized Fermat 1019 7832704^131072+1 903599 L4249 2017 Generalized Fermat 1020 268514*5^1292240-1 903243 L3562 2013 1021 7*10^902708+1 902709 p342 2013 1022 43*2^2994958+1 901574 L3222 2013 1023 1095*2^2992587-1 900862 L1828 2011 1024 7379442^131072+1 900206 L4201 2017 Generalized Fermat 1025 15*2^2988834+1 899730 p286 2012 1026 29*564^326765+1 899024 L4001 2017 1027 39*2^2978894+1 896739 L2719 2013 1028 4348099*2^2976221-1 895939 L466 2008 1029 205833*2^2976222-411665 895938 L4667 2017 1030 18976*2^2976221-18975 895937 p373 2014 1031 2^2976221-1 895932 G2 1997 Mersenne 36 1032 1024*3^1877301+1 895704 p378 2014 1033 249*2^2975002+1 895568 L2322 2015 1034 195*2^2972947+1 894949 L3234 2015 1035 6705932^131072+1 894758 L4201 2017 Generalized Fermat 1036 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 1037 493*72^480933+1 893256 L3610 2014 1038 6403134^131072+1 892128 L4510 2016 Generalized Fermat 1039 6391936^131072+1 892028 L4511 2016 Generalized Fermat 1040 45*2^2958002-1 890449 L1862 2017 1041 198677*2^2950515+1 888199 L2121 2012 1042 88*985^296644+1 887987 L4944 2020 1043 5877582^131072+1 887253 L4245 2016 Generalized Fermat 1044 17*2^2946584-1 887012 L3519 2013 1045 141*2^2943065+1 885953 L3719 2015 1046 5734100^131072+1 885846 L4477 2016 Generalized Fermat 1047 33*2^2939063-1 884748 L3345 2013 1048 5903*2^2938744-1 884654 L4036 2015 1049 5586416^131072+1 884361 L4454 2016 Generalized Fermat 1050 243*2^2937316+1 884223 L4114 2015 1051 61*2^2936967-1 884117 L2484 2017 1052 5471814^131072+1 883181 L4362 2016 Generalized Fermat 1053 188*228^374503+1 883056 L4786 2020 1054b 53*248^368775+1 883016 L5196 2020 1055 5400728^131072+1 882436 L4201 2016 Generalized Fermat 1056 17*326^350899+1 881887 L4786 2019 1057 5326454^131072+1 881648 L4201 2016 Generalized Fermat 1058 7019*10^881309-1 881313 L3564 2013 1059 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 1060 97366*5^1259955-1 880676 L3567 2013 1061 1126*177^391360+1 879770 L4955 2020 1062 243944*5^1258576-1 879713 L3566 2013 1063a 693*2^2921528+1 879471 L5201 2021 1064 6*10^879313+1 879314 L5009 2019 1065 269*2^2918105+1 878440 L2715 2015 1066a 331*2^2917844+1 878362 L5210 2021 1067 169*2^2917805-1 878350 L2484 2018 1068b 1085*2^2916967+1 878098 L5174 2020 1069b 389*2^2916499+1 877957 L5215 2020 1070b 431*2^2916429+1 877936 L5214 2020 1071b 1189*2^2916406+1 877929 L5174 2020 1072 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 1073 4974408^131072+1 877756 L4380 2016 Generalized Fermat 1074b 465*2^2914079+1 877228 L5210 2020 1075 427194*113^427194+1 877069 p310 2012 Generalized Cullen 1076 4893072^131072+1 876817 L4303 2016 Generalized Fermat 1077a 493*2^2912552+1 876769 L5192 2021 1078 143157*2^2911403+1 876425 L4504 2017 1079b 567*2^2910402+1 876122 L5201 2020 1080b 683*2^2909217+1 875765 L5199 2020 1081 674*249^365445+1 875682 L4944 2019 1082a 475*2^2908802+1 875640 L5192 2021 1083b 371*2^2907377+1 875211 L5197 2020 1084 207*2^2903535+1 874054 L3173 2015 1085c 851*2^2902731+1 873813 L5177 2020 1086b 777*2^2901907+1 873564 L5192 2020 1087c 717*2^2900775+1 873224 L5185 2020 1088 99*2^2899303-1 872780 L1862 2017 1089 63*2^2898957+1 872675 L3262 2013 1090 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 1091c 747*2^2895307+1 871578 L5178 2020 1092c 403*2^2894566+1 871354 L5180 2020 1093c 629*2^2892961+1 870871 L5173 2020 1094d 627*2^2891514+1 870436 L5168 2020 1095d 363*2^2890208+1 870042 L3261 2020 1096d 471*2^2890148+1 870024 L5158 2020 1097 4329134^131072+1 869847 L4395 2016 Generalized Fermat 1098d 583*2^2889248+1 869754 L5139 2020 1099e 955*2^2887934+1 869358 L4958 2020 1100e 937*2^2887130+1 869116 L5134 2020 1101e 885*2^2886389+1 868893 L3924 2020 1102e 763*2^2885928+1 868754 L2125 2020 1103f 1071*2^2884844+1 868428 L3593 2020 1104f 1181*2^2883981+1 868168 L3593 2020 1105 51*2^2881227+1 867338 L3512 2013 1106f 933*2^2879973+1 866962 L4951 2020 1107 261*2^2879941+1 866952 L4119 2015 1108 4085818^131072+1 866554 L4201 2016 Generalized Fermat 1109 65*2^2876718-1 865981 L2484 2016 1110 21*948^290747-1 865500 L4985 2019 1111 4013*2^2873250-1 864939 L1959 2014 1112 41*2^2872058-1 864578 L2484 2013 1113 359*2^2870935+1 864241 L1300 2020 1114 165*2^2870868+1 864220 L4119 2015 1115 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 1116 665*2^2869847+1 863913 L2885 2020 1117 283*2^2868750+1 863583 L3877 2015 1118 845*2^2868291+1 863445 L5100 2020 1119 3125*2^2867399+1 863177 L1754 2019 1120 701*2^2867141+1 863099 L1422 2020 1121 3814944^131072+1 862649 L4201 2016 Generalized Fermat 1122 307*2^2862962+1 861840 L4740 2020 1123 147*2^2862651+1 861746 L1741 2015 1124 1207*2^2861901-1 861522 L1828 2011 1125 231*2^2860725+1 861167 L2873 2015 1126 193*2^2858812+1 860591 L2997 2015 1127 629*2^2857891+1 860314 L3035 2020 1128 493*2^2857856+1 860304 L5087 2020 1129 241*2^2857313-1 860140 L2484 2018 1130 707*2^2856331+1 859845 L5084 2020 1131 3615210^131072+1 859588 L4201 2016 Generalized Fermat 1132 949*2^2854946+1 859428 L2366 2020 1133 222361*2^2854840+1 859398 g403 2006 1134 725*2^2854661+1 859342 L5031 2020 1135 399*2^2851994+1 858539 L4099 2020 1136 225*2^2851959+1 858528 L3941 2015 1137 247*2^2851602+1 858421 L3865 2015 1138 183*2^2850321+1 858035 L2117 2015 1139 1191*2^2849315+1 857733 L1188 2020 1140 717*2^2848598+1 857517 L1204 2020 1141 795*2^2848360+1 857445 L4099 2020 1142 3450080^131072+1 856927 L4201 2016 Generalized Fermat 1143 705*2^2846638+1 856927 L1808 2020 1144 369*2^2846547+1 856899 L4099 2020 1145 955*2^2844974+1 856426 L1188 2020 1146 753*2^2844700+1 856343 L1204 2020 1147 11138*745^297992-1 855884 L4189 2019 1148 111*2^2841992+1 855527 L1792 2015 1149 649*2^2841318+1 855325 L4732 2020 1150 305*2^2840155+1 854975 L4907 2020 1151 1149*2^2839622+1 854815 L2042 2020 1152 95*2^2837909+1 854298 L3539 2013 1153 199*2^2835667-1 853624 L2484 2019 1154 595*2^2833406+1 852943 L4343 2020 1155 1101*2^2832061+1 852539 L4930 2020 1156 813*2^2831757+1 852447 L4951 2020 1157 435*2^2831709+1 852432 L4951 2020 1158 543*2^2828217+1 851381 L4746 2019 1159 704*249^354745+1 850043 L4944 2019 1160 1001*2^2822037+1 849521 L1209 2019 1161 84466*5^1215373-1 849515 L3562 2013 1162 97*2^2820650+1 849103 L2163 2013 1163 107*2^2819922-1 848884 L2484 2013 1164 84256*3^1778899+1 848756 L4789 2018 1165 45472*3^1778899-1 848756 L4789 2018 1166 497*2^2818787+1 848543 L4842 2019 1167 97*2^2818306+1 848397 L3262 2013 1168 177*2^2816050+1 847718 L129 2012 1169 553*2^2815596+1 847582 L4980 2019 1170 1071*2^2814469+1 847243 L3035 2019 1171 105*2^2813000+1 846800 L3200 2015 1172 1115*2^2812911+1 846774 L1125 2019 1173 96*10^846519-1 846521 L2425 2011 Near-repdigit 1174 763*2^2811726+1 846417 L3919 2019 1175 1125*2^2811598+1 846379 L4981 2019 1176 891*2^2810100+1 845928 L4981 2019 1177 441*2^2809881+1 845862 L4980 2019 1178 711*2^2808473+1 845438 L1502 2019 1179 1089*2^2808231+1 845365 L4687 2019 1180 63*2^2807130+1 845033 L3262 2013 1181 1083*2^2806536+1 844855 L3035 2019 1182 675*2^2805669+1 844594 L1932 2019 1183 819*2^2805389+1 844510 L3372 2019 1184 1027*2^2805222+1 844459 L3035 2019 1185 437*2^2803775+1 844024 L3168 2019 1186 4431*372^327835-1 842718 L4944 2019 1187 150344*5^1205508-1 842620 L3547 2013 1188 311*2^2798459+1 842423 L4970 2019 1189 400254*127^400254+1 842062 g407 2013 Generalized Cullen 1190 2639850^131072+1 841690 L4249 2016 Generalized Fermat 1191 43*2^2795582+1 841556 L2842 2013 1192 1001*2^2794357+1 841189 L1675 2019 1193 117*2^2794014+1 841085 L1741 2015 1194 1057*2^2792700+1 840690 L1675 2019 1195 345*2^2792269+1 840560 L1754 2019 1196 711*2^2792072+1 840501 L4256 2019 1197 973*2^2789516+1 839731 L3372 2019 1198 2187*2^2786802+1 838915 L1745 2019 1199 15*2^2785940+1 838653 p286 2012 1200 1337*2^2785444-1 838506 L4518 2017 1201 711*2^2784213+1 838135 L4687 2019 1202d 58582*91^427818+1 838118 L4944 2020 1203 923*2^2783153+1 837816 L1675 2019 1204 1103*2^2783149+1 837815 L3784 2019 1205 485*2^2778151+1 836310 L1745 2019 1206 600921*2^2776014-1 835670 g337 2017 1207 1129*2^2774934+1 835342 L1774 2019 1208 8700*241^350384-1 834625 L4944 2019 1209 1023*2^2772512+1 834613 L4724 2019 1210 656*249^348030+1 833953 L4944 2019 1211 92*10^833852-1 833854 L4789 2018 Near-repdigit 1212 437*2^2769299+1 833645 L3760 2019 1213 967*2^2768408+1 833377 L3760 2019 1214 2280466^131072+1 833359 L4201 2016 Generalized Fermat 1215 1171*2^2768112+1 833288 L2676 2019 1216 57*2^2765963+1 832640 L3262 2013 1217 1323*2^2764024+1 832058 L1115 2019 1218 77*2^2762047+1 831461 L3430 2013 1219 745*2^2761514+1 831302 L1204 2019 1220 2194180^131072+1 831164 L4276 2016 Generalized Fermat 1221 7*10^830865+1 830866 p342 2014 1222 893*2^2758841+1 830497 L4826 2019 1223 537*2^2755164+1 829390 L3035 2019 1224 579*2^2754370+1 829151 L1823 2019 1225 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 1226 215*2^2751022-1 828143 L2484 2018 1227 337*2^2750860+1 828094 L4854 2019 1228 701*2^2750267+1 827916 L3784 2019 1229 467*2^2749195+1 827593 L1745 2019 1230 245*2^2748663+1 827433 L3173 2015 1231 591*2^2748315+1 827329 L3029 2019 1232 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 1233 1089*2^2746155+1 826679 L2583 2019 1234 707*2^2745815+1 826576 L3760 2019 1235 459*2^2742310+1 825521 L4582 2019 1236 777*2^2742196+1 825487 L3919 2019 1237 609*2^2741078+1 825150 L3091 2019 1238 639*2^2740186+1 824881 L4958 2019 1239 905*2^2739805+1 824767 L4958 2019 1240 1955556^131072+1 824610 L4250 2015 Generalized Fermat 1241 777*2^2737282+1 824007 L1823 2019 1242 765*2^2735232+1 823390 L1823 2019 1243 609*2^2735031+1 823330 L1823 2019 1244 305*2^2733989+1 823016 L1823 2019 1245 165*2^2732983+1 822713 L1741 2015 1246 1133*2^2731993+1 822415 L4687 2019 1247 251*2^2730917+1 822091 L3924 2015 1248 1185*2^2730620+1 822002 L4948 2019 1249 173*2^2729905+1 821786 L3895 2015 1250 1981*2^2728877-1 821478 L1134 2018 1251 693*2^2728537+1 821375 L3035 2019 1252 501*2^2728224+1 821280 L3035 2019 1253 763*2^2727928+1 821192 L3924 2019 1254 10*743^285478+1 819606 L4955 2019 1255 17*2^2721830-1 819354 p279 2010 1256 1101*2^2720091+1 818833 L4935 2019 1257 1766192^131072+1 818812 L4231 2015 Generalized Fermat 1258 165*2^2717378-1 818015 L2055 2012 1259 68633*2^2715609+1 817485 L5105 2020 1260 1722230^131072+1 817377 L4210 2015 Generalized Fermat 1261 1717162^131072+1 817210 L4226 2015 Generalized Fermat 1262 133*2^2713410+1 816820 L3223 2015 1263 45*2^2711732+1 816315 L1349 2012 1264 569*2^2711451+1 816231 L4568 2019 1265 335*2^2708958-1 815481 L2235 2020 1266 93*2^2708718-1 815408 L1862 2016 1267 1660830^131072+1 815311 L4207 2015 Generalized Fermat 1268 837*2^2708160+1 815241 L4314 2019 1269 1005*2^2707268+1 814972 L4687 2019 1270 13*458^306196+1 814748 L3610 2015 1271 253*2^2705844+1 814543 L4083 2015 1272 657*2^2705620+1 814476 L4907 2019 1273 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 1274 303*2^2703864+1 813947 L1204 2019 1275 141*2^2702160+1 813434 L1741 2015 1276 753*2^2701925+1 813364 L4314 2019 1277 133*2^2701452+1 813221 L3173 2015 1278 521*2^2700095+1 812813 L4854 2019 1279 393*2^2698956+1 812470 L1823 2019 1280 417*2^2698652+1 812378 L3035 2019 1281 525*2^2698118+1 812218 L1823 2019 1282 3125*2^2697651+1 812078 L3924 2019 1283 153*2^2697173+1 811933 L3865 2015 1284 1560730^131072+1 811772 L4201 2015 Generalized Fermat 1285 26*3^1700041+1 811128 L4799 2020 1286 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 1287 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 1288 7335*2^2689080-1 809498 L4036 2015 1289 1049*2^2688749+1 809398 L4869 2018 1290 329*2^2688221+1 809238 L3035 2018 1291 865*2^2687434+1 809002 L4844 2018 1292 989*2^2686591+1 808748 L2805 2018 1293 136*904^273532+1 808609 L4944 2020 1294 243*2^2685873+1 808531 L3865 2015 1295 909*2^2685019+1 808275 L3431 2018 1296b 1455*2^2683953-1 807954 L1134 2020 1297 11210*241^339153-1 807873 L4944 2019 1298 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 1299 975*2^2681840+1 807318 L4155 2018 1300 295*2^2680932+1 807044 L1741 2015 1301 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 1302 575*2^2679711+1 806677 L2125 2018 1303 2386*52^469972+1 806477 L4955 2019 1304 219*2^2676229+1 805628 L1792 2015 1305 637*2^2675976+1 805552 L3035 2018 1306 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 1307 951*2^2674564+1 805127 L1885 2018 1308 1372930^131072+1 804474 g236 2003 Generalized Fermat 1309d 662*1009^267747-1 804286 L4944 2020 1310 261*2^2671677+1 804258 L3035 2015 1311 895*2^2671520+1 804211 L3035 2018 1312 1361244^131072+1 803988 g236 2004 Generalized Fermat 1313 789*2^2670409+1 803877 L3035 2018 1314 256*11^771408+1 803342 L3802 2014 Generalized Fermat 1315 503*2^2668529+1 803310 L4844 2018 1316 255*2^2668448+1 803286 L1129 2015 1317 4189*2^2666639-1 802742 L1959 2017 1318 539*2^2664603+1 802129 L4717 2018 1319 26036*745^279261-1 802086 L4189 2020 1320 1396*5^1146713-1 801522 L3547 2013 1321 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 1322 51*892^271541+1 801147 L4944 2019 1323 297*2^2660048+1 800757 L3865 2015 1324 851*2^2656411+1 799663 L4717 2018 1325 487*2^2655008+1 799240 L3760 2018 1326 371*2^2651663+1 798233 L3760 2018 1327 69*2^2649939-1 797713 L3764 2014 1328 207*2^2649810+1 797675 L1204 2015 1329 505*2^2649496+1 797581 L3760 2018 1330 993*2^2649256+1 797509 L3760 2018 1331 517*2^2648698+1 797341 L3760 2018 1332 340*703^280035+1 797250 L4001 2018 1333 441*2^2648307+1 797223 L3760 2018 1334 1129*2^2646590+1 796707 L3760 2018 1335 128*518^293315+1 796156 L4001 2019 1336 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 1337 1176694^131072+1 795695 g236 2003 Generalized Fermat 1338 13*2^2642943-1 795607 L1862 2012 1339 119*410^304307+1 795091 L4294 2019 1340 501*2^2641052+1 795039 L3035 2018 1341 879*2^2639962+1 794711 L3760 2018 1342 57*2^2639528-1 794579 L2484 2016 1343 342673*2^2639439-1 794556 L53 2007 1344 813*2^2639092+1 794449 L2158 2018 1345 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 1346 1027*2^2638186+1 794177 L3760 2018 1347 889*2^2637834+1 794071 L3545 2018 1348 92182*5^1135262+1 793520 L3547 2013 1349 741*2^2634385+1 793032 L1204 2018 1350 465*2^2630496+1 791861 L1444 2018 1351 189*2^2630487+1 791858 L3035 2015 1352 87*2^2630468+1 791852 L3262 2013 1353 1131*2^2629345+1 791515 L4826 2018 1354 967*2^2629344+1 791515 L3760 2018 1355 267*2^2629210+1 791474 L3035 2015 1356 154*883^268602+1 791294 L4944 2020 1357 819*2^2627529+1 790968 L1387 2018 1358 17152*5^1131205-1 790683 L3552 2013 1359 183*2^2626442+1 790641 L3035 2015 1360 813*2^2626224+1 790576 L4830 2018 1361 807*2^2625044+1 790220 L1412 2018 1362 1063730^131072+1 789949 g260 2013 Generalized Fermat 1363 1243*2^2623707-1 789818 L1828 2011 1364 693*2^2623557+1 789773 L3278 2018 1365 981*2^2622032+1 789314 L1448 2018 1366 145*2^2621020+1 789008 L3035 2015 1367 541*2^2614676+1 787099 L4824 2018 1368 1061*268^323645-1 785857 L4944 2019 1369 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 1370 1071*2^2609316+1 785486 L3760 2018 1371 87*2^2609046+1 785404 L2520 2013 1372 543*2^2608129+1 785128 L4822 2018 1373 329584*5^1122935-1 784904 L3553 2013 1374 10*311^314806+1 784737 L3610 2014 1375 1019*2^2606525+1 784646 L1201 2018 1376 977*2^2606211+1 784551 L4746 2018 1377 13*2^2606075-1 784508 L1862 2011 1378 693*2^2605905+1 784459 L4821 2018 1379 147*2^2604275+1 783968 L1741 2015 1380 105*2^2603631+1 783774 L3459 2015 1381 93*2^2602483-1 783428 L1862 2016 1382 155*2^2602213+1 783347 L2719 2015 1383 303*2^2601525+1 783140 L4816 2018 1384 711*2^2600535+1 782842 L4815 2018 1385 1133*2^2599345+1 782484 L4796 2018 1386 397*2^2598796+1 782319 L3877 2018 1387 1536*177^347600+1 781399 L4944 2020 1388 1171*2^2595736+1 781398 L3035 2018 1389 909548^131072+1 781036 p387 2015 Generalized Fermat 1390 2*218^333925+1 780870 L4683 2017 1391 1149*2^2593359+1 780682 L1125 2018 1392 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 1393 333*2^2591874-1 780235 L2017 2019 1394 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 1395 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 1396 703*2^2586728+1 778686 L4256 2018 1397 2642*372^302825-1 778429 L4944 2019 1398 120*825^266904+1 778416 L4001 2018 1399 337*2^2585660+1 778364 L2873 2018 1400 393*2^2584957+1 778153 L4600 2018 1401 151*2^2584480+1 778009 L4043 2015 1402 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 1403 385*2^2584280+1 777949 L4600 2018 1404 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 1405 65*2^2583720-1 777780 L2484 2015 1406 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 1407 82*920^262409-1 777727 L4064 2015 1408 1041*2^2582112+1 777297 L1456 2018 1409 334310*211^334310-1 777037 p350 2012 Generalized Woodall 1410 229*2^2581111-1 776995 L1862 2017 1411 61*2^2580689-1 776867 L2484 2015 1412 1113*2^2580205+1 776723 L4724 2018 1413 51*2^2578652+1 776254 L3262 2013 1414 173*2^2578197+1 776117 L3035 2015 1415 833*2^2578029+1 776067 L4724 2018 1416e 80*394^298731-1 775358 L541 2020 1417 460*628^276994+1 775021 L4944 2020 1418 459*2^2573899+1 774824 L1204 2018 1419 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 1420 627*2^2567718+1 772963 L3803 2018 1421 933*2^2567598+1 772927 L4724 2018 1422 757*2^2566468+1 772587 L2606 2018 1423 231*2^2565263+1 772224 L3035 2015 1424 4*737^269302+1 772216 L4294 2016 Generalized Fermat 1425 941*2^2564867+1 772105 L4724 2018 1426 923*2^2563709+1 771757 L1823 2018 1427 151*596^278054+1 771671 L4876 2019 1428 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 1429 303*2^2562423-1 771369 L2017 2018 1430 75*2^2562382-1 771356 L2055 2011 1431 147559*2^2562218+1 771310 L764 2012 1432 829*2^2561730+1 771161 L1823 2018 1433 404*12^714558+1 771141 L1471 2011 1434 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 1435 1193*2^2559453+1 770476 L2030 2018 1436 19*984^257291+1 770072 L4944 2020 1437 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 1438e 65*752^267180-1 768470 L4944 2020 1439 419*2^2552363+1 768341 L4713 2018 1440 34*759^266676-1 768093 L4001 2019 1441 315*2^2550412+1 767754 L4712 2017 1442 415*2^2549590+1 767506 L4710 2017 1443 693*2^2547752+1 766953 L4600 2017 1444 673*2^2547226+1 766795 L2873 2017 1445 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 1446 183*2^2545116+1 766159 L3035 2015 1447 311*2^2544778-1 766058 L2017 2018 1448 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 1449f 67*446^288982+1 765612 L4273 2020 1450 663*2^2542990+1 765520 L4703 2017 1451 705*2^2542464+1 765361 L2873 2017 1452 689186^131072+1 765243 g429 2013 Generalized Fermat 1453 745*2^2540726+1 764838 L4696 2017 1454 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 1455 64*177^340147-1 764644 L3610 2015 1456 421*2^2539336+1 764419 L4148 2017 1457 123287*2^2538167+1 764070 L3054 2012 1458 305716*5^1093095-1 764047 L3547 2013 1459 223*2^2538080+1 764041 L2125 2015 1460 83*2^2537641+1 763908 L1300 2013 1461 645*2^2532811+1 762455 L4600 2017 1462 953*2^2531601+1 762091 L4404 2017 1463 545*2^2528179+1 761061 L1502 2017 1464 203*2^2526505+1 760557 L3910 2015 1465 967*2^2526276+1 760488 L1204 2017 1466 241*2^2522801-1 759442 L2484 2018 1467 360307*6^975466-1 759066 p255 2017 1468 749*2^2519457+1 758436 L1823 2017 1469 199*2^2518871-1 758259 L2484 2018 1470 6*10^758068+1 758069 L5009 2019 1471 87*2^2518122-1 758033 L2484 2014 1472 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 1473 711*2^2516187+1 757451 L3035 2017 1474 967*2^2514698+1 757003 L4600 2017 1475 33*2^2513872-1 756753 L3345 2013 1476 973*2^2511920+1 756167 L1823 2017 1477 679*2^2511814+1 756135 L4598 2017 1478 1093*2^2511384+1 756005 L1823 2017 1479 38*875^256892-1 755780 L4001 2019 1480 45*2^2507894+1 754953 L1349 2012 1481 130484*5^1080012-1 754902 L3547 2013 1482 572186^131072+1 754652 g0 2004 Generalized Fermat 1483 242*501^279492-1 754586 L4911 2019 1484 883*2^2506382+1 754500 L1823 2017 1485 847*2^2505540+1 754246 L4600 2017 1486 191*2^2504121+1 753818 L3035 2015 1487 783*2^2500912+1 752853 L1823 2017 1488 165*2^2500130-1 752617 L2055 2011 1489 33*2^2499883-1 752542 L3345 2013 1490 319*2^2498685-1 752182 L2017 2018 1491 321*2^2496594-1 751553 L2235 2018 1492 365*2^2494991+1 751070 L3035 2017 1493 213*2^2493004-1 750472 L1863 2017 1494 777*2^2492560+1 750339 L3035 2017 1495 57*2^2492031+1 750178 L1230 2013 1496 879*2^2491342+1 749972 L4600 2017 1497 14*152^343720-1 749945 L3610 2015 1498 231*2^2489083+1 749292 L3035 2015 1499 255*2^2488562+1 749135 L3035 2015 1500 221*780^258841-1 748596 L4001 2018 1501 303*2^2486629+1 748553 L3035 2017 1502 6*433^283918-1 748548 L3610 2015 1503 617*2^2485919+1 748339 L1885 2017 1504 515*2^2484885+1 748028 L3035 2017 1505 1095*2^2484828+1 748011 L3035 2017 1506 1113*2^2484125+1 747800 L3035 2017 1507 607*2^2483616+1 747646 L3035 2017 1508 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 1509 723*2^2482064+1 747179 L3035 2017 1510f 26*3^1565545+1 746957 L4799 2020 1511 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 1512 1071*2^2477584+1 745831 L3035 2017 1513 22*30^504814-1 745673 p355 2014 1514 11*2^2476839+1 745604 L2691 2011 1515 825*2^2474996+1 745051 L1300 2017 1516 1061*2^2474282-1 744837 L1828 2012 1517 435*2^2473905+1 744723 L3035 2017 1518 1121*2^2473401+1 744571 L3924 2017 1519 325*2^2473267-1 744531 L2017 2018 1520 889*2^2471082+1 743873 L1300 2017 1521 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 1522 883*2^2469268+1 743327 L4593 2017 1523 5754*313^297824-1 743237 L5089 2020 1524 81*2^2468789+1 743182 g418 2009 1525 55154*5^1063213+1 743159 L3543 2013 1526 119*2^2468556-1 743112 L2484 2018 1527 525*2^2467658+1 742842 L3035 2017 1528 715*2^2465640+1 742235 L3035 2017 1529 26773*2^2465343-1 742147 L197 2006 1530 581*550^270707-1 741839 L4944 2020 1531 993*2^2464082+1 741766 L3035 2017 1532 1179*2^2463746+1 741665 L3035 2017 1533 857*2^2463411+1 741564 L3662 2017 1534 103*2^2462567-1 741309 L2484 2014 1535 12587*2^2462524-1 741298 L2012 2017 1536 5*2^2460482-1 740680 L503 2008 1537 763*2^2458592+1 740113 L1823 2017 1538 453*2^2458461+1 740074 L3035 2017 1539 519*2^2458058+1 739952 L3803 2017 1540 137*2^2457639+1 739826 L4021 2014 1541 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 1542 133*2^2455666+1 739232 L2322 2014 1543 99*2^2455541-1 739194 L1862 2015 1544 377*2^2452639+1 738321 L3035 2017 1545b 2189*138^345010+1 738284 L4944 2020 1546 1129*2^2452294+1 738218 L3035 2017 1547 1103*2^2451133+1 737868 L4531 2017 1548 65*2^2450614-1 737711 L2074 2014 1549 549*2^2450523+1 737684 L3035 2017 1550 4*789^254595+1 737582 L4955 2019 1551 3942*55^423771-1 737519 L4955 2019 1552 765*2^2448660+1 737123 L4412 2017 1553 607*2^2447836+1 736875 L4523 2017 1554 1005*2^2446722+1 736540 L4522 2017 1555 703*2^2446472+1 736465 L2805 2017 1556 75*2^2446050+1 736337 L3035 2013 1557 115*26^520277-1 736181 L1471 2014 1558 114986*5^1052966-1 735997 L3528 2013 1559 1029*2^2444707+1 735934 L3035 2017 1560 1035*2^2443369+1 735531 L3173 2017 1561 1017*2^2442723+1 735336 L4417 2017 1562 1065*2^2441132+1 734857 L1823 2017 1563 393*2^2436849+1 733568 L3035 2016 1564c 1425*2^2435607-1 733194 L1134 2020 1565 386892^131072+1 732377 p259 2009 Generalized Fermat 1566 465*2^2431455+1 731944 L3035 2016 1567 905*2^2430509+1 731660 L4408 2016 1568 223*2^2430490+1 731653 L4016 2014 1569 8*410^279991+1 731557 L4700 2019 1570 69*2^2428251-1 730979 L384 2014 1571 233*2^2426512-1 730456 L2484 2020 1572 645*2^2426494+1 730451 L3035 2016 1573 665*2^2425789+1 730239 L3173 2016 1574 23*2^2425641+1 730193 L2675 2011 1575 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 1576 753*2^2422914+1 729373 L3035 2016 1577 5619*52^424922+1 729172 L4944 2019 1578 105*2^2422105+1 729129 L2520 2014 1579 201*2^2421514-1 728951 L1862 2016 1580 239*2^2421404-1 728918 L2484 2018 1581 577*2^2420868+1 728757 L4489 2016 1582 929*2^2417767+1 727824 L3924 2016 1583 4075*2^2417579-1 727768 L1959 2017 1584 303*2^2417452-1 727729 L2235 2018 1585 895*2^2417396+1 727712 L3035 2016 1586 1764*327^289322+1 727518 L4944 2020 Generalized Fermat 1587 5724*313^291243-1 726814 L4444 2020 1588 1081*2^2412780+1 726323 L1203 2016 1589 333*2^2412735-1 726309 L2017 2018 1590 6891*52^423132+1 726100 L4944 2019 1591 83*2^2411962-1 726075 L1959 2018 1592 69*2^2410035-1 725495 L2074 2013 1593 12362*1027^240890-1 725462 L4444 2018 1594 143157*2^2409056+1 725204 L4504 2016 1595 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 1596 339*2^2408337+1 724985 L3029 2016 1597 811*2^2408096+1 724913 L2526 2016 1598 157*2^2407958+1 724870 L1741 2014 1599 243686*5^1036954-1 724806 L3549 2013 1600 3660*163^327506+1 724509 L4955 2019 1601 303*2^2406433+1 724411 L4425 2016 1602 345*2^2405701+1 724191 L3035 2016 1603 921*2^2405056+1 723997 L2805 2016 1604 673*2^2403606+1 723561 L3035 2016 1605 475*2^2403220+1 723444 L4445 2016 1606 837*2^2402798+1 723318 L3372 2016 1607 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 1608 231*2^2402748+1 723302 L3995 2014 1609 375*2^2401881+1 723041 L2805 2016 1610 107*2^2401731+1 722996 L3998 2014 1611 1023*2^2398601+1 722054 L4414 2016 1612 539*2^2398227+1 721941 L4061 2016 1613 659*2^2397567+1 721743 L4441 2016 1614 40*844^246524+1 721416 L4001 2017 1615 465*2^2395133+1 721010 L4088 2016 1616 56*318^288096+1 720941 L1471 2019 1617 667*2^2394430+1 720799 L4408 2016 1618 15*2^2393365+1 720476 L1349 2010 1619 1642*273^295670+1 720304 L4944 2019 1620 633*2^2391222+1 719833 L3743 2016 1621 273*2^2388104+1 718894 L3668 2014 1622 118*558^261698+1 718791 L4877 2019 1623 1485*2^2386037-1 718272 L1134 2017 1624 399*2^2384115+1 717693 L4412 2016 1625 99*2^2383846+1 717612 L1780 2013 1626 737*2^2382804-1 717299 L191 2007 1627 111*2^2382772+1 717288 L3810 2014 1628 61*2^2381887-1 717022 L2432 2012 1629 202*249^299162+1 716855 L4944 2019 1630 321*2^2378535-1 716013 L2017 2018 1631 435*2^2378522+1 716010 L1218 2016 1632 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 1633 147*2^2375995+1 715248 L1130 2014 1634 915*2^2375923+1 715228 L1741 2016 1635 1981*2^2375591-1 715128 L1134 2017 1636 1129*2^2374562+1 714818 L3035 2016 1637 97*2^2374485-1 714794 L2484 2018 1638 1117*2^2373977-1 714642 L1828 2012 1639 949*2^2372902+1 714318 L4408 2016 1640 659*2^2372657+1 714244 L3035 2016 1641 1365*2^2372586+1 714223 L1134 2016 1642 509*2^2370721+1 713661 L1792 2016 1643 99*2^2370390+1 713561 L1204 2013 1644 959*2^2370077+1 713468 L1502 2016 1645 1135*2^2369808+1 713387 L2520 2016 1646 125*2^2369461+1 713281 L3035 2014 1647 1183953*2^2367907-1 712818 L447 2007 Woodall 1648 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 1649 119878*5^1019645-1 712707 L3528 2013 1650 453*2^2367388+1 712658 L3035 2016 1651 150209!+1 712355 p3 2011 Factorial 1652 281*2^2363327+1 711435 L1741 2014 1653 2683*2^2360743-1 710658 L1959 2012 1654 409*2^2360166+1 710484 L1199 2016 1655 305*2^2358854-1 710089 L2017 2018 1656a 1706*123^339764+1 710078 L4944 2021 1657 403*2^2357572+1 709703 L3029 2016 1658 155*2^2357111+1 709564 L3975 2014 1659 365*2^2355607+1 709111 L2117 2016 1660 33706*6^910462+1 708482 L587 2014 1661 1087*2^2352830+1 708276 L1492 2016 1662 152*1002^235971+1 708120 L4944 2019 1663 179*2^2352291+1 708113 L1741 2014 1664 559*2^2351894+1 707994 L3924 2016 1665 24573*2^2350824+1 707673 p168 2018 1666 1035*2^2350388+1 707541 L2526 2016 1667 433*2^2348252+1 706897 L2322 2016 1668 329*2^2348105+1 706853 L3029 2016 1669 45*2^2347187+1 706576 L1349 2012 1670 7675*46^424840+1 706410 L4944 2019 1671 127*2^2346377-1 706332 L282 2009 1672 933*2^2345893+1 706188 L3035 2016 1673 903*2^2345013+1 705923 L2006 2016 1674 33*2^2345001+1 705918 L2322 2013 1675 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 1676 627*2^2343140+1 705359 L3125 2016 1677 83*2^2342345+1 705119 L2626 2013 1678 61*380^273136+1 704634 L4944 2019 1679 277*2^2340182+1 704468 L1158 2014 1680 159*2^2339566+1 704282 L3035 2014 1681 335*2^2338972-1 704104 L2235 2017 1682 22*422^268038+1 703685 L4955 2019 1683 9602*241^295318-1 703457 L4944 2019 1684 1149*2^2336638+1 703402 L4388 2016 1685 339*2^2336421-1 703336 L2519 2017 1686 231*2^2335281-1 702992 L1862 2019 1687 275293*2^2335007-1 702913 L193 2006 1688 105*2^2334755-1 702834 L1959 2018 1689 228188^131072+1 702323 g124 2010 Generalized Fermat 1690 809*2^2333017+1 702312 L2675 2016 1691 795*2^2332488+1 702152 L3029 2016 1692 3^1471170-3^529291+1 701927 p269 2019 1693 118*761^243458+1 701499 L4944 2019 1694 435*2^2329948+1 701387 L2322 2016 1695 585*2^2329350+1 701207 L2707 2016 1696 213*2^2328530-1 700960 L1863 2017 1697 1482*327^278686+1 700773 L4944 2020 1698d 26472*91^357645+1 700646 L4944 2020 1699 1107*2^2327472+1 700642 L3601 2016 1700 435*2^2327152+1 700546 L2337 2016 1701 4161*2^2326875-1 700463 L1959 2016 1702 427*2^2326288+1 700286 L2719 2016 1703 438*19^547574-1 700215 L4944 2020 1704 147855!-1 700177 p362 2013 Factorial 1705 451*2^2323952+1 699582 L3173 2016 1706 431*2^2323633+1 699486 L3260 2016 1707 1085*2^2323291+1 699384 L1209 2016 1708 15*2^2323205-1 699356 L2484 2011 1709 7566*46^420563+1 699299 L4944 2019 1710 1131*2^2322167+1 699045 L1823 2016 1711 385*2^2321502+1 698845 L1129 2016 1712 645*2^2320231+1 698462 L3377 2016 1713 165*2^2319575+1 698264 L2627 2014 1714 809*2^2319373+1 698204 L3924 2016 1715 125098*6^896696+1 697771 L587 2014 1716 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 1717 381*2^2314743+1 696810 L4358 2016 1718 120*825^238890+1 696714 L4837 2018 1719 3375*2^2314297+1 696677 L1745 2019 1720 4063*2^2313843-1 696540 L1959 2016 1721 345*2^2313720-1 696502 L2017 2017 1722d 74*830^238594-1 696477 L4944 2020 1723 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 1724 1983*366^271591-1 696222 L2054 2012 1725 3*2^2312734-1 696203 L158 2005 1726 53653*2^2311848+1 695941 L2012 2017 1727 873*2^2311086+1 695710 L2526 2016 1728 1033*2^2310976+1 695677 L4352 2016 1729 4063*2^2310187-1 695440 L1959 2016 1730 4063*2^2309263-1 695162 L1959 2016 1731 565*2^2308984+1 695077 L2322 2016 1732 450457*2^2307905-1 694755 L172 2006 1733 1185*2^2306324+1 694276 L4347 2016 1734 3267*2^2305266+1 693958 L1204 2019 1735d 107*770^240408-1 693938 L4955 2020 1736 537*2^2304115+1 693611 L3267 2016 1737 842*1017^230634-1 693594 L4001 2017 1738 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 1739 641*2^2302879+1 693239 L2051 2016 1740 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 1741 189*2^2299959+1 692359 L2627 2014 1742 659*2^2294393+1 690684 L3378 2016 1743 1087*2^2293345-1 690369 L1828 2011 1744 97768*5^987383-1 690157 L1016 2013 1745 4761657101009*2^2292504-1 690126 L257 2019 1746 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 1747 319*2^2290722+1 689579 L1792 2015 1748 779*2^2290273+1 689444 L3034 2016 1749 1001*2^2289438-1 689193 L4518 2020 1750 971*2^2289135+1 689102 L4198 2016 1751 399*2^2288691+1 688968 L1990 2015 1752 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 1753 74270*151^315734-1 687982 L4001 2018 1754 23902*52^400831+1 687832 L4944 2019 1755 417*2^2284402+1 687677 L2322 2015 1756 130*686^242244+1 687085 L4064 2018 1757 427*2^2282080+1 686978 L3260 2015 1758 109*2^2280194+1 686409 L2520 2014 1759 105*2^2280078-1 686374 L2444 2014 1760 1019*2^2278467+1 685890 L4323 2016 1761 213*2^2277870-1 685710 L1863 2017 1762 547*2^2276648+1 685343 L3260 2015 1763 26*3^1435875+1 685088 L4799 2020 1764 7913*2^2275664-1 685048 L4036 2015 1765 651*2^2275040+1 684859 L4082 2016 1766 155877*2^2273465-1 684387 L541 2014 1767 16*710^240014+1 684344 L4944 2019 Generalized Fermat 1768 739*2^2272938+1 684226 L1209 2016 1769 (362^133647+1)^2-2 683928 p403 2019 1770 943*2^2269594+1 683219 L1823 2016 1771 182*792^235539+1 682766 L4837 2019 1772 1286*603^245567+1 682758 L4444 2019 1773 50*893^231310-1 682564 L4975 2019 1774 329*2^2266631+1 682327 L4109 2015 1775 739*2^2266602+1 682319 L2520 2016 1776 19683*2^2265896+1 682107 L2914 2019 1777 1151*2^2265761+1 682066 L1823 2016 1778 851*2^2265691+1 682044 L3173 2016 1779 977*2^2265655+1 682034 L2413 2016 1780 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 1781 217*2^2264546+1 681699 L3179 2014 1782 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 1783 93*2^2263894+1 681502 L2826 2013 1784 217499*28^470508-1 680905 p366 2013 1785 963*2^2261357+1 680740 L1300 2016 1786 1065*2^2260193+1 680389 L1204 2016 1787 837*2^2259470+1 680172 L1823 2016 1788 927*2^2258112+1 679763 L4287 2016 1789 265*2^2258071-1 679750 L2484 2018 1790 561*2^2256600+1 679308 L3877 2015 1791 495*2^2255944+1 679110 L4119 2015 1792 129*2^2255199+1 678885 L3049 2014 1793 735*2^2254660+1 678724 L4283 2016 1794 973*2^2254320+1 678621 L1204 2016 1795 275102*151^311399-1 678537 L4001 2018 1796 603*2^2252402+1 678044 L1803 2016 1797 1029*2^2252198+1 677983 L3125 2016 1798 39*2^2251104-1 677652 L177 2015 1799 575*2^2250751+1 677547 L1741 2015 1800e 2838*88^348438+1 677536 L4944 2020 1801 725*2^2250697+1 677531 L2859 2016 1802 65*2^2250637+1 677512 L3487 2013 1803 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 1804 187*2^2249974+1 677312 L2322 2014 1805 141*2^2249967+1 677310 L3877 2014 1806 459*2^2249183+1 677075 L3877 2015 1807 319*2^2248914+1 676994 L2322 2015 1808 569*2^2248709+1 676932 L4133 2015 1809 221*2^2248363+1 676828 L1130 2014 1810 144912*151^310514-1 676609 L4001 2018 1811 649*2^2247490+1 676565 L1204 2016 1812 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 1813 721*2^2246420+1 676243 L3037 2016 1814 875*2^2246363+1 676226 L2859 2016 1815 3888*931^227714-1 676075 L4001 2018 1816 347*2^2245598-1 675995 L2519 2017 1817 1199*2^2244631+1 675705 L3593 2016 1818 197*2^2244347+1 675619 L1129 2014 1819 5055*2^2242777-1 675147 L4036 2015 1820 651*2^2241783+1 674847 L3260 2016 1821 35*2^2241049+1 674625 L2742 2013 1822 4161*2^2240358-1 674419 L1959 2016 1823 164978*151^309413-1 674210 L4001 2018 1824b 2354*138^314727+1 673482 L4944 2020 1825 20*698^236810-1 673455 L4944 2020 1826 146*447^254042-1 673292 L4001 2018 1827 675*2^2236244+1 673180 L4191 2016 1828 615*2^2235833+1 673056 L1823 2016 1829 53069*28^465060-1 673021 p257 2016 1830 831*2^2235253+1 672882 L3432 2013 1831 185*2^2235003+1 672806 L2322 2014 1832 103*2^2234536+1 672665 L3865 2014 1833 885*2^2234318+1 672600 L3125 2016 1834 963*2^2234249+1 672579 L1823 2016 1835 305*2^2233655+1 672400 L4118 2015 1836 267*2^2233376+1 672316 L1792 2014 1837d 221*994^224221-1 672080 L4944 2020 1838 103*2^2232551-1 672067 L2484 2013 1839 889*2^2231034+1 671612 L2526 2016 1840e 1779*88^345359+1 671548 L4944 2020 1841 907*2^2230776+1 671534 L4269 2016 1842 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 1843 1425*2^2229009+1 671002 L1134 2016 1844 747*2^2228814+1 670943 L2526 2016 1845 969*2^2228379+1 670812 L4262 2016 1846 887*2^2228179+1 670752 L2840 2015 1847 130816^131072+1 670651 g308 2003 Generalized Fermat 1848 1123*2^2227338+1 670499 L3924 2015 1849 213*2^2226329+1 670195 L2125 2014 1850 505*2^2225296+1 669884 L4111 2015 1851 11*878^227481+1 669591 L4944 2019 1852 271*2^2223601-1 669374 L2484 2018 1853 325*2^2223243-1 669266 L2235 2016 1854 84363*2^2222321+1 668991 L541 2014 1855 2516745*2^2222222+1 668962 p396 2017 1856 7043*48^397817-1 668831 p255 2016 1857 1137*2^2221062+1 668610 L4040 2015 1858 152*806^229984-1 668413 L4001 2018 1859 1031*2^2218785+1 667924 L1204 2015 1860 911*2^2218151+1 667733 L3260 2015 1861 27*2^2218064+1 667706 L690 2009 1862 587*2^2217355+1 667494 L4109 2015 1863 547*2^2216110+1 667119 L2322 2015 1864 67*2^2215581-1 666959 L268 2010 1865 33*2^2215291-1 666871 L3345 2013 1866 157533*2^2214598-1 666666 L3494 2013 1867 1105*2^2213846+1 666438 L2321 2015 1868 33*2^2212971-1 666173 L3345 2013 1869 101*2^2212769+1 666112 L1741 2014 1870 3*10^665829+1 665830 p300 2012 1871 4207801666259*2^2211084-1 665616 L257 2019 1872 631*2^2210260+1 665358 L2322 2015 1873 479*2^2209541+1 665141 L4106 2015 1874 165*2^2207550-1 664541 L2055 2011 1875 819*2^2206370+1 664187 L2526 2015 1876 19*2^2206266+1 664154 p189 2006 1877 45*2^2205977-1 664067 L1862 2015 1878 1323*2^2205832+1 664025 L4893 2019 1879 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 1880 73*416^253392+1 663660 L3610 2015 1881 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 1882 1041*2^2201196+1 662630 L3719 2015 1883 481*2^2201148+1 662615 L1741 2015 1884 1344*73^355570+1 662545 L3610 2014 1885 783*2^2200256+1 662346 L3924 2015 1886 969*2^2200223+1 662337 L1209 2015 1887 173*2^2199301+1 662058 L1204 2014 1888 5077*2^2198565-1 661838 L251 2008 1889 114487*2^2198389-1 661787 L179 2006 1890 1035*2^2197489+1 661514 L2517 2014 1891 903*2^2197294+1 661455 L2322 2014 1892 404882*43^404882-1 661368 p310 2011 Generalized Woodall 1893 638*520^243506-1 661366 L4877 2019 1894a 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 1895 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 1896 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 1897 10880*151^302997-1 660228 L4001 2018 1898 1073*2^2193069+1 660183 L2487 2014 1899 169*2^2193049-1 660176 L2484 2018 1900 202064*151^302700-1 659582 L4001 2018 1901 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 1902 819*2^2190853+1 659516 L3234 2014 1903 1179*2^2189870+1 659220 L2517 2014 1904 269*2^2189235+1 659028 L1204 2014 1905 39*2^2188855+1 658913 p286 2013 1906 433*2^2188076+1 658680 L3855 2014 1907 1323*2^2186806+1 658298 L4974 2019 1908 815*2^2185439+1 657886 L3035 2014 1909 249*2^2185003+1 657754 L1300 2014 1910 585*2^2184510+1 657606 L3838 2014 1911 1033*2^2183858+1 657410 L3865 2014 1912 1035*2^2183770+1 657384 L3514 2014 1913 193020*151^301686-1 657373 L4001 2018 1914d 353938*7^777777+1 657304 L4789 2020 1915 1179*2^2182691+1 657059 L2163 2014 1916 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 1917 23902*52^382687+1 656697 L4876 2019 1918 525*2^2180848+1 656504 L3797 2014 1919 135*2^2180256-1 656325 L1959 2019 1920 1107*2^2180142+1 656292 L1741 2014 1921 447*2^2180102+1 656279 L3760 2014 1922 315*2^2179612-1 656132 L2235 2015 1923 1423*2^2179023-1 655955 L3887 2015 1924 995*2^2178819+1 655893 L1741 2014 1925 1423*2^2178363-1 655756 L3887 2015 1926 196597*2^2178109-1 655682 L175 2006 1927 6*10^655642+1 655643 L5009 2019 1928 879*2^2177186+1 655402 L2981 2014 1929 67*410^250678+1 654970 L4444 2019 1930 70082*5^936972-1 654921 L3523 2013 1931 699*2^2175031+1 654753 L3865 2014 1932 69*2^2174213-1 654506 L2055 2012 1933 1069*2^2174122+1 654479 L3865 2014 1934 793*2^2173720+1 654358 L2322 2014 1935 3267*2^2173170+1 654193 L1204 2019 1936 651*2^2173159+1 654189 L3864 2014 1937 187*2^2172693-1 654049 L1959 2019 1938 10001*2^2172615+1 654027 L4405 2018 1939 1011*2^2172063+1 653860 L2826 2014 1940 1105*2^2171956+1 653827 L3035 2014 1941 4165*2^2171145-1 653584 L1959 2017 1942 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 1943 739*2^2170786+1 653475 L2121 2014 1944 701*2^2169041+1 652950 L3863 2014 1945e 1779*88^335783+1 652928 L4944 2020 1946 295*2^2168448+1 652771 L1935 2014 1947 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 1948 359*2^2165551+1 651899 L3838 2014 1949 1059*2^2164149+1 651477 L2322 2014 1950 329*2^2163717+1 651347 L2117 2014 1951 559*2^2163382+1 651246 L1741 2014 1952 775*2^2162344+1 650934 L3588 2014 1953 21*2^2160479-1 650371 L2074 2012 1954 102976*5^929801-1 649909 L3313 2013 1955 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 1956 617*2^2156699+1 649234 L1675 2014 1957 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 1958 2*3^1360104-1 648935 p390 2015 1959 483*2^2155456+1 648860 L3760 2014 1960 105*2^2155392+1 648840 L3580 2014 1961 40*1017^215605+1 648396 L4927 2018 1962 31340*6^833096+1 648280 p271 2013 1963 427*2^2153306+1 648213 L3838 2014 1964 261*2^2152805+1 648062 L1125 2014 1965 371*2^2150871+1 647480 L2545 2014 1966 111*2^2150802-1 647458 L2484 2013 1967 357*2^2148518+1 646771 L1741 2014 1968 993*2^2148205+1 646678 L1741 2014 1969 67*2^2148060+1 646633 L3276 2013 1970 243*2^2147387-1 646431 L2444 2014 1971 693*2^2147024+1 646322 L3862 2014 1972 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 1973 143157*2^2144728+1 645633 L4504 2016 1974 509*2^2144181+1 645466 L3035 2014 1975 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 1976 161*2^2142431+1 644939 L3105 2014 1977 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 1978 23*2^2141626-1 644696 L545 2008 1979 519*2^2140311+1 644301 L2659 2014 1980 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 1981 315*2^2139665+1 644106 L3838 2014 1982 193*2^2139400+1 644026 L3538 2014 1983 1113*2^2139060+1 643925 L3914 2014 1984 292402*159^292402+1 643699 g407 2012 Generalized Cullen 1985 307*2^2137553-1 643471 L2235 2015 1986 1051*2^2137440+1 643437 L3865 2014 1987 1185*2^2137344+1 643408 L3877 2014 1988 405*2^2137280-1 643388 L1862 2016 1989 513*2^2135642+1 642896 L3843 2014 1990 241*2^2135279-1 642786 L2484 2018 1991 915*2^2135151+1 642748 L2322 2014 1992 61*2^2134577-1 642574 L2055 2011 1993 2*3^1346542+1 642465 L5043 2020 1994 93*10^642225-1 642227 L4789 2020 Near-repdigit 1995 711*2^2132477+1 641943 L2125 2014 1996 81*984^214452+1 641856 L4944 2020 Generalized Fermat 1997 215*2^2131988-1 641795 L2484 2018 1998 319*2^2130729-1 641416 L1817 2015 1999 78792*151^294324-1 641331 L4001 2018 2000 75*2^2130432-1 641326 L2055 2011 2001 1145*2^2130307+1 641290 L3909 2014 2002 110488*5^917100+1 641031 L3354 2013 2003 37*2^2128328+1 640693 L3422 2013 2004 103*2^2128242+1 640667 L3787 2014 2005 185*2^2127966-1 640584 L1959 2019 2006 3762*70^347127+1 640487 L4876 2019 2007 253*2^2126968+1 640284 L1935 2014 2008 583*2^2126166+1 640043 L1741 2014 2009 999*2^2125575+1 639865 L1741 2014 2010 7*848^218439-1 639677 L4944 2020 2011 587*2^2124947+1 639676 L3838 2014 2012 451*2^2124636+1 639582 L1741 2014 2013 887*2^2124027+1 639399 L3865 2014 2014 693*2^2121393+1 638606 L3278 2014 2015 8331405*2^2120345-1 638295 L2055 2013 2016 975*2^2119209+1 637949 L1158 2014 2017 33*2^2118570-1 637755 L3345 2013 2018 117*2^2117600-1 637464 L1959 2019 2019 254*5^911506-1 637118 p292 2010 2020 1139*2^2115949+1 636968 L3865 2014 2021 771*2^2115741+1 636905 L1675 2014 2022 411*2^2115559+1 636850 L2840 2014 2023 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 2024 929*2^2114679+1 636585 L3035 2014 2025 1065*2^2113463+1 636219 L2826 2014 2026 591*2^2111001+1 635478 L1360 2014 2027 1051*2^2109344+1 634979 L3035 2014 2028 433*2^2109146+1 634919 L1935 2014 2029 519*2^2108910+1 634848 L1356 2014 2030 1047*2^2108751+1 634801 L3824 2014 2031 3261*46^381439+1 634245 L5000 2019 2032 765*2^2106027+1 633981 L3838 2014 2033 503*2^2106013+1 633976 L1741 2014 2034 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 2035 113*2^2104825+1 633618 L3785 2014 2036 381*2^2103999+1 633370 L2322 2014 2037 1246461300659*2^2103424-1 633206 L2484 2015 2038 57*2^2103370-1 633180 L2055 2011 2039 539*2^2102167+1 632819 L3125 2014 2040d 1425*2^2101260-1 632546 L1134 2020 2041 1001*2^2101062-1 632486 L4518 2020 2042d 179*894^214290-1 632445 L5209 2020 2043 687*2^2100243+1 632239 L3867 2014 2044 329*2^2099771+1 632097 L2507 2014 2045 35*2^2099769+1 632095 L3432 2013 2046 405*2^2099716+1 632081 L3154 2014 2047 575*2^2098483+1 631710 L3168 2014 2048b 695265*2^2097153-1 631312 L466 2020 2049 208703*2^2097153+1 631312 L466 2018 2050 28401*2^2097152+1 631311 L4547 2017 2051 907*2^2095896+1 630931 L1129 2014 2052 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 2053 2503*2^2094587-1 630537 L4113 2017 2054 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 2055 103*2^2093350+1 630164 L3432 2013 2056 4001*2^2093286-1 630146 L1959 2014 2057 14172*1027^209226-1 630103 L4001 2018 2058 369*2^2093022+1 630065 L3514 2014 2059 217*2^2092673-1 629960 L2484 2018 2060 2188*253^262084+1 629823 L4944 2020 2061 68*920^212407+1 629532 L4001 2017 2062 165*2^2090645+1 629350 L1209 2014 2063 1119*2^2090509+1 629309 L2520 2014 2064 941*2^2090243+1 629229 L1356 2014 2065 62722^131072+1 628808 g308 2003 Generalized Fermat 2066 401*2^2088713+1 628768 L3035 2014 2067 819*2^2088423+1 628681 L3890 2014 2068 1009*2^2087690+1 628461 L3728 2014 2069 85*2^2087651-1 628448 L2338 2013 2070 467*2^2085835+1 627902 L3625 2014 2071 563528*13^563528-1 627745 p262 2009 Generalized Woodall 2072 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 2073 18*984^209436-1 626843 L4944 2019 2074 247*2^2082202+1 626808 L3294 2014 2075 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 2076 159*2^2081069-1 626467 L1959 2019 2077 27*634^223550+1 626409 L4001 2018 2078 655*2^2080562+1 626315 L3859 2014 2079 201*2^2080464+1 626285 L1741 2014 2080 269328*211^269328+1 626000 p354 2012 Generalized Cullen 2081 153*2^2079401+1 625965 L3601 2014 2082 279*2^2079167+1 625895 L2413 2014 2083 692*95^316400-1 625755 L4444 2019 2084 643*2^2078306+1 625636 L3035 2014 2085 79*2^2078162+1 625591 L2117 2013 2086 1485*2^2077172+1 625295 L1134 2015 2087 239*2^2076663+1 625141 L2413 2014 2088 1003*2^2076535-1 625103 L51 2008 2089 2186*7^739474-1 624932 p258 2011 2090 73*2^2075936+1 624921 L3464 2013 2091 807*2^2075519+1 624797 L3555 2014 2092 1425*2^2075382+1 624756 L1134 2015 2093 65*2^2073229+1 624106 L1480 2013 2094 693*2^2072564+1 623907 L3290 2014 2095 55*552^227540-1 623903 L4786 2019 2096 375*2^2071598+1 623616 L2413 2014 2097 73*2^2071592+1 623614 L1480 2013 2098 125*2^2071555+1 623603 L3432 2013 2099 1107*2^2071480+1 623581 L2520 2014 2100 6207*28^430803-1 623444 L1471 2014 2101 299*2^2070979+1 623430 L1741 2014 2102 99*2^2070908-1 623408 L1862 2015 2103 19062*1027^206877-1 623029 L4444 2018 2104 891*2^2069024+1 622842 L2520 2014 2105 943*2^2068944+1 622818 L1741 2014 2106 579*2^2068647+1 622728 L2967 2014 2107 911*2^2068497+1 622683 L1741 2014 2108 1005*2^2067272+1 622314 L3895 2014 2109 393*2^2066540+1 622094 L3700 2014 2110 951*2^2065180+1 621685 L1403 2014 2111 915*2^2064663+1 621529 L3035 2014 2112 213*2^2064426-1 621457 L1863 2017 2113 29*468^232718+1 621416 L4832 2018 2114 1455*2^2064103-1 621361 L1134 2016 2115 9*2^2060941-1 620407 L503 2008 2116 1455*2^2059553+1 619991 L1134 2015 2117 659*2^2058623+1 619711 L3860 2014 2118 128448*151^284308-1 619506 L4001 2018 2119 575*2^2056081+1 618945 L1935 2014 2120 1095*2^2055975+1 618914 L3518 2014 2121 3*10^618853+1 618854 p300 2012 2122 819*2^2054470+1 618461 L2826 2014 2123 969*2^2054054+1 618335 L3668 2014 2124 3394*28^427262+1 618320 p385 2015 2125 318564*151^283711-1 618206 L4444 2018 2126 675*2^2053578+1 618192 L1792 2014 2127 178998*151^283702-1 618186 L4001 2018 2128 5916*277^252878-1 617654 L4944 2020 2129 739*2^2051658+1 617614 L3838 2014 2130 71*2^2051313+1 617509 L1480 2013 2131 265*2^2051155-1 617462 L2484 2018 2132 779*2^2050881+1 617380 L3453 2014 2133 75*2^2050637-1 617306 L2055 2011 2134 935*2^2050113+1 617149 L3696 2014 2135 847*2^2049400+1 616934 L2322 2014 2136 4998*235^260170-1 616885 L4944 2019 2137 73*2^2048754+1 616739 L3432 2013 2138 527*2^2045751+1 615836 L4123 2014 2139 785*2^2045419+1 615736 L3861 2014 2140 195*2^2044789+1 615546 L3744 2014 2141 537*2^2044162+1 615357 L1741 2014 2142 413*2^2043829+1 615257 L1300 2014 2143 345*2^2042295+1 614795 L2562 2014 2144 216848*151^282017-1 614514 L4700 2018 2145 104*579^222402-1 614428 L4001 2018 2146 57257*2^2040062-1 614125 L4812 2019 2147 1069*2^2039562+1 613973 L1741 2014 2148 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 2149 7188*313^245886-1 613624 L4944 2020 2150 1085*2^2038005+1 613504 L2520 2014 2151 125*2^2037752-1 613427 L2444 2014 2152 1069*2^2036902+1 613172 L3876 2014 2153 10020*171^274566+1 613109 L4944 2019 2154 417*2^2036482+1 613045 L1847 2014 2155 701*2^2035955+1 612887 L2823 2014 2156 1025*2^2034405+1 612420 L1741 2014 2157 651*2^2034352+1 612404 L3459 2014 2158 121*2^2033941-1 612280 L162 2006 2159 19683*2^2033900+1 612270 L1823 2019 2160 57*2^2033643+1 612190 L3432 2013 2161 4175*2^2032552-1 611863 L1959 2017 2162 249*2^2031803+1 611637 L2327 2014 2163 783*2^2031629+1 611585 L2126 2014 2164 (290^124116-1)^2-2 611246 p403 2019 2165 872*268^251714-1 611199 L4944 2019 2166 4157*2^2029894-1 611063 L1959 2017 2167 293028*151^280273-1 610714 L4001 2018 2168 285*2^2028495+1 610641 L2594 2014 2169 775*2^2027562+1 610360 L1204 2014 2170 199*686^215171-1 610297 L4001 2018 2171 4190*235^257371-1 610248 L4944 2019 2172 621*2^2026864+1 610150 L3446 2014 2173 357*2^2026846+1 610144 L2163 2014 2174 122112*151^279966-1 610045 L4001 2018 2175 879*2^2026501+1 610041 L1139 2014 2176 4185*2^2026400-1 610011 L1959 2017 2177 787*2^2026242+1 609963 L2122 2014 2178 2*3^1277862+1 609696 L5043 2020 2179 273*2^2024810-1 609531 L5118 2020 2180 919*2^2024094+1 609316 L1741 2014 2181 325*2^2024035-1 609298 L4076 2015 2182 235*2^2023486+1 609133 L2594 2014 2183 195*2^2023030+1 608996 L4122 2014 2184 8*10^608989-1 608990 p297 2011 Near-repdigit 2185 1485*2^2022873+1 608949 L1134 2015 2186 233*2^2022801+1 608927 L3767 2014 2187 521*2^2022059+1 608704 L3760 2014 2188 5678*1027^202018-1 608396 L4001 2018 2189 94*790^209857+1 608090 L4001 2018 2190 431*2^2019693+1 607991 L2100 2014 2191 1155*2^2019244+1 607857 L3873 2014 2192 195*2^2018866+1 607742 L2413 2014 2193 59506*6^780877+1 607646 p254 2013 2194 4101*2^2018133-1 607523 L1959 2017 2195 2152*177^270059+1 607089 L4944 2020 2196 4081*2^2015959-1 606868 L1959 2017 2197 4191*2^2015150-1 606625 L1959 2017 2198 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 2199 251749*2^2013995-1 606279 L436 2007 Woodall 2200 126*523^222906-1 605973 L4001 2017 2201 1023*2^2012570+1 605847 L1741 2014 2202 403*2^2012412+1 605799 L3538 2014 2203 1173*2^2012185+1 605732 L1413 2014 2204 85*730^211537+1 605701 L4001 2018 2205 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 2206 751*2^2010924+1 605352 L3859 2014 2207 101*2^2009735+1 604993 L3432 2013 2208 1069*2^2008558+1 604640 L1595 2014 2209 881*2^2008309+1 604565 L3260 2014 2210 959*2^2008035+1 604482 L1422 2014 2211 633*2^2007897+1 604441 L3857 2014 2212 143*2^2007888-1 604437 L384 2016 2213 4*5^864751-1 604436 L4881 2019 2214 223*2^2007748+1 604395 L1741 2014 2215 461*2^2007631+1 604360 L1300 2014 2216 477*2^2006719+1 604086 L3803 2014 2217 428551*2^2006520+1 604029 g411 2011 2218 1097*2^2005203+1 603630 L3868 2014 2219 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 2220 6*5^862923+1 603159 L4965 2020 2221 493*2^2002964+1 602955 L3800 2014 2222 315*2^2002904+1 602937 L3790 2014 2223 77*2^2002742-1 602888 L2074 2013 2224 585*2^2002589+1 602843 L3035 2014 2225 1059*2^2001821+1 602612 L2103 2014 2226 249*2^2001627-1 602553 L1862 2015 2227 47*158^273942-1 602307 L541 2020 2228 1115*2^2000291+1 602151 L3588 2014 2229 891*2^2000268+1 602144 L3440 2014 2230 17872*430^228564+1 601921 L4955 2020 2231 343388*151^276191-1 601820 L4700 2018 2232 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 2233 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 2234 573*2^1998232+1 601531 L1300 2013 2235 1323*2^1998103-1 601493 L1828 2016 2236 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 2237 669*2^1995918+1 600835 L2659 2013 2238 19861029*2^1995311-1 600656 L895 2013 2239 261*2^1995105+1 600589 L3378 2013 2240 68398*1027^199397+1 600503 L4001 2018 2241 1031*2^1994741+1 600480 L2626 2014 2242 577*2^1994634+1 600448 L3035 2013 2243 497*2^1994051+1 600272 L2413 2013 2244 8331405*2^1993674-1 600163 L260 2011 2245 467917*2^1993429-1 600088 L160 2005 2246 137137*2^1993201-1 600019 L321 2007 2247 589*2^1992774+1 599888 L2322 2013 2248 209*2^1992071+1 599676 L3422 2013 2249 2955*2^1991780-1 599589 L1862 2019 2250 317*2^1991592-1 599532 L1809 2014 2251 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 2252 547*2^1990606+1 599235 L3173 2013 2253 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 2254 508*1017^199220-1 599122 L4700 2017 2255 105*2^1989208-1 598814 L1959 2014 2256 1019*2^1988959+1 598740 L3514 2013 2257 1455*2^1988795-1 598691 L1134 2015 2258 629*2^1988579+1 598625 L2117 2013 2259 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 2260 733*2^1988086+1 598477 L3502 2013 2261 135*2^1987735+1 598370 L1300 2013 2262 162434*5^856004-1 598327 L3410 2013 2263 749*2^1986977+1 598143 L1492 2013 2264 4141*2^1986959-1 598138 L1959 2016 2265d 34*3^1253399+1 598025 L4799 2020 2266 3792*217^255934-1 597984 L4944 2020 2267 32*236^251993+1 597959 L4786 2019 2268 174344*5^855138-1 597722 L3354 2013 2269 6292*1027^198459+1 597678 L4001 2018 2270 4125*2^1984855-1 597505 L1959 2017 2271 8331405*2^1984565-1 597421 L260 2011 2272 1133*2^1984488-1 597394 L1828 2016 2273 195*2^1983875-1 597209 L1828 2014 2274 445*2^1980900+1 596313 L3577 2013 2275 731*2^1980503+1 596194 L3035 2013 2276 1147*2^1978390+1 595558 L1741 2013 2277 5758*211^256223+1 595539 L4944 2020 2278 25*2^1977369-1 595249 L426 2008 2279 245478*151^273168-1 595233 L4001 2018 2280 1197*2^1977152-1 595186 L1828 2016 2281 43*780^205685+1 594863 L4944 2019 2282 1234*95^300749-1 594802 L4444 2019 2283 866*183^262883+1 594763 L3610 2015 2284f 386*117^287544+1 594698 L4944 2020 2285 1149*2^1975451-1 594674 L1828 2016 2286 381*2^1974841-1 594489 L1809 2014 2287 19920911*2^1974666-1 594441 L806 2017 2288 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 2289 148323*2^1973319-1 594034 L587 2011 2290 705*2^1972428+1 593763 L3043 2013 2291 549*2^1971183+1 593388 L2840 2013 2292 4197*2^1970430-1 593163 L1959 2016 2293 1387*2^1970033-1 593043 L1828 2016 2294 1616*277^242731-1 592869 L4944 2020 2295 441*2^1968431+1 592560 L3035 2013 2296 1485*2^1968400-1 592551 L1134 2014 2297 1159*2^1968190+1 592488 L3035 2013 2298 731*2^1968039+1 592442 L3682 2013 2299 833*2^1967841+1 592383 L3744 2013 2300 989*2^1967819+1 592376 L3738 2013 2301 1035*2^1967708+1 592343 L3739 2013 2302 148*789^204455+1 592325 L4944 2019 2303 1309*2^1967613-1 592314 L1828 2016 2304 4025*2^1966732-1 592049 L1959 2016 2305 203*2^1966689+1 592035 L1408 2013 2306 101594*151^271697-1 592027 L4001 2018 2307 273*2^1966630+1 592018 L2532 2013 2308 93*2^1965880+1 591791 L1210 2011 2309 253*2^1965215-1 591592 L3345 2012 2310 1089*2^1964781+1 591462 L3737 2013 2311 10*173^264234+1 591369 L1471 2015 2312 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 2313 125*2^1963964-1 591215 L1959 2014 2314 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 2315 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 2316 102088*6^759012-1 590632 L4521 2019 2317 4065*2^1961907-1 590597 L1959 2016 2318 113*2^1960341+1 590124 L3091 2013 2319 57406*5^844253-1 590113 L3313 2012 2320 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 2321 1111*2^1959625-1 589909 L1828 2016 2322 803*2^1959445+1 589855 L2724 2013 2323 45*2^1957377-1 589231 L1862 2014 2324 1065*2^1957291-1 589207 L1828 2016 2325 1149*2^1957223+1 589186 L1935 2013 2326 6326*333^233552+1 589126 L4001 2017 2327 129*2^1956915+1 589093 L2826 2013 2328 229*2^1956294+1 588906 L3548 2013 2329 74*500^218184-1 588874 p355 2013 2330 1045*2^1955356+1 588624 L1186 2013 2331 112*113^286643-1 588503 L426 2012 2332 1137*2^1954730+1 588436 L3733 2013 2333 673*2^1954456+1 588353 L3666 2013 2334 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 2335 121*2^1954243-1 588288 L162 2006 2336 351*2^1954003+1 588217 L2413 2013 2337 641*2^1952941+1 587897 L3487 2013 2338 188378*151^269725-1 587730 L4001 2018 2339 4027*2^1951909-1 587587 L1959 2016 2340b 1019*138^274533+1 587471 L4944 2020 2341 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 2342 1173*2^1951169+1 587364 L3171 2013 2343 1101*2^1950812+1 587256 L2719 2013 2344c P587124 587124 p414 2020 2345 4007*2^1949916-1 586987 L1959 2016 2346 313*2^1949544+1 586874 L2520 2013 2347 391*2^1949159-1 586758 L2519 2014 2348 539*2^1949135+1 586751 L1130 2013 2349 1167*2^1949013-1 586715 L1828 2016 2350 351*2^1947281-1 586193 L1809 2014 2351 21290*745^203998-1 585919 L4189 2017 2352 111*2^1946322-1 585904 L2484 2012 2353 1209*2^1946260-1 585886 L1828 2016 2354 1339*2^1945965-1 585797 L1828 2016 2355 149*2^1945668-1 585707 L3967 2015 2356 4011*2^1945630-1 585697 L1959 2016 2357 639*2^1945473+1 585649 L2649 2013 2358 675*2^1945232+1 585577 L3688 2013 2359 30364*1027^194319+1 585210 L4001 2018 2360 417*2^1943755+1 585132 L3173 2013 2361 89*2^1943337+1 585005 L2413 2011 2362 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 2363 269*2^1942389+1 584720 L3548 2013 2364 4173*2^1941820-1 584550 L1959 2016 2365 1093*2^1941672+1 584505 L2322 2013 2366 193*2^1940804+1 584243 L3418 2013 2367 827*2^1940747+1 584226 L3206 2013 2368 221*2^1940211+1 584065 L2327 2013 2369 421*138^272919-1 584017 L4944 2020 2370 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 2371 9*10^583696+1 583697 L4789 2020 Generalized Fermat 2372 575*2^1938673+1 583602 L2019 2013 2373 1179*2^1938570+1 583571 L1300 2013 2374 865*2^1938180+1 583454 L3233 2013 2375 17702*1027^193732-1 583442 L4700 2018 2376 1091*2^1937857+1 583357 L3731 2013 2377 555*2^1937595+1 583277 L2826 2013 2378 9299*2^1937309+1 583193 L3886 2014 2379 30*386^225439+1 583120 L3610 2015 2380 34910*430^221380-1 583002 L4001 2015 2381 56064*1027^193573+1 582964 L4700 2018 2382 239*2^1936025+1 582804 L1741 2013 2383 1191*2^1935613-1 582681 L1828 2016 2384 4047*2^1934881-1 582461 L1959 2016 2385 357*2^1934704-1 582407 L1809 2014 2386 182627*2^1934664-1 582398 L3336 2012 2387 64*497^215875-1 582078 L4925 2019 2388 14172*1027^193213-1 581879 L4001 2018 2389 363*2^1932724+1 581811 L3171 2013 2390 1265*2^1932660-1 581792 L1828 2016 2391 134*383^225187+1 581705 L2012 2019 2392 143*2^1932112-1 581626 L1828 2012 2393 48764*5^831946-1 581510 L3313 2012 2394 1095*2^1931213-1 581357 L1828 2016 2395 1365*2^1931200+1 581353 L1134 2016 2396b 1789*138^271671+1 581347 L5211 2020 2397 387*2^1930200+1 581051 L1129 2013 2398 2135489665061*2^1929362-1 580809 L2484 2015 2399 1101*2^1929297-1 580780 L1828 2016 2400 735*2^1929225+1 580758 L3378 2013 2401 214519*2^1929114+1 580727 g346 2006 2402 1071*2^1928515-1 580544 L1828 2016 2403 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 2404 633*2^1925684+1 579692 L1408 2013 2405 5724*313^232269-1 579642 L4944 2020 2406c 968*288^235591+1 579414 L4944 2020 2407 1283*2^1924402-1 579306 L1828 2016 2408 1005*2^1923658+1 579082 L3514 2013 2409 243*2^1923567-1 579054 L2055 2011 2410 4005*2^1923385-1 579001 L1959 2016 2411 319*2^1923378+1 578997 L3548 2013 2412 280992*151^265553-1 578640 L4001 2018 2413 851*2^1922179+1 578637 L3180 2013 2414 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 2415 314159*2^1920875+1 578247 L4994 2019 2416 157*2^1920152+1 578026 L2494 2013 2417 14066*60^324990+1 577886 L4444 2018 2418 143171*2^1918679+1 577586 L4504 2017 2419 1187*2^1918188-1 577436 L1828 2015 2420 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 2421 75492*151^264966-1 577360 L4444 2018 2422 1071*2^1917749-1 577304 L1828 2015 2423 335*2^1917610-1 577261 L1809 2014 2424 51*712^202369-1 577256 L4001 2018 2425 133631*28^398790-1 577118 p255 2013 2426 191*2^1916611+1 576960 L1792 2013 2427 1087*2^1916212+1 576841 L2719 2013 2428 1065*2^1916200-1 576837 L1828 2015 2429 1682*161^261371+1 576804 L4944 2020 2430 1125*2^1915695+1 576685 L3719 2013 2431 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 2432 63348*1027^191392+1 576396 L4001 2018 2433 93788*151^264402-1 576131 L4001 2018 2434 207*2^1913067+1 575893 L1741 2013 2435 80618*151^264291-1 575889 L4001 2018 2436 849*2^1913021+1 575880 L2413 2013 2437 72844*1027^191206+1 575836 L4001 2018 2438 859*430^218562+1 575580 L4944 2020 2439 85*2^1910520+1 575126 L2703 2011 2440 267*2^1909876-1 574933 L1828 2013 2441 4103*2^1909766-1 574901 L1959 2016 2442 621*2^1909716+1 574885 L2117 2013 2443 611*2^1909525+1 574828 L2413 2013 2444 379*2^1909097-1 574699 L1809 2014 2445 435*2^1908579+1 574543 L3385 2013 2446 4035*2^1907685-1 574275 L1959 2016 2447 291*2^1907541-1 574230 L2484 2013 2448 573*2^1907450+1 574203 L2520 2013 2449 10005*2^1906876-1 574031 L4405 2019 2450 14*814^197138-1 573796 L4001 2018 2451 263*2^1904406-1 573286 L2484 2015 2452 969*2^1904357+1 573272 L2719 2013 2453 17*962^192155+1 573234 L4786 2020 2454 27*2^1902689-1 572768 L1153 2009 2455 553*2^1902102+1 572593 L2520 2013 2456 4171*2^1901433-1 572392 L1959 2016 2457e 86*394^220461-1 572208 L541 2020 2458 271562*151^262431-1 571837 L4001 2018 2459 1323*2^1899548-1 571825 L1828 2014 2460 10005*2^1898938-1 571642 L4405 2019 2461 4806*37^364466-1 571560 L4001 2015 2462 314159*2^1898333+1 571461 L4994 2019 2463 633*2^1897632+1 571247 L1741 2013 2464 1131*2^1897379-1 571172 L1828 2014 2465 7092*313^228770-1 570910 L4944 2020 2466 707*2^1895035+1 570466 L3035 2013 2467 3945*2^1894329-1 570254 L4036 2015 2468 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 2469 4157*2^1892772-1 569785 L1959 2015 2470 154*730^198988+1 569770 L4001 2018 2471 10005*2^1892466-1 569694 L4405 2019 2472 1053*2^1891799-1 569492 L1828 2014 2473 687*2^1891730+1 569471 L3221 2013 2474 5758*211^244970+1 569384 L4944 2020 2475 87*2^1891391+1 569368 L2673 2011 2476 85287*2^1890011+1 568955 p254 2011 2477 221*2^1889983+1 568944 L1741 2013 2478 585*2^1887819+1 568293 L3171 2013 2479 347*2^1887507+1 568199 L3548 2013 2480 391*2^1886863-1 568005 L1809 2014 2481 791*2^1885961+1 567734 L3075 2013 2482 975*2^1885724+1 567663 L1129 2013 2483 22*615^203539-1 567647 L4001 2018 2484 987*2^1885160+1 567493 L2070 2013 2485 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 2486 744716047603963*2^1884575-1 567329 L257 2013 2487 485*2^1884579+1 567318 L3548 2013 2488 879*2^1883385+1 566959 L3223 2013 2489 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 2490 693*2^1881882+1 566506 L2322 2013 2491 30*7^670289+1 566462 L3610 2014 2492 639*2^1880451+1 566075 L3141 2013 2493 277*2^1880022+1 565946 L3418 2013 2494 46498*1027^187913+1 565918 L4001 2018 2495 2655*2^1879275-1 565722 L2484 2018 2496 89*2^1879132-1 565678 L1828 2013 2497 441*2^1879067+1 565659 L2840 2013 2498 283*2^1879051-1 565654 L2484 2015 2499 214*378^219424-1 565566 L4944 2020 2500 729*2^1877995+1 565336 L1792 2013 2501 645*2^1877756+1 565264 L2981 2013 2502 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 2503 613*2^1876758+1 564964 L2413 2013 2504 10005*2^1876648-1 564932 L4405 2019 2505 267*2^1876604+1 564917 L1792 2013 2506 345067*2^1876573-1 564911 g59 2005 2507 1063*2^1876427-1 564864 L1828 2014 2508 1389*2^1876376-1 564849 L1828 2014 2509 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 2510 4015*2^1875453-1 564572 L1959 2014 2511 1043*2^1875213+1 564499 L2413 2013 2512 1209*2^1874804-1 564376 L1828 2014 2513 4125*2^1874718-1 564350 L1959 2015 2514 1199*2^1874495+1 564283 L2827 2013 2515 495*2^1874077+1 564157 L1344 2013 2516 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 2517 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 2518 21*2^1872923-1 563808 L2074 2012 2519 4039*2^1872875-1 563796 L1959 2015 2520 399878576^65536+1 563736 L4964 2019 Generalized Fermat 2521 357*2^1871600-1 563411 L2519 2014 2522 1309*2^1871045-1 563244 L1828 2014 2523 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 2524 735*2^1870118+1 562965 L3075 2013 2525 575*2^1869989+1 562926 L3650 2013 2526 315*2^1869119-1 562664 L2235 2012 2527 19683*2^1868828+1 562578 L3784 2019 2528 933*2^1868602+1 562509 L3709 2013 2529 503*2^1868417+1 562453 L3378 2013 2530 1073*2^1867944-1 562311 L1828 2014 2531 2*1595^175532-1 562188 L4961 2019 Is prime! (562188 decimal digits, p = 9) time : 9987*080 sec* 2532 1115*2^1866094-1 561754 L1828 2014 2533 70*905^189879-1 561408 L541 2017 2534 407*2^1864735+1 561344 L2520 2013 2535 10005*2^1864432-1 561254 L4405 2019 2536 489*2^1864339+1 561225 L2520 2013 2537 427*2^1863702+1 561033 L3586 2013 2538 1161*2^1863637+1 561014 L3213 2013 2539 2*3^1175232+1 560729 p199 2010 2540 347*2^1861974-1 560513 L2519 2014 2541 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 2542 411*2^1861627+1 560409 L1741 2013 2543 281*2^1860862-1 560178 L2484 2015 2544 1165*2^1860749-1 560145 L1828 2014 2545 231*2^1860743-1 560142 L1862 2015 2546 103*2^1860103-1 559949 L2484 2012 2547 350006744^65536+1 559945 L4964 2019 Generalized Fermat 2548 11726*1027^185913-1 559895 L4001 2018 2549 2655*2^1859692-1 559827 L1862 2018 2550 161*2^1859586-1 559794 L177 2013 2551 51*2^1859193+1 559675 L1204 2011 2552 1177*2^1859144+1 559662 L3625 2013 2553 1455*2^1858634-1 559508 L1134 2015 2554 8331405*2^1858587-1 559498 L260 2011 2555 8*3^1172480+1 559417 L4799 2020 2556 669*2^1857223+1 559083 L2413 2013 2557 296990*151^256535-1 558990 L4700 2018 2558 1125*2^1856703-1 558927 L1828 2014 2559d 52600*91^285235+1 558792 L4944 2020 2560 1155*2^1855389-1 558531 L1828 2014 2561 4031*2^1855338-1 558516 L1959 2014 2562 229*372^217261-1 558482 L4876 2019 2563 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 2564 126072*31^374323-1 558257 L2054 2012 2565 3^1170000+3^364398+1 558232 x44 2017 2566 435*2^1853363-1 557921 L4036 2015 2567 1229*2^1853192-1 557870 L1828 2014 2568 3161*618^199877+1 557858 L4714 2018 2569 333*2^1853115-1 557846 L1830 2012 2570 87*2^1852590-1 557688 L2055 2011 2571 765*2^1849609+1 556791 L1792 2013 2572 137*2^1849238-1 556679 L321 2007 2573 639*2^1848903+1 556579 L3439 2013 2574 1061*268^229202-1 556537 L4944 2019 2575 261*2^1848217+1 556372 L1983 2013 2576 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 2577 275*2^1846390-1 555822 L2444 2014 2578 1011*2^1846173+1 555757 L3221 2013 2579 1029*2^1844975+1 555396 L2626 2013 2580 133*2^1843619-1 554987 L1959 2014 2581 261*2^1843555-1 554968 L1828 2013 2582 2^120*611953#*611957^50000+1 554832 p383 2015 2583 73246*1027^184192+1 554713 L4001 2018 2584 953*2^1841461+1 554338 L3612 2013 2585 4171*2^1841157-1 554248 L1959 2016 2586 1089*2^1840695-1 554108 L1828 2014 2587 105*2^1840262-1 553977 L1959 2014 2588 1009*2^1840225-1 553966 L1828 2014 2589 1323*2^1839623-1 553785 L1828 2014 2590 681*2^1839269+1 553678 L3141 2013 2591 399*2^1839019-1 553603 L1809 2014 2592 779*2^1838955+1 553584 L3640 2013 2593 135*2^1838124+1 553333 L3472 2013 2594 15*2^1837873-1 553257 L632 2008 2595 28*392^213295-1 553137 L4001 2017 2596 379*2^1837291-1 553083 L1809 2014 2597 333*2^1837105+1 553027 L3470 2013 2598 4167*2^1836466-1 552835 L1959 2015 2599 309*2^1836139+1 552736 L3460 2013 2600 271018852^65536+1 552666 L4704 2019 Generalized Fermat 2601 4061*2^1835582-1 552569 L1959 2014 2602 423*2^1835585+1 552569 L2873 2013 2603 1181*2^1834802-1 552334 L1828 2014 2604 73*2^1834526+1 552250 L1513 2011 2605 309*2^1834379+1 552206 L3471 2013 2606 3748*333^218908+1 552187 L4575 2017 2607 87*2^1834098+1 552121 L1513 2011 2608 1021*2^1833459-1 551930 L1828 2014 2609 34*813^189659-1 551927 L4001 2018 2610 121458*151^253264-1 551862 L4001 2018 2611 1485*2^1832651-1 551687 L1134 2014 2612 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 2613 549*2^1832457+1 551628 L3641 2013 2614 295*2^1832129-1 551529 L2444 2014 2615 761*2^1831569+1 551361 L2117 2013 2616 519*2^1831415+1 551314 L3277 2013 2617 21*2^1830919+1 551163 g279 2004 2618 197*2^1830255+1 550964 L1360 2013 2619 4*3^1154598+1 550884 L4962 2019 Generalized Fermat 2620 63708*151^252785-1 550818 L4001 2018 2621e 10*3^1153674+1 550444 L4965 2020 2622 6297*46^330940-1 550277 L4001 2019 2623 1021*2^1827279-1 550069 L1828 2013 2624 825*2^1825439+1 549515 L3289 2013 2625 679*2^1824918+1 549358 L2100 2013 2626 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 2627 4029*2^1824569-1 549254 L1959 2015 2628 235*2^1824515-1 549237 L2444 2014 2629 162668*5^785748-1 549220 L3190 2012 2630 389*2^1824385+1 549198 L1487 2013 2631 1135*2^1824103-1 549113 L1828 2013 2632 4005*2^1823819-1 549028 L1959 2015 2633 91179*2^1823580-1 548958 L2777 2016 2634 3874*253^228394+1 548862 L4944 2020 2635 991*2^1822216+1 548545 L1312 2013 2636 13984*24^397259+1 548306 L4806 2019 2637 1089*2^1821417+1 548305 L1741 2013 2638 993*2^1821088+1 548206 L2131 2013 2639 513*2^1820982+1 548173 L2826 2013 2640 933*2^1820068+1 547899 L2895 2013 2641 921*2^1819560+1 547746 L1741 2013 2642 557*2^1819191+1 547634 L2526 2013 2643 20*317^218953+1 547616 L541 2020 2644 593*2^1818825+1 547524 L3630 2013 2645 1161*2^1818637+1 547468 L2399 2013 2646 1387*2^1818593-1 547455 L1828 2012 2647 875*2^1818427+1 547405 L3035 2013 2648 229*2^1818078+1 547299 L3456 2013 2649 454483*2^1817935-1 547259 p77 2014 2650 127*2^1817862+1 547234 L3452 2013 2651 4065*2^1817502-1 547127 L1959 2015 2652 35*2^1817486-1 547120 L2074 2011 2653 1155*2^1816779-1 546909 L1828 2012 2654 69*2^1816739+1 546895 L1204 2011 2655 4101*2^1816007-1 546677 L1959 2015 2656 875*2^1814911+1 546346 L3691 2013 2657 18092*565^198465-1 546190 L4001 2017 2658 1029*2^1813839+1 546023 L3378 2013 2659 555*2^1813556+1 545938 L3233 2013 2660 33*2^1813526-1 545928 L621 2008 2661 1347*2^1813433-1 545901 L1828 2012 2662 1143*2^1813125+1 545809 L3514 2013 2663 1197*2^1811852+1 545425 L3035 2013 2664 10007*2^1811598-1 545350 L1751 2018 2665 693*2^1811517+1 545324 L2967 2013 2666 1099*2^1810686+1 545074 L3458 2013 2667 92*10^544905-1 544907 L3735 2015 Near-repdigit 2668 1305*2^1809766-1 544797 L1828 2011 2669 1185*2^1809466-1 544707 L1828 2011 2670 659*2^1808691+1 544474 L3625 2013 2671 145*2^1807767-1 544195 L840 2013 2672 9*2^1807574+1 544135 L2419 2011 Generalized Fermat 2673 4117*2^1807085-1 543991 L1959 2014 2674 375*2^1806591+1 543841 L3233 2013 2675 889*2^1806470+1 543805 L2967 2013 2676 1033*2^1805844+1 543617 L1502 2013 2677 4039*2^1805627-1 543552 L1959 2015 2678 981*2^1805368+1 543473 L2413 2013 2679 915*2^1805031+1 543372 L1741 2013 2680 691*2^1804332+1 543161 L3625 2013 2681 4089*2^1803463-1 542901 L1959 2016 2682 1965*2^1803256-1 542838 L4113 2017 2683 385*2^1802362+1 542568 L3279 2013 2684 661*2^1802024+1 542467 L2967 2013 2685 2415*2^1801615-1 542344 L2484 2018 2686 985*2^1801582+1 542334 L3035 2013 2687 301*2^1801207-1 542220 p281 2010 2688 1193*2^1801112-1 542192 L1828 2011 2689 513755!5-1 542165 x46 2019 Multifactorial 2690 417643*2^1800787-1 542097 L134 2005 2691 1045*2^1800784+1 542094 L3141 2013 2692 4017*2^1800617-1 542044 L1959 2014 2693 33910*1027^179973+1 542006 L4700 2018 2694 320607*2^1800434-1 541991 g337 2019 2695 1045*2^1800025-1 541865 L1828 2011 2696 4009*2^1799073-1 541579 L1959 2015 2697 43*2^1799016+1 541560 L2562 2011 2698 4079*2^1798192-1 541314 L1959 2014 2699 3271*372^210566-1 541273 L4944 2019 2700 19683*2^1797997+1 541256 L4970 2019 2701 220502!2+1 541239 p394 2017 Multifactorial 2702 1047*2^1797890+1 541222 L3473 2013 2703 1965*2^1797877-1 541219 L4113 2017 2704 3^1134000+3^360654+1 541056 x44 2017 2705 319*2^1797261-1 541032 L1819 2013 2706 1712*333^214484+1 541028 L4575 2017 2707 1103*2^1796969+1 540945 L2826 2013 2708 197*2^1796284-1 540738 L1862 2015 2709 4137*2^1796226-1 540722 L1959 2015 2710 174*643^192540-1 540696 L4001 2018 2711 10041*2^1795990-1 540651 p168 2017 2712 43*2^1795628+1 540540 L1129 2011 2713 11682*1027^179399+1 540277 L4001 2018 2714 383*2^1794636-1 540242 L1809 2014 2715 14172*1027^179381-1 540223 L4001 2018 2716 4119*2^1794544-1 540216 L1959 2015 2717 423*2^1794546+1 540215 L3131 2013 2718 1101*2^1794417-1 540177 L1828 2014 2719 387*2^1793857-1 540008 L2519 2014 2720 Phi(3,-311095^49152) 539974 L4142 2016 Generalized unique 2721 105*2^1793519-1 539906 L1959 2014 2722 1223*618^193431+1 539867 L4001 2018 2723 1103*2^1792513+1 539604 L3262 2013 2724 431*2^1791441+1 539281 L3453 2013 2725 1185*2^1791429-1 539277 L1828 2014 2726 13460*171^241448+1 539157 L4944 2019 2727 16*140^251178+1 539062 L4940 2019 Generalized Fermat 2728 607*2^1790196+1 538906 L4123 2013 2729 1293991*2^1790128+1 538889 L4789 2019 2730 143157*2^1789798+1 538789 L4504 2016 2731 1059*2^1789353+1 538652 L1130 2013 2732 975*2^1789341+1 538649 L2085 2013 2733 273*2^1788926-1 538523 L1828 2013 2734 4125*2^1788660-1 538444 L1959 2015 2735 289184*5^770116-1 538294 p353 2012 2736 1065*2^1787993-1 538243 L1828 2014 2737 441*2^1787789+1 538181 L1209 2013 2738 565*2^1787136+1 537985 L1512 2013 2739 247*2^1786968+1 537934 L2533 2013 2740 227*2^1786779+1 537877 L2058 2013 2741 11812*5^769343-1 537752 p341 2012 2742 933*2^1786320+1 537739 L1505 2013 2743 507*2^1786194+1 537701 L3422 2013 2744 921*2^1785808+1 537585 L3262 2013 2745 179114*151^246711-1 537583 L4700 2018 2746 1187*2^1785707+1 537555 L1753 2013 2747 55555*2^1785446+1 537478 L4828 2018 2748 256*14^468784+1 537289 L3802 2014 Generalized Fermat 2749 63*2^1784498+1 537190 L1415 2011 2750 158*911^181509+1 537182 L4944 2019 2751 117134*151^246492-1 537106 L4001 2018 2752 1333*2^1784103-1 537072 L1828 2014 2753 2060*135^252066-1 536989 L4944 2019 2754 231*2^1783821+1 536986 L3262 2013 2755 3098*565^195049-1 536788 L4001 2017 2756 4416*217^229737-1 536775 L4944 2020 2757 4069*2^1781691-1 536347 L1959 2014 2758 575*2^1781313+1 536232 L3262 2013 2759 883*2^1780324+1 535934 L2963 2013 2760 391*2^1780155-1 535883 L1809 2014 2761 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 2762 357659*2^1779748-1 535764 L47 2005 2763 123*2^1779728-1 535754 L3967 2014 2764 1061*2^1779595+1 535715 L3445 2013 2765 455*2^1779315+1 535630 L2121 2013 2766 663251*2^1778899+1 535508 L4789 2018 2767 31521*2^1778899-1 535507 L3519 2015 2768 863*2^1778737+1 535457 L1505 2013 2769 316594*5^766005-1 535421 L3157 2012 2770 99*2^1777688-1 535140 L1862 2011 2771 1806*213^229825+1 535124 L4944 2020 2772 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 2773 511*2^1777488+1 535080 L2873 2013 2774 243*2^1777467-1 535074 L2055 2011 2775 66*163^241811+1 534934 L4944 2019 2776 112*281^218429-1 534871 L4001 2018 2777 177*2^1775674-1 534534 L2101 2012 2778 293*2^1775450-1 534467 L2074 2014 2779 1005*2^1775235-1 534402 L1828 2014 2780 773*138^249730-1 534395 L5092 2020 2781 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 2782 4053*2^1773028-1 533739 L1959 2015 2783 1471*2^1772755-1 533656 L1830 2020 2784 24328*52^310932+1 533565 L4944 2019 2785 163*2^1771524+1 533285 L1741 2013 2786 381*2^1771493+1 533276 L3444 2013 2787 795*2^1770840+1 533079 L1505 2013 2788 Phi(3,-264017^49152) 532969 L4142 2016 Generalized unique 2789 665*2^1769303+1 532617 L3441 2013 2790 473*2^1769101+1 532556 L3459 2013 2791 855*2^1768644+1 532418 L1675 2013 2792 99*2^1768187+1 532280 L2517 2011 2793 273*2^1766747-1 531847 L1828 2013 2794 191*2^1766221+1 531688 L2539 2013 2795 4045*2^1765913-1 531597 L1959 2015 2796 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 2797 1005*2^1765454-1 531458 L1828 2014 2798 35*2^1765449+1 531455 L1204 2011 2799 1347*2^1765384-1 531437 L1828 2014 2800 981*2^1765221+1 531388 L1204 2013 2801 255*2^1765113+1 531355 L2085 2013 2802 399*2^1764851-1 531276 L1809 2014 2803 65*2^1764687+1 531226 L1125 2011 2804 717*2^1763367+1 530830 L3440 2013 2805 255*2^1763221-1 530785 L2484 2015 2806 43809*6^681994-1 530700 L4521 2018 2807 335*2^1762548-1 530583 L1809 2014 2808 1399*2^1762191-1 530476 L1828 2014 2809 2895*2^1762011-1 530422 L2484 2018 2810 16193*22^395119-1 530421 p255 2013 2811 531*2^1761689+1 530324 L3458 2013 2812 963*2^1761050+1 530132 L1204 2013 2813 1253*2^1760738-1 530039 L1828 2014 2814 62176*1027^175956+1 529909 L4001 2018 2815 4199*2^1760292-1 529905 L1959 2014 2816 1037*2^1760216-1 529881 L1828 2014 2817 969*2^1759430+1 529645 L3262 2013 2818 119*2^1759247+1 529589 L3035 2013 2819 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 2820 417*2^1759055+1 529531 L2623 2013 2821 2565*2^1758906-1 529487 L2484 2018 2822 3846*24^383526+1 529351 L4806 2019 2823 787*2^1757702+1 529124 L3436 2013 2824 2386*52^308276+1 529007 L4944 2019 2825 357*2^1756764-1 528842 L2519 2014 2826 57*2^1756702+1 528822 L1741 2011 2827 135*2^1756478+1 528755 L3127 2013 2828 855*2^1756269+1 528693 L2636 2013 2829 603*2^1756142+1 528655 L2559 2013 2830 71*2^1755965+1 528600 L1741 2011 2831 485*2^1755887+1 528578 L3262 2013 2832 31*2^1755317-1 528405 L330 2011 2833 955*2^1755312+1 528405 L1741 2013 2834 1391*2^1754922-1 528288 L1828 2014 2835 4111*2^1754463-1 528150 L1959 2016 2836 161*2^1754223+1 528076 L3014 2013 2837 4171*2^1754017-1 528016 L1959 2016 2838 5077*2^1753317-1 527805 L251 2008 2839 1261*2^1753021-1 527716 L1828 2014 2840 387*2^1752919+1 527684 L2636 2013 2841 65*2^1752885+1 527673 L1204 2011 2842 355*2^1752713-1 527622 L2519 2014 2843 4*5^754611-1 527452 L4881 2019 2844 363*2^1752116+1 527443 L2085 2013 2845 641*2^1751823+1 527355 L3459 2013 2846 Phi(3,-231255^49152) 527312 L4142 2016 Generalized unique 2847 261*2^1751160+1 527155 L3192 2013 2848 32*905^178286-1 527131 L541 2017 2849 1179*2^1750847+1 527061 g387 2009 2850 1293*2^1750532-1 526966 L1828 2014 2851 340168*5^753789-1 526882 p323 2012 2852 2955*2^1748957-1 526492 L2484 2018 2853 4147*2^1748201-1 526265 L1959 2016 2854 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 2855 1485*2^1745772+1 525533 L1134 2014 2856 265*2^1745450+1 525436 L3423 2013 2857 297*2^1745377-1 525414 L2074 2014 2858 1293*2^1744930-1 525280 L1828 2014 2859 158670*151^241039-1 525224 L4001 2018 2860 1485*2^1744384+1 525116 L1134 2014 2861 325034*151^240969-1 525072 L4001 2018 2862 495*2^1744183+1 525055 L1933 2013 2863a 102413650^65536+1 524967 L5225 2021 Generalized Fermat 2864a 102290630^65536+1 524933 L5202 2021 Generalized Fermat 2865 327*2^1743751+1 524924 L1130 2013 2866a 102240736^65536+1 524919 L5222 2021 Generalized Fermat 2867a 102179404^65536+1 524902 L4456 2021 Generalized Fermat 2868a 102152180^65536+1 524895 L5202 2021 Generalized Fermat 2869a 102077788^65536+1 524874 L5202 2021 Generalized Fermat 2870a 102001552^65536+1 524853 L5221 2021 Generalized Fermat 2871a 101940908^65536+1 524836 L5202 2021 Generalized Fermat 2872 28198*52^305828+1 524807 L4944 2019 2873a 101833680^65536+1 524806 L5202 2021 Generalized Fermat 2874 415*2^1743176+1 524751 L3428 2013 2875a 101588976^65536+1 524737 L5202 2021 Generalized Fermat 2876a 101542004^65536+1 524724 L5202 2021 Generalized Fermat 2877b 101373072^65536+1 524677 L4853 2020 Generalized Fermat 2878b 101330432^65536+1 524665 L4747 2020 Generalized Fermat 2879b 101328148^65536+1 524664 L4747 2020 Generalized Fermat 2880 695*2^1742755+1 524625 L1741 2013 2881 1285*2^1742735-1 524619 L1828 2014 2882 243*2^1742689+1 524605 L1204 2013 2883 345*2^1742652-1 524594 L1830 2012 2884b 101053038^65536+1 524587 L4747 2020 Generalized Fermat 2885 867*2^1742474+1 524540 L3188 2013 2886b 100809238^65536+1 524518 L5206 2020 Generalized Fermat 2887b 100635028^65536+1 524469 L5202 2020 Generalized Fermat 2888b 100547206^65536+1 524444 L4387 2020 Generalized Fermat 2889b 100541736^65536+1 524442 L5205 2020 Generalized Fermat 2890b 100492452^65536+1 524428 L5204 2020 Generalized Fermat 2891b 100480774^65536+1 524425 L4387 2020 Generalized Fermat 2892 91*2^1742093-1 524425 L2338 2012 2893b 100445354^65536+1 524415 L4853 2020 Generalized Fermat 2894 905*2^1742026-1 524406 L2012 2014 2895b 100394394^65536+1 524401 L4387 2020 Generalized Fermat 2896b 100366730^65536+1 524393 L4245 2020 Generalized Fermat 2897b 100292652^65536+1 524372 L5202 2020 Generalized Fermat 2898b 100278340^65536+1 524368 L5157 2020 Generalized Fermat 2899 1295*2^1741794-1 524336 L1828 2014 2900b 100061390^65536+1 524306 L4530 2020 Generalized Fermat 2901b 100033834^65536+1 524298 L4249 2020 Generalized Fermat 2902b 99985498^65536+1 524284 L5198 2020 Generalized Fermat 2903b 99949404^65536+1 524274 L4245 2020 Generalized Fermat 2904b 99938996^65536+1 524271 L4252 2020 Generalized Fermat 2905b 99873084^65536+1 524252 L4963 2020 Generalized Fermat 2906b 99812398^65536+1 524235 L4963 2020 Generalized Fermat 2907b 99811816^65536+1 524235 L4963 2020 Generalized Fermat 2908b 99717520^65536+1 524208 L4963 2020 Generalized Fermat 2909 315*2^1741334-1 524197 L1830 2012 2910b 99605982^65536+1 524176 L4747 2020 Generalized Fermat 2911b 99605678^65536+1 524176 L4963 2020 Generalized Fermat 2912b 99543174^65536+1 524158 L4963 2020 Generalized Fermat 2913b 99458608^65536+1 524134 L5193 2020 Generalized Fermat 2914b 99443134^65536+1 524130 L4747 2020 Generalized Fermat 2915b 99416780^65536+1 524122 L4747 2020 Generalized Fermat 2916c 99316110^65536+1 524093 L5156 2020 Generalized Fermat 2917c 99184362^65536+1 524055 L4747 2020 Generalized Fermat 2918c 99086572^65536+1 524027 L4245 2020 Generalized Fermat 2919c 98752904^65536+1 523931 L4787 2020 Generalized Fermat 2920c 98679336^65536+1 523910 L4747 2020 Generalized Fermat 2921c 98638136^65536+1 523898 L5127 2020 Generalized Fermat 2922 525*2^1740056+1 523812 L1204 2013 2923 319*2^1740047-1 523809 L1819 2013 2924 1157*2^1739902-1 523766 L1828 2014 2925d 98174624^65536+1 523764 L5157 2020 Generalized Fermat 2926d 98165150^65536+1 523761 L5163 2020 Generalized Fermat 2927d 98160134^65536+1 523760 L5165 2020 Generalized Fermat 2928d 98087154^65536+1 523739 L4747 2020 Generalized Fermat 2929d 98046450^65536+1 523727 L5157 2020 Generalized Fermat 2930d 98014656^65536+1 523718 L4245 2020 Generalized Fermat 2931 357*2^1739732+1 523715 L3427 2013 2932d 97876302^65536+1 523678 L4245 2020 Generalized Fermat 2933d 97796840^65536+1 523654 L4456 2020 Generalized Fermat 2934d 97789752^65536+1 523652 L4245 2020 Generalized Fermat 2935d 97784106^65536+1 523651 L5157 2020 Generalized Fermat 2936d 97689780^65536+1 523623 L5152 2020 Generalized Fermat 2937d 97647644^65536+1 523611 L5156 2020 Generalized Fermat 2938d 97646596^65536+1 523611 L5155 2020 Generalized Fermat 2939d 97610728^65536+1 523600 L4495 2020 Generalized Fermat 2940 687*2^1739343+1 523598 L2117 2013 2941d 97496720^65536+1 523567 L4267 2020 Generalized Fermat 2942 1041*2^1739189-1 523552 L1828 2014 2943 627*2^1738864+1 523454 L2117 2013 2944e 97104830^65536+1 523452 L5152 2020 Generalized Fermat 2945b 141*138^244616+1 523451 L4444 2020 2946e 96763400^65536+1 523352 L5121 2020 Generalized Fermat 2947e 96670202^65536+1 523325 L4672 2020 Generalized Fermat 2948 95*2^1738427+1 523321 L2085 2011 2949 793*2^1738400+1 523314 L3035 2013 2950e 96534690^65536+1 523285 L5143 2020 Generalized Fermat 2951 144*648^186106+1 523254 L3886 2015 Generalized Fermat 2952e 96338398^65536+1 523227 L5124 2020 Generalized Fermat 2953f 96255150^65536+1 523202 L5127 2020 Generalized Fermat 2954f 96228408^65536+1 523194 L4205 2020 Generalized Fermat 2955 729*2^1737901+1 523164 L2603 2013 2956f 96048808^65536+1 523141 L4387 2020 Generalized Fermat 2957f 95740866^65536+1 523050 L5132 2020 Generalized Fermat 2958f 95668512^65536+1 523028 L5130 2020 Generalized Fermat 2959f 95658826^65536+1 523025 L4245 2020 Generalized Fermat 2960f 95485038^65536+1 522974 L5128 2020 Generalized Fermat 2961f 95476682^65536+1 522971 L5127 2020 Generalized Fermat 2962f 95330936^65536+1 522928 L5126 2020 Generalized Fermat 2963f 95306976^65536+1 522920 L4729 2020 Generalized Fermat 2964f 95060694^65536+1 522847 L5124 2020 Generalized Fermat 2965f 95031090^65536+1 522838 L4245 2020 Generalized Fermat 2966 95020906^65536+1 522835 L4245 2020 Generalized Fermat 2967 94683814^65536+1 522734 L4861 2020 Generalized Fermat 2968 94560386^65536+1 522697 L5121 2020 Generalized Fermat 2969 1065*2^1736222+1 522658 L1204 2013 2970 94395438^65536+1 522647 L4853 2020 Generalized Fermat 2971 94371750^65536+1 522640 L5117 2020 Generalized Fermat 2972 94238958^65536+1 522600 L4267 2020 Generalized Fermat 2973 111*618^187244+1 522598 L4444 2018 2974 94148218^65536+1 522572 L5088 2020 Generalized Fermat 2975 94134450^65536+1 522568 L4659 2020 Generalized Fermat 2976 94127096^65536+1 522566 L4986 2020 Generalized Fermat 2977 93899840^65536+1 522497 L5005 2020 Generalized Fermat 2978 93838842^65536+1 522479 L4764 2020 Generalized Fermat 2979 93815892^65536+1 522472 L4245 2020 Generalized Fermat 2980 93786286^65536+1 522463 L4267 2020 Generalized Fermat 2981 93780678^65536+1 522461 L4928 2020 Generalized Fermat 2982 93680368^65536+1 522430 L4677 2020 Generalized Fermat 2983 573*2^1735454+1 522427 L2675 2013 2984 93294956^65536+1 522313 L4308 2020 Generalized Fermat 2985 545*2^1735043+1 522303 L2131 2013 2986 93229866^65536+1 522293 L5023 2020 Generalized Fermat 2987 93218152^65536+1 522290 L5103 2020 Generalized Fermat 2988 61*2^1734983-1 522284 L2055 2011 2989 93125776^65536+1 522261 L5101 2020 Generalized Fermat 2990 93098062^65536+1 522253 L5098 2020 Generalized Fermat 2991 93063952^65536+1 522243 L5098 2020 Generalized Fermat 2992 1125*2^1734821-1 522237 L1828 2014 2993 93043462^65536+1 522236 L5099 2020 Generalized Fermat 2994 92966428^65536+1 522213 L5096 2020 Generalized Fermat 2995 92914244^65536+1 522197 L4308 2020 Generalized Fermat 2996 92914140^65536+1 522197 L4753 2020 Generalized Fermat 2997 92766842^65536+1 522152 L4920 2020 Generalized Fermat 2998 6*10^522127+1 522128 p342 2012 2999 92690940^65536+1 522128 L4747 2020 Generalized Fermat 3000 92674306^65536+1 522123 L4308 2020 Generalized Fermat 3001 92548750^65536+1 522085 L5094 2020 Generalized Fermat 3002 92102646^65536+1 521947 L4205 2020 Generalized Fermat 3003 92081038^65536+1 521940 L4920 2020 Generalized Fermat 3004 92048794^65536+1 521930 L4747 2020 Generalized Fermat 3005 91987174^65536+1 521911 L4620 2020 Generalized Fermat 3006 91903298^65536+1 521885 L5088 2020 Generalized Fermat 3007 1113*2^1733627-1 521877 L1828 2014 3008 91842670^65536+1 521867 L4747 2020 Generalized Fermat 3009 91771676^65536+1 521845 L5093 2020 Generalized Fermat 3010 741*2^1733507+1 521841 L2549 2013 3011 91744150^65536+1 521836 L4623 2020 Generalized Fermat 3012b 999*2^1733065-1 521708 L4518 2020 3013 53184*1027^173223+1 521678 L4001 2018 3014 91217580^65536+1 521672 L4871 2020 Generalized Fermat 3015 91087586^65536+1 521632 L4591 2020 Generalized Fermat 3016 91048790^65536+1 521619 L4387 2020 Generalized Fermat 3017 90961322^65536+1 521592 L4387 2020 Generalized Fermat 3018 90888234^65536+1 521569 L4747 2020 Generalized Fermat 3019 471*2^1732587+1 521564 L2085 2013 3020 90825332^65536+1 521550 L4387 2020 Generalized Fermat 3021 90825194^65536+1 521550 L5078 2020 Generalized Fermat 3022 6102*162^236042+1 521543 L4944 2019 3023 90705094^65536+1 521512 L4747 2020 Generalized Fermat 3024 90692090^65536+1 521508 L4747 2020 Generalized Fermat 3025 90486274^65536+1 521443 L5078 2020 Generalized Fermat 3026 387*2^1732185-1 521443 L1809 2014 3027 90330702^65536+1 521394 L5078 2020 Generalized Fermat 3028 90277882^65536+1 521377 L4387 2020 Generalized Fermat 3029 90240344^65536+1 521366 L4747 2020 Generalized Fermat 3030 90033898^65536+1 521300 L4928 2020 Generalized Fermat 3031 90014942^65536+1 521294 L4387 2020 Generalized Fermat 3032 90013258^65536+1 521294 L5078 2020 Generalized Fermat 3033 89973416^65536+1 521281 L5077 2020 Generalized Fermat 3034 89929872^65536+1 521268 L4747 2020 Generalized Fermat 3035 89923590^65536+1 521266 L4914 2020 Generalized Fermat 3036 89783122^65536+1 521221 L4747 2020 Generalized Fermat 3037 89657350^65536+1 521181 L4591 2020 Generalized Fermat 3038 547*2^1731248+1 521161 L2873 2013 3039 89571726^65536+1 521154 L4920 2020 Generalized Fermat 3040 89539970^65536+1 521144 L4774 2020 Generalized Fermat 3041 89510134^65536+1 521134 L4773 2020 Generalized Fermat 3042 89443326^65536+1 521113 L4861 2020 Generalized Fermat 3043 89420980^65536+1 521106 L5067 2020 Generalized Fermat 3044 89136336^65536+1 521015 L4898 2020 Generalized Fermat 3045 89024442^65536+1 520980 L5057 2020 Generalized Fermat 3046 4059*2^1730611-1 520970 L1959 2014 3047 88875524^65536+1 520932 L4622 2020 Generalized Fermat 3048 88837150^65536+1 520920 L4526 2020 Generalized Fermat 3049 88753612^65536+1 520893 L5044 2020 Generalized Fermat 3050 88732114^65536+1 520886 L4892 2020 Generalized Fermat 3051 88596754^65536+1 520842 L4870 2020 Generalized Fermat 3052 245*2^1730188-1 520841 L1862 2014 3053 88583112^65536+1 520838 L5047 2020 Generalized Fermat 3054 88320078^65536+1 520753 L5007 2020 Generalized Fermat 3055 88271606^65536+1 520738 L4909 2020 Generalized Fermat 3056 937*48^309725+1 520726 L4944 2019 3057 55*2^1729777-1 520717 L2074 2013 3058 88167594^65536+1 520704 L4905 2020 Generalized Fermat 3059 88121890^65536+1 520690 L4772 2020 Generalized Fermat 3060 Phi(3,-197845^49152) 520650 L4506 2016 Generalized unique 3061 87955518^65536+1 520636 L4765 2020 Generalized Fermat 3062 87758254^65536+1 520572 L5005 2020 Generalized Fermat 3063 421*2^1729092+1 520512 L3234 2013 3064 87557214^65536+1 520507 L4745 2020 Generalized Fermat 3065 87514470^65536+1 520493 L4956 2020 Generalized Fermat 3066 87419762^65536+1 520462 L4530 2020 Generalized Fermat 3067 87409818^65536+1 520459 L4745 2020 Generalized Fermat 3068 193*2^1728894+1 520452 L2559 2013 3069 213*2^1728847-1 520438 L1863 2014 3070 87216048^65536+1 520395 L5070 2020 Generalized Fermat 3071 341*2^1728697+1 520393 L2981 2013 3072 87131084^65536+1 520368 L4914 2020 Generalized Fermat 3073 213*2^1728569+1 520354 L2520 2013 3074 87036596^65536+1 520337 L5069 2020 Generalized Fermat 3075 87033652^65536+1 520336 L4544 2020 Generalized Fermat 3076 86998958^65536+1 520324 L4387 2020 Generalized Fermat 3077 86990562^65536+1 520322 L5069 2020 Generalized Fermat 3078 86909560^65536+1 520295 L4871 2020 Generalized Fermat 3079 86892902^65536+1 520290 L4550 2020 Generalized Fermat 3080 24573*2^1728296+1 520274 p168 2018 3081 277*2^1728302+1 520274 L1130 2013 3082 86814912^65536+1 520264 L4909 2020 Generalized Fermat 3083 86796322^65536+1 520258 L5068 2020 Generalized Fermat 3084 86779344^65536+1 520253 L4201 2020 Generalized Fermat 3085 86736718^65536+1 520239 L4905 2020 Generalized Fermat 3086 997*2^1728146+1 520227 L1595 2013 3087 929*2^1728099+1 520213 L1745 2013 3088 86553044^65536+1 520178 L4909 2020 Generalized Fermat 3089 86470130^65536+1 520151 L4909 2020 Generalized Fermat 3090 4065*2^1727864-1 520143 L1959 2015 3091 86431122^65536+1 520138 L5005 2020 Generalized Fermat 3092 86254706^65536+1 520080 L4909 2020 Generalized Fermat 3093 879*2^1727602+1 520063 L1935 2013 3094 86160832^65536+1 520049 L4753 2020 Generalized Fermat 3095 338948*5^743996-1 520037 p352 2012 3096 86037836^65536+1 520008 L4530 2020 Generalized Fermat 3097 85908438^65536+1 519965 L4942 2020 Generalized Fermat 3098 600921*2^1727190-1 519942 g337 2013 3099 85770052^65536+1 519920 L4530 2020 Generalized Fermat 3100 4129*2^1727119-1 519919 L1959 2015 3101 85636536^65536+1 519875 L5061 2020 Generalized Fermat 3102 85598554^65536+1 519863 L4745 2020 Generalized Fermat 3103 85516188^65536+1 519835 L4620 2020 Generalized Fermat 3104 85316028^65536+1 519769 L5025 2020 Generalized Fermat 3105 85209154^65536+1 519733 L4909 2020 Generalized Fermat 3106 85143326^65536+1 519711 L5024 2020 Generalized Fermat 3107 85003716^65536+1 519664 L4909 2020 Generalized Fermat 3108 597*2^1726268+1 519662 L2520 2013 3109 84930776^65536+1 519640 L5029 2020 Generalized Fermat 3110 1151*2^1726187+1 519638 L3262 2013 3111 84881776^65536+1 519623 L4950 2020 Generalized Fermat 3112 84876466^65536+1 519622 L4550 2020 Generalized Fermat 3113 84860922^65536+1 519616 L5059 2020 Generalized Fermat 3114 84720600^65536+1 519569 L4530 2020 Generalized Fermat 3115 813*2^1725925+1 519559 L3171 2013 3116 84580630^65536+1 519522 L5025 2020 Generalized Fermat 3117 84490864^65536+1 519492 L5005 2020 Generalized Fermat 3118 4179*2^1725552-1 519447 L1959 2015 3119 84332576^65536+1 519439 L4745 2020 Generalized Fermat 3120 84221130^65536+1 519401 L4400 2020 Generalized Fermat 3121 84216216^65536+1 519399 L4914 2020 Generalized Fermat 3122 84182766^65536+1 519388 L4909 2020 Generalized Fermat 3123 84178554^65536+1 519387 L5056 2020 Generalized Fermat 3124 27*634^185354+1 519380 L4001 2018 3125 84088876^65536+1 519356 L4887 2020 Generalized Fermat 3126 84063046^65536+1 519347 L4550 2020 Generalized Fermat 3127 84020394^65536+1 519333 L4909 2020 Generalized Fermat 3128 83816404^65536+1 519264 L4756 2020 Generalized Fermat 3129 83811756^65536+1 519262 L4530 2020 Generalized Fermat 3130 83728230^65536+1 519234 L4387 2020 Generalized Fermat 3131 84114*151^238241-1 519127 L4001 2018 3132 729*2^1724434+1 519110 L1484 2013 Generalized Fermat 3133 615*2^1724209+1 519042 L2967 2013 3134 4157*2^1724202-1 519041 L1959 2015 3135 4177*2^1724161-1 519028 L1959 2014 3136 83007704^65536+1 518988 L4745 2020 Generalized Fermat 3137 82883694^65536+1 518945 L4905 2020 Generalized Fermat 3138 82853956^65536+1 518935 L5057 2020 Generalized Fermat 3139 82727298^65536+1 518892 L5027 2020 Generalized Fermat 3140 82664200^65536+1 518870 L4905 2020 Generalized Fermat 3141 82615290^65536+1 518853 L4899 2020 Generalized Fermat 3142 82608282^65536+1 518851 L4741 2020 Generalized Fermat 3143 82585780^65536+1 518843 L5029 2020 Generalized Fermat 3144 82516824^65536+1 518819 L4530 2020 Generalized Fermat 3145 82481836^65536+1 518807 L4942 2020 Generalized Fermat 3146 82476416^65536+1 518805 L4201 2020 Generalized Fermat 3147 82409922^65536+1 518782 L4905 2020 Generalized Fermat 3148 82328650^65536+1 518754 L4909 2020 Generalized Fermat 3149 1089*2^1723121-1 518715 L1828 2014 3150 547*2^1723020+1 518684 L1745 2013 3151 82102578^65536+1 518676 L4400 2020 Generalized Fermat 3152 82055998^65536+1 518660 L4530 2020 Generalized Fermat 3153 81992548^65536+1 518638 L5027 2020 Generalized Fermat 3154 81976552^65536+1 518632 L5056 2020 Generalized Fermat 3155 81868890^65536+1 518595 L5054 2020 Generalized Fermat 3156 81791240^65536+1 518568 L5039 2020 Generalized Fermat 3157 253*2^1722623-1 518564 L145 2007 3158 81760016^65536+1 518557 L4909 2020 Generalized Fermat 3159 81712996^65536+1 518540 L4905 2020 Generalized Fermat 3160 81495116^65536+1 518464 L4898 2020 Generalized Fermat 3161 81379624^65536+1 518424 L4909 2020 Generalized Fermat 3162 81312044^65536+1 518400 L5052 2020 Generalized Fermat 3163 81301530^65536+1 518397 L5027 2020 Generalized Fermat 3164 81254306^65536+1 518380 L5051 2020 Generalized Fermat 3165 81126070^65536+1 518335 L5027 2020 Generalized Fermat 3166 81065064^65536+1 518314 L4733 2020 Generalized Fermat 3167 99461233889495567276...(518269 other digits)...53126433719371038957 518309 p384 2015 3168 81033034^65536+1 518303 L5025 2020 Generalized Fermat 3169 80976720^65536+1 518283 L4745 2020 Generalized Fermat 3170 80961052^65536+1 518277 L4530 2020 Generalized Fermat 3171 80954588^65536+1 518275 L4747 2020 Generalized Fermat 3172 80795988^65536+1 518219 L5027 2020 Generalized Fermat 3173 2*3^1086112+1 518208 p199 2010 3174 113*2^1721438-1 518207 L2484 2011 3175 1299*2^1721369-1 518187 L1828 2014 3176 4071*2^1721361-1 518185 L1959 2015 3177 80658514^65536+1 518171 L4904 2020 Generalized Fermat 3178 80573056^65536+1 518141 L4909 2020 Generalized Fermat 3179 80350524^65536+1 518062 L4758 2020 Generalized Fermat 3180 80317468^65536+1 518050 L5049 2020 Generalized Fermat 3181 80304896^65536+1 518046 L5027 2020 Generalized Fermat 3182 80243888^65536+1 518024 L4909 2020 Generalized Fermat 3183 80243510^65536+1 518024 L4549 2020 Generalized Fermat 3184 80008854^65536+1 517941 L4909 2020 Generalized Fermat 3185 79871216^65536+1 517892 L5027 2020 Generalized Fermat 3186 1195*2^1720342+1 517878 L1935 2013 3187 465*2^1720310+1 517868 L2938 2013 3188 79697298^65536+1 517830 L4904 2020 Generalized Fermat 3189 79633084^65536+1 517807 L4909 2020 Generalized Fermat 3190 79483110^65536+1 517753 L5025 2020 Generalized Fermat 3191 79461958^65536+1 517745 L4905 2020 Generalized Fermat 3192 1159*2^1719862+1 517734 L3035 2013 3193 79343116^65536+1 517703 L4899 2020 Generalized Fermat 3194 79321064^65536+1 517695 L4745 2020 Generalized Fermat 3195 79265412^65536+1 517675 L5027 2020 Generalized Fermat 3196 79225864^65536+1 517661 L5047 2020 Generalized Fermat 3197 79183586^65536+1 517645 L5027 2020 Generalized Fermat 3198 79172346^65536+1 517641 L4585 2020 Generalized Fermat 3199 545*2^1719517+1 517629 L2583 2013 3200 79056616^65536+1 517600 L5039 2020 Generalized Fermat 3201 78884478^65536+1 517538 L5027 2020 Generalized Fermat 3202 78794796^65536+1 517505 L5040 2020 Generalized Fermat 3203 57257*2^1719090-1 517503 L4812 2018 3204 78726134^65536+1 517481 L4909 2020 Generalized Fermat 3205 78635388^65536+1 517448 L4720 2020 Generalized Fermat 3206 78622096^65536+1 517443 L4909 2020 Generalized Fermat 3207 78567948^65536+1 517423 L4909 2020 Generalized Fermat 3208 78562090^65536+1 517421 L4904 2020 Generalized Fermat 3209 235*2^1718787-1 517409 L2444 2014 3210 78504140^65536+1 517400 L5027 2020 Generalized Fermat 3211 78450806^65536+1 517381 L4905 2020 Generalized Fermat 3212 78294900^65536+1 517324 L4410 2020 Generalized Fermat 3213 78034592^65536+1 517229 L5007 2020 Generalized Fermat 3214 77796830^65536+1 517143 L5025 2020 Generalized Fermat 3215 77781726^65536+1 517137 L4745 2020 Generalized Fermat 3216 77744918^65536+1 517124 L4905 2020 Generalized Fermat 3217 77704986^65536+1 517109 L5040 2020 Generalized Fermat 3218 77507298^65536+1 517036 L5041 2020 Generalized Fermat 3219 77372478^65536+1 516987 L4660 2020 Generalized Fermat 3220 77355598^65536+1 516981 L4387 2020 Generalized Fermat 3221 77306490^65536+1 516963 L4905 2020 Generalized Fermat 3222 77264234^65536+1 516947 L4341 2020 Generalized Fermat 3223 371*2^1717250-1 516947 L3844 2014 3224 77177176^65536+1 516915 L5040 2020 Generalized Fermat 3225 77169226^65536+1 516912 L5041 2020 Generalized Fermat 3226 76937478^65536+1 516826 L4747 2020 Generalized Fermat 3227 897*2^1716807+1 516814 L2322 2013 3228 383*2^1716780-1 516805 L2519 2014 3229 76785568^65536+1 516770 L5007 2020 Generalized Fermat 3230 76780072^65536+1 516768 L4904 2020 Generalized Fermat 3231 76766300^65536+1 516763 L4387 2020 Generalized Fermat 3232 1307*2^1716556-1 516738 L1828 2014 3233 76596200^65536+1 516700 L4745 2020 Generalized Fermat 3234 76580342^65536+1 516694 L4904 2020 Generalized Fermat 3235 76467064^65536+1 516652 L4909 2020 Generalized Fermat 3236 76387412^65536+1 516622 L5039 2020 Generalized Fermat 3237 76382388^65536+1 516620 L4550 2020 Generalized Fermat 3238 4179*2^1716052-1 516587 L1959 2015 3239 76067780^65536+1 516503 L4210 2020 Generalized Fermat 3240 76057320^65536+1 516499 L5036 2020 Generalized Fermat 3241 75869946^65536+1 516429 L4861 2020 Generalized Fermat 3242 75802920^65536+1 516404 L4591 2020 Generalized Fermat 3243 75707404^65536+1 516368 L4530 2020 Generalized Fermat 3244 75605586^65536+1 516329 L5034 2020 Generalized Fermat 3245 1017*2^1715060+1 516288 L1204 2013 3246 75333588^65536+1 516227 L4738 2020 Generalized Fermat 3247 423*2^1714680+1 516173 L1204 2013 3248 75151890^65536+1 516158 L5033 2020 Generalized Fermat 3249 75029382^65536+1 516112 L4909 2020 Generalized Fermat 3250 74897306^65536+1 516062 L4956 2020 Generalized Fermat 3251 74851056^65536+1 516044 L5030 2020 Generalized Fermat 3252 70714*1027^171342+1 516014 L4001 2018 3253 975*2^1714004+1 515970 L2117 2012 3254 74581688^65536+1 515941 L4767 2020 Generalized Fermat 3255 74561982^65536+1 515934 L4734 2020 Generalized Fermat 3256 74316862^65536+1 515840 L4899 2020 Generalized Fermat 3257 74111056^65536+1 515761 L4550 2020 Generalized Fermat 3258 74036056^65536+1 515732 L4741 2020 Generalized Fermat 3259 74019600^65536+1 515726 L4909 2020 Generalized Fermat 3260 73948090^65536+1 515698 L4410 2020 Generalized Fermat 3261 73910008^65536+1 515684 L4909 2020 Generalized Fermat 3262 73861084^65536+1 515665 L4909 2020 Generalized Fermat 3263 1338*177^229389+1 515664 L4944 2020 3264 73770820^65536+1 515630 L4849 2020 Generalized Fermat 3265 73735306^65536+1 515616 L4308 2020 Generalized Fermat 3266 1101*2^1712807+1 515610 L1935 2012 3267 73611228^65536+1 515569 L5027 2020 Generalized Fermat 3268 73579576^65536+1 515556 L5027 2020 Generalized Fermat 3269 73527600^65536+1 515536 L4909 2020 Generalized Fermat 3270 73458528^65536+1 515509 L4747 2020 Generalized Fermat 3271 73314542^65536+1 515454 L5025 2020 Generalized Fermat 3272 73175654^65536+1 515400 L4984 2020 Generalized Fermat 3273 72987012^65536+1 515326 L5024 2020 Generalized Fermat 3274 72986366^65536+1 515326 L5024 2020 Generalized Fermat 3275 175*2^1711779-1 515300 L384 2014 3276 72905222^65536+1 515294 L4267 2020 Generalized Fermat 3277 72835678^65536+1 515267 L5023 2020 Generalized Fermat 3278 72832432^65536+1 515266 L4623 2020 Generalized Fermat 3279 72734952^65536+1 515228 L5021 2020 Generalized Fermat 3280 72708334^65536+1 515217 L4530 2020 Generalized Fermat 3281 72656320^65536+1 515197 L5021 2020 Generalized Fermat 3282 72589302^65536+1 515171 L5021 2020 Generalized Fermat 3283 72583992^65536+1 515169 L5022 2020 Generalized Fermat 3284 1485*2^1711331-1 515166 L1134 2014 3285 72489324^65536+1 515131 L5021 2020 Generalized Fermat 3286 72477906^65536+1 515127 L5021 2020 Generalized Fermat 3287 1029*2^1711100-1 515096 L1828 2014 3288 72189436^65536+1 515013 L5019 2020 Generalized Fermat 3289 491*2^1710497+1 514914 L3271 2013 3290 237*2^1710490+1 514912 L1408 2013 3291 71830642^65536+1 514872 L5017 2020 Generalized Fermat 3292 71729282^65536+1 514831 L5016 2020 Generalized Fermat 3293 1967*2^1710052-1 514781 L4113 2017 3294 71533230^65536+1 514754 L4917 2020 Generalized Fermat 3295 71453170^65536+1 514722 L4853 2020 Generalized Fermat 3296 71422068^65536+1 514709 L4917 2020 Generalized Fermat 3297 71419208^65536+1 514708 L4672 2020 Generalized Fermat 3298 71411244^65536+1 514705 L4738 2020 Generalized Fermat 3299c 2415*288^209272+1 514686 L4944 2020 3300 71256288^65536+1 514643 L5011 2020 Generalized Fermat 3301 387*2^1709440-1 514596 L3844 2014 3302 71083738^65536+1 514574 L5010 2019 Generalized Fermat 3303 71042934^65536+1 514558 L4977 2019 Generalized Fermat 3304 70800832^65536+1 514461 L4747 2019 Generalized Fermat 3305 70788928^65536+1 514456 L5007 2019 Generalized Fermat 3306 833*2^1708797+1 514403 L1935 2012 3307 70569854^65536+1 514368 L5006 2019 Generalized Fermat 3308 1035*2^1708648+1 514358 L2973 2012 3309 70527284^65536+1 514350 L5006 2019 Generalized Fermat 3310 70492424^65536+1 514336 L4747 2019 Generalized Fermat 3311 70431290^65536+1 514312 L4747 2019 Generalized Fermat 3312 70313466^65536+1 514264 L4530 2019 Generalized Fermat 3313 70278190^65536+1 514250 L5005 2019 Generalized Fermat 3314 333*2^1708106+1 514194 L3154 2013 3315 203*762^178410+1 514172 L541 2020 3316 69967876^65536+1 514124 L4870 2019 Generalized Fermat 3317 69921942^65536+1 514105 L4956 2019 Generalized Fermat 3318 69718316^65536+1 514022 L4747 2019 Generalized Fermat 3319 69691840^65536+1 514011 L4853 2019 Generalized Fermat 3320 69649212^65536+1 513994 L4747 2019 Generalized Fermat 3321 18656*5^735326-1 513976 p280 2012 3322 69504360^65536+1 513935 L4864 2019 Generalized Fermat 3323 183*2^1707182-1 513916 L384 2014 3324 935*2^1707129+1 513901 L1300 2012 3325 69415014^65536+1 513898 L4787 2019 Generalized Fermat 3326 889*2^1707094+1 513890 L3262 2012 3327 1520*61^287837-1 513888 p328 2015 3328 69385726^65536+1 513886 L4853 2019 Generalized Fermat 3329 69255526^65536+1 513833 L4853 2019 Generalized Fermat 3330 69177340^65536+1 513800 L4726 2019 Generalized Fermat 3331 69145164^65536+1 513787 L4500 2019 Generalized Fermat 3332 68923948^65536+1 513696 L4737 2019 Generalized Fermat 3333 68887742^65536+1 513681 L4950 2019 Generalized Fermat 3334 68876616^65536+1 513676 L4853 2019 Generalized Fermat 3335 68825266^65536+1 513655 L4774 2019 Generalized Fermat 3336 68819462^65536+1 513653 L4950 2019 Generalized Fermat 3337 68787794^65536+1 513640 L4853 2019 Generalized Fermat 3338 68699002^65536+1 513603 L4747 2019 Generalized Fermat 3339 68634098^65536+1 513576 L4853 2019 Generalized Fermat 3340 68535830^65536+1 513535 L4747 2019 Generalized Fermat 3341 68519002^65536+1 513528 L4747 2019 Generalized Fermat 3342 267*2^1705793-1 513498 L1828 2013 3343 68417666^65536+1 513486 L4853 2019 Generalized Fermat 3344 68353724^65536+1 513459 L4672 2019 Generalized Fermat 3345 68332062^65536+1 513450 L4747 2019 Generalized Fermat 3346 (2^852770+1)^2-2 513419 p405 2019 3347 68022564^65536+1 513321 L4747 2019 Generalized Fermat 3348 291*2^1705173-1 513311 L2484 2013 3349 67988572^65536+1 513307 L4853 2019 Generalized Fermat 3350 67946296^65536+1 513289 L4672 2019 Generalized Fermat 3351 165*2^1705093+1 513287 L1158 2013 3352 67886910^65536+1 513264 L4205 2019 Generalized Fermat 3353 67797528^65536+1 513227 L4774 2019 Generalized Fermat 3354 67659536^65536+1 513169 L4267 2019 Generalized Fermat 3355 67641884^65536+1 513162 L4989 2019 Generalized Fermat 3356 109*2^1704658+1 513156 L1751 2012 3357 67607058^65536+1 513147 L4984 2019 Generalized Fermat 3358 5754*313^205617-1 513131 L4944 2020 3359 67437280^65536+1 513075 L4747 2019 Generalized Fermat 3360 727*2^1704196+1 513017 L1741 2012 3361 67291176^65536+1 513014 L4853 2019 Generalized Fermat 3362 67254608^65536+1 512998 L4853 2019 Generalized Fermat 3363 67226590^65536+1 512986 L4986 2019 Generalized Fermat 3364 4035*2^1704089-1 512986 L1959 2014 3365 67217514^65536+1 512982 L4984 2019 Generalized Fermat 3366 67182906^65536+1 512968 L4747 2019 Generalized Fermat 3367 67174482^65536+1 512964 L4853 2019 Generalized Fermat 3368 67135830^65536+1 512948 L4774 2019 Generalized Fermat 3369 67128624^65536+1 512945 L4359 2019 Generalized Fermat 3370 67115446^65536+1 512939 L4982 2019 Generalized Fermat 3371 67095494^65536+1 512931 L4705 2019 Generalized Fermat 3372 67074678^65536+1 512922 L4774 2019 Generalized Fermat 3373 66968818^65536+1 512877 L4747 2019 Generalized Fermat 3374 2*3^1074726+1 512775 p199 2010 3375 165*2^1703392+1 512775 L2131 2013 3376 66659348^65536+1 512745 L4705 2019 Generalized Fermat 3377 66657214^65536+1 512744 L4905 2019 Generalized Fermat 3378 66656676^65536+1 512744 L4977 2019 Generalized Fermat 3379 1195*2^1703221-1 512724 L1828 2014 3380 313*2^1703119-1 512693 L1809 2013 3381 66537066^65536+1 512693 L4905 2019 Generalized Fermat 3382 855*2^1703065+1 512677 L1741 2012 3383 283*2^1702599-1 512536 L426 2010 3384 851*2^1702569+1 512528 L3344 2012 3385 10071*2^1702501+1 512508 p168 2017 3386 30*171^229506+1 512488 L4944 2019 3387 1057*2^1701973-1 512348 L1828 2014 3388 1071*2^1701792+1 512294 L3343 2012 3389 4149*2^1701565-1 512226 L1959 2015 3390 65444914^65536+1 512222 L4956 2019 Generalized Fermat 3391 65432626^65536+1 512216 L4267 2019 Generalized Fermat 3392 65357568^65536+1 512184 L4956 2019 Generalized Fermat 3393 49204*1027^170070+1 512183 L4001 2018 3394 65217852^65536+1 512123 L4853 2019 Generalized Fermat 3395 65188204^65536+1 512110 L4971 2019 Generalized Fermat 3396 4187*2^1701140-1 512098 L1959 2014 3397 65159860^65536+1 512098 L4787 2019 Generalized Fermat 3398 1005*2^1700883-1 512020 L1828 2014 3399 64962674^65536+1 512011 L4530 2019 Generalized Fermat 3400 64908524^65536+1 511988 L4968 2019 Generalized Fermat 3401 233*2^1700734-1 511975 L426 2010 3402 1642*30^346592-1 511962 p268 2012 3403 64758794^65536+1 511922 L4943 2019 Generalized Fermat 3404 64510644^65536+1 511813 L4934 2019 Generalized Fermat 3405c 19285*2^1700148+1 511800 L5115 2020 3406d 18261*2^1700104+1 511787 L5115 2020 3407d 12783*2^1700018+1 511761 L5115 2020 3408 2444379546449*2^1699964-1 511753 L2484 2015 3409 64297742^65536+1 511718 L4787 2019 Generalized Fermat 3410 2428*333^202852+1 511687 L4001 2017 3411 64172582^65536+1 511663 L4963 2019 Generalized Fermat 3412 64093074^65536+1 511628 L4861 2019 Generalized Fermat 3413 64029766^65536+1 511600 L4939 2019 Generalized Fermat 3414 64008220^65536+1 511590 L4853 2019 Generalized Fermat 3415 6*258^212134-1 511588 L3610 2014 3416 927*2^1699446+1 511588 L1741 2012 3417 4133*2^1699380-1 511568 L1959 2015 3418 63853188^65536+1 511521 L4853 2019 Generalized Fermat 3419 63850468^65536+1 511520 L4387 2019 Generalized Fermat 3420 63827844^65536+1 511510 L4387 2019 Generalized Fermat 3421 63786378^65536+1 511491 L4387 2019 Generalized Fermat 3422 63783272^65536+1 511490 L4774 2019 Generalized Fermat 3423 657*2^1699031+1 511463 L3261 2012 3424 63722348^65536+1 511463 L4956 2019 Generalized Fermat 3425 63434268^65536+1 511334 L4947 2019 Generalized Fermat 3426 63367880^65536+1 511304 L4787 2019 Generalized Fermat 3427 63322122^65536+1 511283 L4387 2019 Generalized Fermat 3428 63246814^65536+1 511249 L4920 2019 Generalized Fermat 3429 63240724^65536+1 511247 L4787 2019 Generalized Fermat 3430 1065*2^1698303+1 511244 L1741 2012 3431 63190552^65536+1 511224 L4861 2019 Generalized Fermat 3432 63132142^65536+1 511198 L4861 2019 Generalized Fermat 3433 63096178^65536+1 511182 L4920 2019 Generalized Fermat 3434 62951326^65536+1 511116 L4950 2019 Generalized Fermat 3435 561*2^1697783+1 511087 L1360 2012 3436 62876900^65536+1 511082 L4949 2019 Generalized Fermat 3437 62841156^65536+1 511066 L4920 2019 Generalized Fermat 3438 62840404^65536+1 511066 L4947 2019 Generalized Fermat 3439 5*10^511056-1 511057 p297 2011 Near-repdigit 3440 62702572^65536+1 511003 L4946 2019 Generalized Fermat 3441 62555084^65536+1 510936 L4709 2019 Generalized Fermat 3442 62554864^65536+1 510936 L4945 2019 Generalized Fermat 3443 62479964^65536+1 510902 L4920 2019 Generalized Fermat 3444 62464130^65536+1 510895 L4839 2019 Generalized Fermat 3445 62384964^65536+1 510859 L4387 2019 Generalized Fermat 3446 62384838^65536+1 510859 L4853 2019 Generalized Fermat 3447 62336612^65536+1 510837 L4787 2019 Generalized Fermat 3448 62322622^65536+1 510830 L4387 2019 Generalized Fermat 3449 62286896^65536+1 510814 L4920 2019 Generalized Fermat 3450 24510*745^177846-1 510806 L4189 2017 3451 62199942^65536+1 510774 L4853 2019 Generalized Fermat 3452 62151540^65536+1 510752 L4943 2019 Generalized Fermat 3453 62142718^65536+1 510748 L4599 2019 Generalized Fermat 3454 1193*2^1696600-1 510731 L1828 2014 3455 62064808^65536+1 510712 L4387 2019 Generalized Fermat 3456 62064626^65536+1 510712 L4942 2019 Generalized Fermat 3457 62038276^65536+1 510700 L4941 2019 Generalized Fermat 3458 62*3^1070242+1 510637 L4799 2020 3459 61754924^65536+1 510570 L4939 2019 Generalized Fermat 3460 27264*151^234276-1 510487 L4444 2018 3461 259*2^1695723-1 510466 L2444 2014 3462 61425072^65536+1 510418 L4853 2019 Generalized Fermat 3463 61395720^65536+1 510404 L4387 2019 Generalized Fermat 3464 121*2^1695499-1 510399 L62 2005 3465 4023*2^1695443-1 510383 L1959 2015 3466 141068*151^234228-1 510383 L4001 2018 3467 61298290^65536+1 510359 L4787 2019 Generalized Fermat 3468 61216832^65536+1 510321 L4267 2019 Generalized Fermat 3469 61193080^65536+1 510310 L4387 2019 Generalized Fermat 3470 61135724^65536+1 510283 L4249 2019 Generalized Fermat 3471 460*628^182346+1 510200 L4944 2020 3472 60912388^65536+1 510179 L4934 2019 Generalized Fermat 3473 154*730^178174+1 510172 L4001 2018 3474 60892852^65536+1 510170 L4747 2019 Generalized Fermat 3475 883*2^1694710+1 510162 L1204 2012 3476 60801962^65536+1 510127 L4920 2019 Generalized Fermat 3477 134*3^1069166+1 510124 L4799 2020 3478 60791522^65536+1 510122 L4898 2019 Generalized Fermat 3479 60740702^65536+1 510099 L4747 2019 Generalized Fermat 3480 60620338^65536+1 510042 L4933 2019 Generalized Fermat 3481 985*2^1694268+1 510029 L3167 2012 3482 60568416^65536+1 510018 L4249 2019 Generalized Fermat 3483 405*2^1693765+1 509877 L1741 2013 3484 60084272^65536+1 509789 L4387 2019 Generalized Fermat 3485 60056188^65536+1 509776 L4853 2019 Generalized Fermat 3486 59973204^65536+1 509737 L4747 2019 Generalized Fermat 3487 59923820^65536+1 509713 L4387 2019 Generalized Fermat 3488 59911840^65536+1 509708 L4387 2019 Generalized Fermat 3489 59841338^65536+1 509674 L4787 2019 Generalized Fermat 3490 873*2^1692706+1 509559 L1980 2012 3491 299*2^1692271+1 509427 L1741 2013 3492 59282734^65536+1 509407 L4709 2019 Generalized Fermat 3493 59214242^65536+1 509374 L4921 2019 Generalized Fermat 3494 59136274^65536+1 509337 L4920 2019 Generalized Fermat 3495 59071146^65536+1 509305 L4787 2019 Generalized Fermat 3496 59015944^65536+1 509279 L4747 2019 Generalized Fermat 3497 58897838^65536+1 509222 L4928 2019 Generalized Fermat 3498 58838172^65536+1 509193 L4926 2019 Generalized Fermat 3499 58665154^65536+1 509109 L4599 2019 Generalized Fermat 3500 993*2^1691212+1 509109 L3262 2012 3501 58644648^65536+1 509099 L4747 2019 Generalized Fermat 3502 58528880^65536+1 509043 L4726 2019 Generalized Fermat 3503 1369*2^1690781-1 508979 L1828 2014 3504 58384684^65536+1 508973 L4599 2019 Generalized Fermat 3505 395*2^1690690-1 508951 L1819 2013 3506 79672*1027^168996+1 508949 L4001 2018 3507 217*2^1690664+1 508943 L3412 2013 3508 58226162^65536+1 508895 L4921 2019 Generalized Fermat 3509 58077056^65536+1 508822 L4920 2019 Generalized Fermat 3510 58065838^65536+1 508817 L4861 2019 Generalized Fermat 3511 57984540^65536+1 508777 L4387 2019 Generalized Fermat 3512 57955358^65536+1 508763 L4387 2019 Generalized Fermat 3513 57666292^65536+1 508620 L4742 2019 Generalized Fermat 3514 57652882^65536+1 508614 L4880 2019 Generalized Fermat 3515 4135*2^1689399-1 508564 L1959 2015 3516 57413758^65536+1 508495 L4692 2019 Generalized Fermat 3517 6102*162^230090+1 508392 L4944 2019 3518 57117422^65536+1 508348 L4753 2019 Generalized Fermat 3519 56857098^65536+1 508218 L4817 2019 Generalized Fermat 3520 56795992^65536+1 508187 L4772 2019 Generalized Fermat 3521 56749480^65536+1 508164 L4919 2019 Generalized Fermat 3522 56731448^65536+1 508155 L4734 2019 Generalized Fermat 3523 56586100^65536+1 508082 L4918 2019 Generalized Fermat 3524 273428*151^233164-1 508065 L4001 2018 3525 599*2^1687659+1 508039 L3262 2012 3526 56339292^65536+1 507958 L4916 2019 Generalized Fermat 3527 56318206^65536+1 507947 L4917 2019 Generalized Fermat 3528 20049*2^1687252-1 507918 L1471 2011 3529 56170642^65536+1 507872 L4880 2019 Generalized Fermat 3530 915*2^1686699+1 507750 L2520 2012 3531 55837944^65536+1 507703 L4200 2019 Generalized Fermat 3532 55836122^65536+1 507702 L4734 2019 Generalized Fermat 3533 55740434^65536+1 507654 L4747 2019 Generalized Fermat 3534 2*3^1063844-1 507583 L426 2012 3535 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 3536 1191*2^1686001+1 507540 L1935 2012 3537 55396316^65536+1 507477 L4620 2019 Generalized Fermat 3538 55317972^65536+1 507437 L4726 2019 Generalized Fermat 3539 55292592^65536+1 507424 L4745 2019 Generalized Fermat 3540 693*2^1685544+1 507403 L1354 2012 3541 55110930^65536+1 507330 L4210 2019 Generalized Fermat 3542 9710*111^248035-1 507316 L4444 2020 3543 55072040^65536+1 507310 L4591 2019 Generalized Fermat 3544 339*2^1685135+1 507279 L1595 2013 3545 54949840^65536+1 507247 L4410 2019 Generalized Fermat 3546 54937732^65536+1 507241 L4726 2019 Generalized Fermat 3547 54889620^65536+1 507216 L4914 2019 Generalized Fermat 3548 19*2^1684813-1 507181 L503 2008 3549 54739648^65536+1 507138 L4903 2019 Generalized Fermat 3550 133*2^1684616+1 507123 L2826 2013 3551 110059!+1 507082 p312 2011 Factorial 3552 1119*2^1684471-1 507080 L1828 2014 3553 54587920^65536+1 507059 L4903 2019 Generalized Fermat 3554 54435560^65536+1 506979 L4747 2019 Generalized Fermat 3555 54387024^65536+1 506954 L4395 2019 Generalized Fermat 3556 415*2^1684046+1 506951 L1990 2013 3557 54377542^65536+1 506949 L4745 2019 Generalized Fermat 3558 54234920^65536+1 506874 L4201 2019 Generalized Fermat 3559 12001*42^312245+1 506856 L4001 2019 3560b 999*2^1683539-1 506799 L4518 2020 3561 53942572^65536+1 506720 L4530 2019 Generalized Fermat 3562 53874510^65536+1 506684 L4734 2019 Generalized Fermat 3563 53869266^65536+1 506682 L4774 2019 Generalized Fermat 3564 53847196^65536+1 506670 L4763 2019 Generalized Fermat 3565 53797422^65536+1 506644 L4201 2019 Generalized Fermat 3566 53704982^65536+1 506595 L4734 2019 Generalized Fermat 3567 53660144^65536+1 506571 L4745 2019 Generalized Fermat 3568 53607314^65536+1 506543 L4544 2019 Generalized Fermat 3569 53566068^65536+1 506521 L4774 2019 Generalized Fermat 3570 53510900^65536+1 506492 L4745 2019 Generalized Fermat 3571 53507594^65536+1 506490 L4747 2019 Generalized Fermat 3572 53475642^65536+1 506473 L4410 2019 Generalized Fermat 3573 53258832^65536+1 506357 L4745 2019 Generalized Fermat 3574 53146516^65536+1 506297 L4742 2019 Generalized Fermat 3575 52963984^65536+1 506199 L4880 2019 Generalized Fermat 3576 52871154^65536+1 506149 L4909 2019 Generalized Fermat 3577 1004*133^238300-1 506117 p289 2013 3578 52690172^65536+1 506052 L4549 2019 Generalized Fermat 3579 249*2^1681039+1 506046 L1741 2013 3580 52558020^65536+1 505980 L4745 2019 Generalized Fermat 3581 52531754^65536+1 505966 L4747 2019 Generalized Fermat 3582 52462148^65536+1 505928 L4899 2019 Generalized Fermat 3583 52333192^65536+1 505858 L4765 2019 Generalized Fermat 3584 5374*5^723697-1 505847 p351 2012 3585 52301890^65536+1 505841 L4755 2019 Generalized Fermat 3586 52250632^65536+1 505813 L4905 2019 Generalized Fermat 3587 52186612^65536+1 505778 L4904 2019 Generalized Fermat 3588 555*2^1679952+1 505719 L3262 2012 3589 193*2^1679938+1 505715 L1741 2013 3590 52067302^65536+1 505713 L4903 2019 Generalized Fermat 3591 52054552^65536+1 505706 L4549 2019 Generalized Fermat 3592 357*2^1679872+1 505695 L3139 2013 3593 309*2^1679867+1 505693 L2675 2013 3594 985*2^1679754+1 505660 L1741 2012 3595 51944436^65536+1 505646 L4655 2019 Generalized Fermat 3596 51927094^65536+1 505637 L4549 2019 Generalized Fermat 3597 51888044^65536+1 505615 L4760 2019 Generalized Fermat 3598 1065*2^1679402+1 505554 L3262 2012 3599 51708088^65536+1 505516 L4734 2019 Generalized Fermat 3600 51686702^65536+1 505504 L4341 2019 Generalized Fermat 3601 51506978^65536+1 505405 L4767 2019 Generalized Fermat 3602 51455452^65536+1 505377 L4899 2019 Generalized Fermat 3603 51443210^65536+1 505370 L4530 2019 Generalized Fermat 3604 51337006^65536+1 505311 L4898 2019 Generalized Fermat 3605 7092*313^202412-1 505132 L4944 2020 3606 50969866^65536+1 505107 L4745 2019 Generalized Fermat 3607 2369*618^180975+1 505103 L4001 2018 3608 50907674^65536+1 505072 L4897 2019 Generalized Fermat 3609 1109*2^1677760-1 505060 L1828 2014 3610 50781728^65536+1 505002 L4894 2019 Generalized Fermat 3611 139*666^178851-1 504984 L2054 2011 3612a 2297973*2^1677460+1 504973 L4094 2021 3613 978329*2^1677461+1 504973 L4094 2018 3614 469779*2^1677462+1 504973 L4094 2017 3615 76141*2^1677464+1 504972 L4094 2015 3616 559*2^1677446+1 504965 L3262 2012 3617 220634*151^231725-1 504929 L4001 2018 3618 411*2^1677196+1 504889 L2734 2013 3619 50546746^65536+1 504870 L4817 2019 Generalized Fermat 3620 905*2^1677085+1 504856 L3249 2012 3621 60357*2^1676907+1 504805 L587 2011 3622 567*2^1676783+1 504765 L1576 2012 3623 4115*2^1676476-1 504674 L1959 2015 3624 50164202^65536+1 504654 L4870 2019 Generalized Fermat 3625 50140536^65536+1 504640 L4591 2019 Generalized Fermat 3626 50124978^65536+1 504631 L4741 2019 Generalized Fermat 3627 49975182^65536+1 504546 L4289 2019 Generalized Fermat 3628 255*2^1675403+1 504349 L1741 2013 3629 49473608^65536+1 504259 L4729 2019 Generalized Fermat 3630 49433304^65536+1 504236 L4760 2019 Generalized Fermat 3631 49353010^65536+1 504190 L4897 2019 Generalized Fermat 3632 122*806^173475+1 504179 L4001 2017 3633 95*2^1674777+1 504161 L1224 2011 3634 1043*2^1674573+1 504100 L3338 2012 3635 5854146*15^428616-1 504099 L4786 2018 3636 4175*2^1674484-1 504074 L1959 2015 3637 699*2^1674293+1 504016 L2366 2012 3638 49008360^65536+1 503990 L4887 2019 Generalized Fermat 3639 1355*2^1674156-1 503975 L1828 2014 3640 48967836^65536+1 503967 L4286 2019 Generalized Fermat 3641 93*2^1673893+1 503894 L2085 2011 3642 48843798^65536+1 503894 L4734 2019 Generalized Fermat 3643 173*2^1673881+1 503891 L3234 2013 3644 1333*2^1673867-1 503888 L1828 2014 3645 48693126^65536+1 503806 L4886 2019 Generalized Fermat 3646 48683018^65536+1 503800 L4745 2019 Generalized Fermat 3647 48637118^65536+1 503774 L4791 2019 Generalized Fermat 3648 48424300^65536+1 503649 L4309 2019 Generalized Fermat 3649 48210372^65536+1 503523 L4737 2019 Generalized Fermat 3650 48202934^65536+1 503518 L4526 2019 Generalized Fermat 3651 48169782^65536+1 503499 L4817 2019 Generalized Fermat 3652 879*2^1672525+1 503484 L1741 2012 3653 987*2^1672475+1 503469 L1745 2012 3654 48078610^65536+1 503445 L4884 2019 Generalized Fermat 3655 48036128^65536+1 503420 L4817 2019 Generalized Fermat 3656 1193*2^1672244-1 503399 L1828 2014 3657 47911922^65536+1 503346 L4252 2019 Generalized Fermat 3658 47854178^65536+1 503312 L4410 2019 Generalized Fermat 3659 47831888^65536+1 503298 L4741 2019 Generalized Fermat 3660 4482*313^201622-1 503161 L4944 2020 3661 2212*162^227663+1 503029 L4944 2019 3662 47368516^65536+1 503021 L4734 2019 Generalized Fermat 3663 229*2^1670843-1 502977 L1862 2015 3664 47124682^65536+1 502875 L4773 2019 Generalized Fermat 3665 47083532^65536+1 502850 L4747 2019 Generalized Fermat 3666 1365*2^1670208+1 502786 L1134 2015 3667 847*2^1670014+1 502728 L3173 2012 3668 141*2^1669965+1 502712 L3294 2013 3669 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 3670 6283011*2^1669564+1 502596 g430 2019 3671 6021583*2^1669564+1 502596 g430 2019 3672 46587924^65536+1 502548 L4867 2019 Generalized Fermat 3673 1089*2^1669361+1 502531 L1584 2012 3674 46539762^65536+1 502519 L4871 2019 Generalized Fermat 3675 46475746^65536+1 502480 L4871 2019 Generalized Fermat 3676 161*2^1668927+1 502400 L2520 2013 3677 46145120^65536+1 502277 L4872 2018 Generalized Fermat 3678 46131706^65536+1 502268 L4870 2018 Generalized Fermat 3679 525*2^1668316+1 502216 L3221 2012 3680 45837186^65536+1 502086 L4867 2018 Generalized Fermat 3681 15*2^1667744+1 502043 g279 2007 3682 45727976^65536+1 502018 L4875 2019 Generalized Fermat 3683 45660678^65536+1 501976 L4865 2018 Generalized Fermat 3684 45642558^65536+1 501965 L4747 2018 Generalized Fermat 3685 4101*2^1667313-1 501915 L1959 2015 3686 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 3687 45536968^65536+1 501899 L4747 2018 Generalized Fermat 3688 195*2^1667115-1 501854 L1828 2014 3689 149183*2^1666957+1 501810 g346 2005 3690 45394036^65536+1 501810 L4747 2018 Generalized Fermat 3691 45340828^65536+1 501776 L4286 2018 Generalized Fermat 3692 45327802^65536+1 501768 L4863 2018 Generalized Fermat 3693 45288396^65536+1 501743 L4787 2018 Generalized Fermat 3694 45254752^65536+1 501722 L4720 2018 Generalized Fermat 3695 45251962^65536+1 501720 L4760 2018 Generalized Fermat 3696 205*2^1666435-1 501650 L2444 2014 3697 45126534^65536+1 501641 L4862 2018 Generalized Fermat 3698 45070994^65536+1 501606 L4861 2018 Generalized Fermat 3699 99*2^1665995+1 501517 L2121 2011 3700 44836986^65536+1 501458 L4684 2018 Generalized Fermat 3701 44799596^65536+1 501434 L4859 2018 Generalized Fermat 3702 44690560^65536+1 501365 L4857 2018 Generalized Fermat 3703 44533068^65536+1 501265 L4249 2018 Generalized Fermat 3704 44427620^65536+1 501197 L4387 2018 Generalized Fermat 3705 44408348^65536+1 501185 L4849 2018 Generalized Fermat 3706 44401238^65536+1 501180 L4856 2018 Generalized Fermat 3707 44285794^65536+1 501106 L4787 2018 Generalized Fermat 3708 44282836^65536+1 501104 L4530 2018 Generalized Fermat 3709 10198*1027^166366+1 501027 L4700 2018 3710 403*2^1664194+1 500975 L2626 2013 3711 43867006^65536+1 500836 L4853 2018 Generalized Fermat 3712 43857722^65536+1 500830 L4330 2018 Generalized Fermat 3713 43748016^65536+1 500758 L4530 2018 Generalized Fermat 3714 43746498^65536+1 500757 L4645 2018 Generalized Fermat 3715 43712198^65536+1 500735 L4584 2018 Generalized Fermat 3716 43662354^65536+1 500703 L4747 2018 Generalized Fermat 3717 43581628^65536+1 500650 L4817 2018 Generalized Fermat 3718 10950*46^301087+1 500639 L4944 2019 3719 1586*213^214993+1 500589 L4925 2020 3720 43439336^65536+1 500557 L4530 2018 Generalized Fermat 3721 56093*6^643170-1 500489 p366 2015 3722 233*2^1662513+1 500469 L3035 2013 3723 43242432^65536+1 500428 L4747 2018 Generalized Fermat 3724 43216120^65536+1 500410 L4747 2018 Generalized Fermat 3725 438928*31^335533+1 500407 L4789 2020 3726 43176248^65536+1 500384 L4366 2018 Generalized Fermat 3727 43173706^65536+1 500382 L4848 2018 Generalized Fermat 3728 441*2^1662069+1 500336 L3113 2013 3729 43084562^65536+1 500323 L4846 2018 Generalized Fermat 3730 174*589^180580-1 500230 L4001 2019 3731 42757860^65536+1 500107 L4843 2018 Generalized Fermat 3732 42743760^65536+1 500097 L4387 2018 Generalized Fermat 3733 42620908^65536+1 500015 L4705 2018 Generalized Fermat 3734 325785*10^500000-1 500006 L4789 2020 3735 54976*10^500000+1 500005 L4789 2019 3736 3^1047951-3^375897-1 500000 p269 2015 3737b 354*994^166791+1 499940 L4944 2020 3738 42439456^65536+1 499894 L4839 2018 Generalized Fermat 3739 533*2^1660425+1 499841 L2117 2012 3740 825*2^1660087+1 499739 L2366 2012 3741 42177946^65536+1 499718 L4836 2018 Generalized Fermat 3742 42045360^65536+1 499628 L4645 2018 Generalized Fermat 3743 41982488^65536+1 499586 L4747 2018 Generalized Fermat 3744 41960754^65536+1 499571 L4823 2018 Generalized Fermat 3745 41956924^65536+1 499569 L4774 2018 Generalized Fermat 3746 63*2^1659338-1 499513 L503 2008 3747 41785194^65536+1 499452 L4831 2018 Generalized Fermat 3748 521*2^1659077+1 499435 L3262 2012 3749 399*2^1659001-1 499412 L1819 2014 3750 41661376^65536+1 499367 L4530 2018 Generalized Fermat 3751 393*2^1658625+1 499299 L3409 2013 3752 239*30^337990-1 499255 p268 2012 3753 171*2^1658303+1 499202 L1300 2013 3754 257*2^1658254-1 499187 L2444 2014 3755 41378136^65536+1 499173 L4387 2018 Generalized Fermat 3756 2925*2^1657921-1 499088 L2484 2018 3757 41023954^65536+1 498929 L4820 2018 Generalized Fermat 3758 40951894^65536+1 498878 L4709 2018 Generalized Fermat 3759 40934648^65536+1 498866 L4819 2018 Generalized Fermat 3760 40858208^65536+1 498813 L4817 2018 Generalized Fermat 3761 40782880^65536+1 498761 L4813 2018 Generalized Fermat 3762 40726656^65536+1 498722 L4584 2018 Generalized Fermat 3763 40547834^65536+1 498596 L4813 2018 Generalized Fermat 3764 40522376^65536+1 498578 L4747 2018 Generalized Fermat 3765 40374324^65536+1 498474 L4811 2018 Generalized Fermat 3766 40348160^65536+1 498456 L4747 2018 Generalized Fermat 3767 6213*2^1655136-1 498250 L4036 2015 3768 1323*2^1655130-1 498247 L1828 2014 3769 297*2^1655042-1 498220 L2074 2013 3770 39822830^65536+1 498083 L4803 2018 Generalized Fermat 3771 39822410^65536+1 498082 L4802 2018 Generalized Fermat 3772 39809082^65536+1 498073 L4387 2018 Generalized Fermat 3773 61*2^1654383-1 498021 L503 2008 3774 39672694^65536+1 497975 L4645 2018 Generalized Fermat 3775 39641632^65536+1 497953 L4747 2018 Generalized Fermat 3776 39641162^65536+1 497953 L4787 2018 Generalized Fermat 3777 39542162^65536+1 497881 L4387 2018 Generalized Fermat 3778 39418466^65536+1 497792 L4387 2018 Generalized Fermat 3779 1047*2^1653096+1 497635 L1792 2012 3780 39162320^65536+1 497607 L4787 2018 Generalized Fermat 3781 39108392^65536+1 497568 L4645 2018 Generalized Fermat 3782 39089796^65536+1 497554 L4200 2018 Generalized Fermat 3783 38951594^65536+1 497453 L4747 2018 Generalized Fermat 3784 1163*2^1652438-1 497437 L1828 2014 3785 38881766^65536+1 497402 L4697 2018 Generalized Fermat 3786 38849156^65536+1 497378 L4747 2018 Generalized Fermat 3787 68*23^365239+1 497358 p261 2009 3788 38770952^65536+1 497321 L4793 2018 Generalized Fermat 3789 499*2^1651814+1 497249 L1842 2013 3790 38670832^65536+1 497247 L4645 2018 Generalized Fermat 3791 38659632^65536+1 497239 L4670 2018 Generalized Fermat 3792 1119*2^1651684-1 497210 L1828 2014 3793 1846*333^197100+1 497178 L4001 2017 3794 689*2^1651563+1 497173 L1204 2012 3795 38542914^65536+1 497153 L4791 2018 Generalized Fermat 3796 30981*14^433735-1 497121 p77 2015 Generalized Woodall 3797 38485606^65536+1 497111 L4366 2018 Generalized Fermat 3798 38481086^65536+1 497107 L4773 2018 Generalized Fermat 3799 38472570^65536+1 497101 L4774 2018 Generalized Fermat 3800 38385824^65536+1 497037 L4774 2018 Generalized Fermat 3801 194*953^166836-1 497023 L4944 2019 3802 23981*24^360062+1 496966 L4806 2019 3803 143*2^1650689+1 496910 L1751 2012 3804 37044*1027^164997+1 496905 L4444 2018 3805 38199804^65536+1 496898 L4720 2018 Generalized Fermat 3806 1485*2^1650597+1 496883 L1134 2014 3807 785*2^1650459+1 496841 L2876 2012 3808 38040628^65536+1 496780 L4788 2018 Generalized Fermat 3809 1383*430^188603-1 496684 L4187 2015 3810 1023*2^1649882-1 496667 L1828 2014 3811 37887878^65536+1 496665 L4747 2018 Generalized Fermat 3812 37878964^65536+1 496658 L4787 2018 Generalized Fermat 3813 233*2^1649741+1 496624 L3405 2013 3814 183*2^1649506+1 496554 L2520 2013 3815 37732056^65536+1 496548 L4478 2018 Generalized Fermat 3816 69*2^1649423-1 496528 L621 2008 3817 925*2^1649360+1 496510 L3262 2012 3818 469949*2^1649228-1 496473 L160 2007 3819 37592308^65536+1 496442 L4747 2018 Generalized Fermat 3820 37463776^65536+1 496345 L4747 2018 Generalized Fermat 3821 19920911*2^1648678-1 496309 L806 2017 3822 1383*2^1648494-1 496250 L1828 2014 3823 37284376^65536+1 496208 L4773 2018 Generalized Fermat 3824 37219594^65536+1 496159 L4550 2018 Generalized Fermat 3825 295*2^1648168+1 496151 L2826 2013 3826 146*447^187198-1 496135 L4001 2018 3827 1071*2^1647962-1 496090 L1828 2014 3828 309*2^1647947-1 496084 L2028 2012 3829 8369*24^359371+1 496012 L4806 2019 3830 209*2^1647640-1 495992 L2338 2012 3831 199*2^1647595-1 495978 L2074 2014 3832 36968128^65536+1 495966 L4774 2018 Generalized Fermat 3833 283824*151^227580-1 495898 L4001 2018 3834 445*2^1646888+1 495766 L1300 2013 3835 36633974^65536+1 495707 L4478 2018 Generalized Fermat 3836 331*2^1646668+1 495699 L2241 2013 3837 36614838^65536+1 495692 L4774 2018 Generalized Fermat 3838 2325*2^1646536-1 495661 L2484 2018 3839 57054*1027^164579+1 495647 L4001 2018 3840 36427586^65536+1 495546 L4777 2018 Generalized Fermat 3841 49*2^1646042+1 495510 L2516 2011 Generalized Fermat 3842 381*2^1646029-1 495507 L1809 2014 3843 36362214^65536+1 495495 L4775 2018 Generalized Fermat 3844 31347*2^1645868+1 495461 L3886 2014 3845 36279762^65536+1 495431 L4776 2018 Generalized Fermat 3846 36251736^65536+1 495409 L4774 2018 Generalized Fermat 3847 1695*2^1645579-1 495372 L527 2015 3848 36187924^65536+1 495359 L4550 2018 Generalized Fermat 3849 4990*111^242169+1 495318 L4444 2018 3850 36127768^65536+1 495311 L4729 2018 Generalized Fermat 3851 36037446^65536+1 495240 L4751 2018 Generalized Fermat 3852 72532*5^708453-1 495193 p341 2012 3853 35753376^65536+1 495015 L4550 2018 Generalized Fermat 3854 35648406^65536+1 494931 L4745 2018 Generalized Fermat 3855 35599734^65536+1 494892 L4742 2018 Generalized Fermat 3856 35534500^65536+1 494840 L4758 2018 Generalized Fermat 3857 35458620^65536+1 494779 L4773 2018 Generalized Fermat 3858 35419084^65536+1 494747 L4772 2018 Generalized Fermat 3859 81*2^1643428+1 494724 g418 2009 Generalized Fermat 3860 771*2^1643321+1 494692 L1741 2012 3861 35255372^65536+1 494615 L4745 2018 Generalized Fermat 3862 933*2^1642574+1 494468 L2826 2012 3863 34904540^65536+1 494331 L4726 2018 Generalized Fermat 3864 137*926^166603+1 494249 L4944 2020 3865 34640098^65536+1 494114 L4697 2018 Generalized Fermat 3866 34575414^65536+1 494061 L4767 2018 Generalized Fermat 3867 1101*2^1641145-1 494037 L1828 2014 3868 34503816^65536+1 494002 L4525 2018 Generalized Fermat 3869 34397974^65536+1 493915 L4245 2018 Generalized Fermat 3870 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 3871 34327650^65536+1 493856 L4622 2018 Generalized Fermat 3872 34197950^65536+1 493749 L4201 2018 Generalized Fermat 3873 2715*2^1640137-1 493734 L2484 2017 3874 33963124^65536+1 493553 L4765 2018 Generalized Fermat 3875 265*2^1639448+1 493526 L2322 2013 3876 315*2^1639432-1 493521 L1827 2011 3877 33910364^65536+1 493508 L4747 2018 Generalized Fermat 3878 4067*2^1639338-1 493494 L1959 2015 3879 33790428^65536+1 493408 L4758 2018 Generalized Fermat 3880 251048373*2^1638322+1 493193 p221 2009 3881 125522417*2^1638323+1 493193 p221 2009 3882 250171825*2^1638322+1 493193 p221 2009 3883 1000628481*2^1638320+1 493193 p221 2009 3884 33531480^65536+1 493189 L4526 2018 Generalized Fermat 3885 33468724^65536+1 493135 L4747 2018 Generalized Fermat 3886 4005*2^1638053-1 493107 L1959 2015 3887 33417368^65536+1 493092 L4760 2018 Generalized Fermat 3888 33406946^65536+1 493083 L4759 2018 Generalized Fermat 3889 33388034^65536+1 493067 L4201 2018 Generalized Fermat 3890 33255290^65536+1 492953 L4756 2018 Generalized Fermat 3891 531*2^1637465+1 492929 L2322 2012 3892 33160366^65536+1 492872 L4755 2018 Generalized Fermat 3893 33112172^65536+1 492830 L4745 2018 Generalized Fermat 3894 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 3895 33075870^65536+1 492799 L4550 2018 Generalized Fermat 3896 33058194^65536+1 492784 L4745 2018 Generalized Fermat 3897 179*2^1636808-1 492731 L2444 2014 3898 32987968^65536+1 492723 L4753 2018 Generalized Fermat 3899 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 3900 32778852^65536+1 492542 L4751 2018 Generalized Fermat 3901 32697566^65536+1 492472 L4387 2018 Generalized Fermat 3902 32675102^65536+1 492452 L4747 2018 Generalized Fermat 3903 1135*2^1635787-1 492425 L1828 2014 3904 32574488^65536+1 492364 L4745 2018 Generalized Fermat 3905 765*2^1635531+1 492347 L3035 2012 3906 871*2^1635488+1 492334 L3108 2012 3907 32517922^65536+1 492315 L4745 2018 Generalized Fermat 3908 369*2^1635299-1 492277 L1809 2014 3909 169*2^1635086+1 492213 L1130 2013 Generalized Fermat 3910 4*303^198357-1 492213 L4881 2020 3911 4145*2^1635016-1 492193 L1959 2014 3912 32370056^65536+1 492185 L4557 2018 Generalized Fermat 3913 277*2^1634878+1 492150 L1300 2013 3914 32235030^65536+1 492066 L4742 2018 Generalized Fermat 3915 32161210^65536+1 492001 L4741 2018 Generalized Fermat 3916 32056116^65536+1 491908 L4544 2018 Generalized Fermat 3917 31988978^65536+1 491848 L4690 2018 Generalized Fermat 3918 971*2^1633735+1 491807 L2735 2012 3919 31887064^65536+1 491757 L4738 2018 Generalized Fermat 3920 645*2^1633521+1 491742 L3035 2012 3921 31812740^65536+1 491691 L4690 2018 Generalized Fermat 3922 31689074^65536+1 491580 L4737 2018 Generalized Fermat 3923 1185*2^1632895+1 491554 L2989 2012 3924 267*2^1632893-1 491553 L1828 2013 3925 31647504^65536+1 491543 L4736 2018 Generalized Fermat 3926 31613530^65536+1 491512 L4530 2018 Generalized Fermat 3927 539*2^1632705+1 491496 L3237 2012 3928 53*2^1632590-1 491461 L2055 2011 3929 31515202^65536+1 491424 L4734 2018 Generalized Fermat 3930 31492936^65536+1 491403 L4733 2018 Generalized Fermat 3931 675*2^1632285+1 491370 L3260 2012 3932 31448254^65536+1 491363 L4309 2018 Generalized Fermat 3933 937*2^1632080+1 491309 L3221 2012 3934 31380744^65536+1 491302 L4725 2018 Generalized Fermat 3935 213*2^1632054-1 491300 L1863 2014 3936 31342854^65536+1 491267 L4731 2018 Generalized Fermat 3937 2115*2^1631867-1 491245 L1862 2015 3938 31154730^65536+1 491096 L4201 2018 Generalized Fermat 3939 31125356^65536+1 491069 L4729 2018 Generalized Fermat 3940 30946880^65536+1 490906 L4326 2018 Generalized Fermat 3941 30877996^65536+1 490842 L4726 2018 Generalized Fermat 3942e 332750*98304^98304-1 490796 L466 2020 3943 30813412^65536+1 490783 L4201 2018 Generalized Fermat 3944 30799220^65536+1 490769 L4285 2018 Generalized Fermat 3945 2715*2^1629931-1 490662 L2484 2017 3946 4103*2^1629508-1 490535 L1959 2015 3947 1245*2^1629370-1 490493 L1828 2014 3948 321*2^1629307+1 490473 L2981 2013 3949 267*2^1629148-1 490425 L1828 2013 3950 555*2^1629059+1 490399 L1741 2012 3951 30376064^65536+1 490376 L4387 2018 Generalized Fermat 3952 30328508^65536+1 490331 L4726 2018 Generalized Fermat 3953 30250088^65536+1 490257 L4725 2018 Generalized Fermat 3954 907*2^1628548+1 490245 L2826 2012 3955 30216696^65536+1 490226 L4201 2018 Generalized Fermat 3956 69*2^1628378+1 490193 L2507 2011 3957 30101988^65536+1 490118 L4201 2018 Generalized Fermat 3958 30046920^65536+1 490066 L4720 2018 Generalized Fermat 3959 113*2^1627496-1 489928 L2484 2011 3960 29863462^65536+1 489891 L4656 2018 Generalized Fermat 3961 29723118^65536+1 489757 L4530 2018 Generalized Fermat 3962 2115*2^1626565-1 489649 L1862 2015 3963 29585874^65536+1 489625 L4210 2018 Generalized Fermat 3964 63*2^1626259-1 489555 L1828 2011 3965 29509260^65536+1 489552 L4550 2018 Generalized Fermat 3966 29501096^65536+1 489544 L4722 2018 Generalized Fermat 3967 29500622^65536+1 489543 L4201 2018 Generalized Fermat 3968 63*2^1625970+1 489468 L1135 2011 3969 29350290^65536+1 489398 L4672 2018 Generalized Fermat 3970 29340732^65536+1 489389 L4550 2018 Generalized Fermat 3971 29247740^65536+1 489298 L4720 2018 Generalized Fermat 3972 29202654^65536+1 489254 L4285 2018 Generalized Fermat 3973 29097708^65536+1 489152 L4245 2018 Generalized Fermat 3974 975*2^1624794+1 489115 L2085 2012 3975 29048042^65536+1 489103 L4210 2018 Generalized Fermat 3976 715*2^1624000+1 488876 L3335 2012 3977 897*2^1623927+1 488854 L3173 2012 3978 6*10^488852+1 488853 L5009 2019 3979 28768058^65536+1 488828 L4530 2018 Generalized Fermat 3980 28580718^65536+1 488642 L4709 2017 Generalized Fermat 3981 28487278^65536+1 488549 L4500 2017 Generalized Fermat 3982 1614*151^224194-1 488517 L4444 2018 3983 1107*2^1622806-1 488517 L1828 2014 3984 28413758^65536+1 488475 L4286 2017 Generalized Fermat 3985 3706*24^353908+1 488472 L4806 2019 3986 28099080^65536+1 488158 L4252 2017 Generalized Fermat 3987 651*2^1621489+1 488120 L3141 2012 3988 28027008^65536+1 488085 L4705 2017 Generalized Fermat 3989 939*2^1621215+1 488038 L3312 2012 3990 1179*2^1621053-1 487989 L1828 2014 3991 65716*1027^162025+1 487955 L4001 2018 3992 225*2^1620601-1 487852 L2074 2013 3993 27768276^65536+1 487821 L4701 2017 Generalized Fermat 3994 3147*2^1620488-1 487819 L4036 2015 3995 27738902^65536+1 487791 L4295 2017 Generalized Fermat 3996 27678634^65536+1 487729 L4249 2017 Generalized Fermat 3997 27639120^65536+1 487688 L4252 2017 Generalized Fermat 3998 27625562^65536+1 487674 L4697 2017 Generalized Fermat 3999 27548300^65536+1 487595 L4693 2017 Generalized Fermat 4000 27441534^65536+1 487484 L4649 2017 Generalized Fermat 4001 27372028^65536+1 487412 L4649 2017 Generalized Fermat 4002 913*2^1619004+1 487372 L3167 2012 4003 27326204^65536+1 487364 L4649 2017 Generalized Fermat 4004 12799*24^353083+1 487334 L4806 2019 4005 269*2^1618877+1 487333 L1741 2013 4006 183*2^1618775-1 487303 L384 2014 4007 27264470^65536+1 487300 L4286 2017 Generalized Fermat 4008 27243670^65536+1 487278 L4286 2017 Generalized Fermat 4009 117*2^1618434-1 487200 L384 2014 4010 2*626^174203+1 487172 L1471 2011 4011 1082*117^235482+1 487024 p376 2015 4012 26987486^65536+1 487009 L4672 2017 Generalized Fermat 4013 4041*2^1617699-1 486980 L1959 2015 4014 26916240^65536+1 486934 L4688 2017 Generalized Fermat 4015 26886748^65536+1 486903 L4686 2017 Generalized Fermat 4016 495*2^1616716+1 486683 L2967 2013 4017 26578974^65536+1 486575 L4261 2017 Generalized Fermat 4018 825*2^1616204+1 486529 L3014 2012 4019 87*2^1616138-1 486508 L1828 2011 4020 1039*2^1616090+1 486495 L3173 2012 4021 1305*2^1616072-1 486490 L1828 2014 4022 26484668^65536+1 486474 L4684 2017 Generalized Fermat 4023 26477248^65536+1 486466 L4672 2017 Generalized Fermat 4024 357*2^1615655+1 486364 L3422 2013 4025 4121*2^1615478-1 486311 L1959 2014 4026 25987186^65536+1 485934 L4679 2017 Generalized Fermat 4027 25981818^65536+1 485928 L4595 2017 Generalized Fermat 4028 25939926^65536+1 485882 L4678 2017 Generalized Fermat 4029 25894728^65536+1 485833 L4672 2017 Generalized Fermat 4030 25893048^65536+1 485831 L4672 2017 Generalized Fermat 4031 25815054^65536+1 485745 L4677 2017 Generalized Fermat 4032a 8385*2^1613192+1 485624 L5224 2021 4033a 2935*2^1613158+1 485613 L4600 2021 4034a 3085*2^1613148+1 485610 L4600 2021 4035a 4559*2^1613065+1 485585 L5004 2021 4036 9101981*2^1612898-1 485538 L1134 2014 4037a 4637*2^1612751+1 485491 L5219 2021 4038a 4749*2^1612703+1 485476 L3166 2021 4039 39*2^1612681+1 485467 L1379 2011 4040a 8073*2^1612622+1 485452 L4878 2021 4041 231*2^1612617-1 485449 L1862 2015 4042a 5789*2^1612583+1 485440 L5187 2021 4043b 3781*2^1612468+1 485405 L4063 2020 4044b 5041*2^1612440+1 485397 L1129 2020 Generalized Fermat 4045b 6225*2^1612428+1 485393 L5212 2020 4046b 9675*2^1612273+1 485347 L5213 2020 4047b 4809*2^1612173+1 485317 L1122 2020 4048b 1257*2^1611983+1 485259 L4087 2020 4049 25369696^65536+1 485250 L4672 2017 Generalized Fermat 4050 25355170^65536+1 485233 L4672 2017 Generalized Fermat 4051 395*2^1611672-1 485165 L1819 2013 4052 25281714^65536+1 485151 L4550 2017 Generalized Fermat 4053b 6037*2^1611554+1 485130 L3091 2020 4054b 2847*2^1611463+1 485103 L3035 2020 4055b 9223*2^1611446+1 485098 L4600 2020 4056 25226438^65536+1 485089 L4550 2017 Generalized Fermat 4057b 5745*2^1611349+1 485069 L1753 2020 4058 6816*46^291720+1 485064 L4944 2019 4059 31*2^1611311-1 485055 L330 2010 4060 343464*151^222581-1 485005 L4001 2018 4061b 5409*2^1611070+1 484985 L5190 2020 4062c 2031*2^1611007+1 484965 L3035 2020 4063c 2505*2^1610980+1 484957 L4746 2020 4064c 8283*2^1610917+1 484939 L5187 2020 4065c 5975*2^1610915+1 484938 L5168 2020 4066c 8683*2^1610898+1 484933 L4666 2020 4067 25069382^65536+1 484911 L4476 2017 Generalized Fermat 4068 713*2^1610773+1 484894 L3110 2012 4069c 5055*2^1610683+1 484868 L5160 2020 4070c 4287*2^1610367+1 484773 L5182 2020 4071c 8891*2^1610331+1 484762 L3035 2020 4072c 5093*2^1610313+1 484757 L4746 2020 4073 3193*2^1610098+1 484692 p168 2016 4074 24859030^65536+1 484671 L4660 2017 Generalized Fermat 4075 24813140^65536+1 484618 L4658 2017 Generalized Fermat 4076 133*2^1609799-1 484600 L1959 2014 4077c 9765*2^1609749+1 484587 L5004 2020 4078 459*2^1609603+1 484542 L2787 2013 4079 24730888^65536+1 484524 L4655 2017 Generalized Fermat 4080 24722142^65536+1 484514 L4654 2017 Generalized Fermat 4081c 5211*2^1609476+1 484505 L3035 2020 4082c 3277*2^1609432+1 484491 L3658 2020 4083 1017*2^1609428-1 484490 L1828 2014 4084c 5515*2^1609268+1 484442 L4600 2020 4085d 1503*2^1609209+1 484424 L4746 2020 4086d 3597*2^1609094+1 484390 L3035 2020 4087d 9573*2^1608968+1 484352 L5170 2020 4088 569*2^1608879+1 484324 L333 2012 4089 521*2^1608779+1 484294 L2051 2012 4090 24528070^65536+1 484289 L4645 2017 Generalized Fermat 4091d 3457*2^1608760+1 484289 L5164 2020 4092d 9723*2^1608724+1 484279 L3760 2020 4093d 6507*2^1608723+1 484278 L3760 2020 4094 24510980^65536+1 484270 L4629 2017 Generalized Fermat 4095d 1843*2^1608558+1 484228 L3760 2020 4096d 4715*2^1608183+1 484115 L5160 2020 4097 24293444^65536+1 484016 L4629 2017 Generalized Fermat 4098d 5517*2^1607808+1 484003 L3760 2020 4099d 5013*2^1607769+1 483991 L3760 2020 4100d 8605*2^1607716+1 483975 L3760 2020 4101d 8367*2^1607600+1 483940 L3760 2020 4102 1041*2^1607579-1 483933 L1828 2014 4103 24220066^65536+1 483930 L4584 2017 Generalized Fermat 4104d 6705*2^1607551+1 483925 L3760 2020 4105 24163706^65536+1 483864 L4623 2017 Generalized Fermat 4106d 3925*2^1607200+1 483820 L3910 2020 4107d 2379*2^1607066+1 483779 L3760 2020 4108d 2413*2^1607026+1 483767 L3760 2020 4109d 1371*2^1606867+1 483719 L3760 2020 4110 81*2^1606848+1 483712 gt 2007 Generalized Fermat 4111d 3705*2^1606841+1 483711 L3760 2020 4112d 5427*2^1606806+1 483701 L3760 2020 4113 10005*2^1606698-1 483669 L4405 2018 4114 1291*2^1606629-1 483647 L1828 2014 4115d 3675*2^1606571+1 483630 L3760 2020 4116d 9975*2^1606527+1 483617 L4746 2020 4117 23947122^65536+1 483607 L4619 2017 Generalized Fermat 4118d 5691*2^1606327+1 483557 L3760 2020 4119 465*2^1606272+1 483539 L2826 2013 4120 1113*2^1606260-1 483536 L1828 2014 4121d 3901*2^1606220+1 483524 L3760 2020 4122d 5461*2^1606172+1 483510 L3760 2020 4123 1109*2^1606173+1 483510 L1935 2012 4124 23864352^65536+1 483509 L4387 2017 Generalized Fermat 4125 331530*151^221876-1 483469 L4001 2018 4126 288*706^169692+1 483422 p268 2013 4127d 1843*2^1605772+1 483389 L3035 2020 4128d 8055*2^1605748+1 483383 L3760 2020 4129d 1957*2^1605678+1 483361 L3760 2020 4130 183*2^1605657+1 483354 L2085 2013 4131d 3315*2^1605530+1 483317 L3760 2020 4132e 5793*2^1605472+1 483299 L3035 2020 4133e 5707*2^1605340+1 483260 L5154 2020 4134 23582210^65536+1 483170 L4613 2017 Generalized Fermat 4135e 5787*2^1604934+1 483138 L5153 2020 4136e 6867*2^1604794+1 483095 L5004 2020 4137e 7179*2^1604681+1 483061 L3035 2020 4138 486*187^212627+1 483058 p289 2012 4139 320607*2^1604657-1 483056 g337 2018 4140 16778*745^168179-1 483041 L4189 2016 4141e 3281*2^1604605+1 483038 L3760 2020 4142e 6531*2^1604480+1 483001 L3760 2020 4143 48*580^174782-1 483000 p355 2013 4144e 1285*2^1604250+1 482931 L3035 2020 4145c 471*2^1604233-1 482925 L5184 2020 4146 2868*187^212559-1 482904 L5112 2020 4147e 9797*2^1604123+1 482894 L3760 2020 4148e 1961*2^1604081+1 482880 L4996 2020 4149e 3531*2^1604049+1 482871 L3760 2020 4150 264530*(9*2^1603956-1)+1 482846 p168 2016 4151e 9659*2^1603871+1 482818 L3760 2020 4152e 4105*2^1603782+1 482791 L2042 2020 4153e 4369*2^1603642+1 482748 L3760 2020 4154 Phi(3,-81422^49152) 482746 L4142 2016 Generalized unique 4155e 5231*2^1603609+1 482739 L4063 2020 4156e 9225*2^1603469+1 482697 L4746 2020 4157e 6251*2^1603305+1 482647 L3760 2020 4158 23138154^65536+1 482629 L4584 2017 Generalized Fermat 4159e 6973*2^1603226+1 482623 L3760 2020 4160 23080390^65536+1 482558 L4599 2017 Generalized Fermat 4161 23077164^65536+1 482554 L4584 2017 Generalized Fermat 4162e 3333*2^1602968+1 482545 L3760 2020 4163e 5257*2^1602838+1 482507 L5151 2020 4164e 6129*2^1602691+1 482462 L3760 2020 4165 1009*2^1602478+1 482397 L1300 2012 4166e 7463*2^1602433+1 482385 L3760 2020 4167 106*564^175330+1 482384 L4001 2017 4168e 8005*2^1602254+1 482331 L3760 2020 4169 22877386^65536+1 482307 L4595 2017 Generalized Fermat 4170 22872882^65536+1 482301 L4596 2017 Generalized Fermat 4171e 6941*2^1602145+1 482298 L5150 2020 4172 22858812^65536+1 482283 L4594 2017 Generalized Fermat 4173e 4691*2^1602049+1 482269 L3760 2020 4174 2*3^1010743-1 482248 L426 2011 4175e 2837*2^1601979+1 482248 L3760 2020 4176e 2133*2^1601733+1 482174 L5149 2020 4177e 3539*2^1601725+1 482171 L3166 2020 4178 22740816^65536+1 482136 L4544 2017 Generalized Fermat 4179 22738600^65536+1 482133 L4589 2017 Generalized Fermat 4180 22696662^65536+1 482081 L4585 2017 Generalized Fermat 4181e 7989*2^1601406+1 482076 L3760 2020 4182 22684548^65536+1 482066 L4587 2017 Generalized Fermat 4183e 5055*2^1601365+1 482063 L3760 2020 4184 22677562^65536+1 482057 L4587 2017 Generalized Fermat 4185 22672358^65536+1 482050 L4584 2017 Generalized Fermat 4186e 4053*2^1601278+1 482037 L4931 2020 4187e 4283*2^1601201+1 482014 L5148 2020 4188e 9939*2^1601182+1 482008 L5147 2020 4189 22602162^65536+1 481962 L4581 2017 Generalized Fermat 4190e 5089*2^1600946+1 481937 L5134 2020 4191 73187*6^619238-1 481866 L4521 2017 4192e 3339*2^1600699+1 481862 L3860 2020 4193e 3663*2^1600692+1 481860 L3760 2020 4194e 5825*2^1600651+1 481848 L2823 2020 4195e 5275*2^1600632+1 481842 L3035 2020 4196e 8115*2^1600618+1 481838 L2413 2020 4197e 6419*2^1600599+1 481833 L3760 2020 4198e 9399*2^1600590+1 481830 L5134 2020 4199e 3651*2^1600572+1 481824 L4169 2020 4200e 4645*2^1600536+1 481814 L4063 2020 4201 959*2^1600467+1 481792 L1745 2012 4202 1305*2^1600351-1 481757 L1828 2014 4203e 4265*2^1600283+1 481737 L5145 2020 4204e 1991*2^1600263+1 481731 L1745 2020 4205e 8159*2^1600199+1 481712 L3760 2020 4206 22402670^65536+1 481710 L4559 2017 Generalized Fermat 4207 1073*2^1600077+1 481675 L3110 2012 4208e 9867*2^1599563+1 481521 L5141 2020 4209e 9547*2^1599542+1 481515 L1823 2020 4210e 4161*2^1599503+1 481503 L1204 2020 4211 22230230^65536+1 481490 L4559 2017 Generalized Fermat 4212 22191882^65536+1 481441 L4559 2017 Generalized Fermat 4213e 7545*2^1599269+1 481432 L1204 2020 4214e 9937*2^1599196+1 481410 L5142 2020 4215 4011*2^1599078-1 481375 L1959 2015 4216e 2375*2^1599063+1 481370 L2125 2020 4217e 1853*2^1598977+1 481344 L2125 2020 4218e 9951*2^1598959+1 481339 L5140 2020 4219e 6557*2^1598959+1 481339 L5085 2020 4220 27*220^205486+1 481337 L4345 2016 4221e 7995*2^1598925+1 481329 L2413 2020 4222e 1469*2^1598927+1 481329 L5139 2020 4223 22082900^65536+1 481301 L4559 2017 Generalized Fermat 4224 93*872^163674-1 481289 L4453 2016 4225e 6301*2^1598464+1 481190 L5138 2020 4226 21990626^65536+1 481181 L4559 2017 Generalized Fermat 4227 21946386^65536+1 481124 L4559 2017 Generalized Fermat 4228e 4123*2^1598194+1 481108 L1204 2020 4229 21928344^65536+1 481101 L4210 2017 Generalized Fermat 4230e 2741*2^1598049+1 481065 L2594 2020 4231 335*2^1597932-1 481028 L3844 2014 4232 21844548^65536+1 480992 L4210 2017 Generalized Fermat 4233 158*992^160514-1 480985 L4961 2019 4234e 9771*2^1597720+1 480966 L4730 2020 4235e 2515*2^1597610+1 480932 L5100 2020 4236e 1561*2^1597548+1 480914 L3803 2020 4237 555*2^1597517+1 480904 L2366 2012 4238 15*2^1597510+1 480900 g279 2006 4239e 2741*2^1597335+1 480850 L3760 2020 4240 21697066^65536+1 480799 L4567 2017 Generalized Fermat 4241e 5709*2^1597115+1 480784 L1333 2020 4242e 1779*2^1597097+1 480778 L5045 2020 4243 305*2^1597089+1 480775 L2520 2013 4244e 4145*2^1597081+1 480773 L4364 2020 4245e 9737*2^1597079+1 480773 L1188 2020 4246 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 4247 2*2018^145464-1 480748 L4961 2019 4248 21632926^65536+1 480715 L4545 2017 Generalized Fermat 4249e 8535*2^1596867+1 480709 L2125 2020 4250e 4403*2^1596853+1 480705 L5100 2020 4251e 3915*2^1596838+1 480700 L2125 2020 4252 235*2^1596836+1 480698 L2085 2013 4253 391*2^1596805-1 480689 L3870 2014 4254 1033*2^1596708+1 480661 L3173 2012 4255e 8989*2^1596586+1 480625 L4364 2020 4256 135*2^1596454+1 480583 L2532 2013 4257e 7953*2^1596361+1 480557 L1209 2020 4258 1151*2^1596226-1 480515 L1828 2014 4259e 4767*2^1596171+1 480500 L1204 2020 4260e 9461*2^1596123+1 480485 L2125 2020 4261e 6625*2^1596056+1 480465 L2981 2020 4262 21438976^65536+1 480458 L4245 2017 Generalized Fermat 4263e 5487*2^1595687+1 480354 L1808 2020 4264e 3955*2^1595680+1 480352 L4851 2020 4265 21352892^65536+1 480344 L4563 2017 Generalized Fermat 4266e 4669*2^1595598+1 480327 L2125 2020 4267e 7545*2^1595501+1 480298 L2086 2020 4268 21298612^65536+1 480271 L4201 2017 Generalized Fermat 4269 659*2^1595363+1 480255 L1935 2012 4270e 9475*2^1595334+1 480248 L1188 2020 4271 315*2^1595314+1 480240 L3397 2013 4272e 6863*2^1595297+1 480237 L5055 2020 4273e 6759*2^1595218+1 480213 L5031 2020 4274 69*2^1595083+1 480170 L2085 2011 4275 21207594^65536+1 480149 L4549 2017 Generalized Fermat 4276 21123886^65536+1 480037 L4559 2017 Generalized Fermat 4277e 8631*2^1594600+1 480027 L4087 2020 4278 5*6^616879-1 480026 L4881 2019 4279 1163*2^1594568-1 480016 L1828 2014 4280e 9621*2^1594499+1 479997 L5100 2020 4281 595*2^1594415-1 479970 L3994 2020 4282 1113*2^1594402+1 479966 L1300 2012 4283e 2279*2^1594351+1 479951 L5136 2020 4284 58753*2^1594323-1 479944 p190 2006 4285e 6067*2^1594128+1 479885 L5135 2020 4286 21003082^65536+1 479874 L4557 2017 Generalized Fermat 4287 20958760^65536+1 479814 L4245 2017 Generalized Fermat 4288 555*2^1593788+1 479781 L3035 2012 4289 481*2^1593660+1 479743 L1204 2013 4290e 6989*2^1593497+1 479695 L5137 2020 4291 1197*2^1593401-1 479665 L1828 2014 4292e 5373*2^1593398+1 479665 L4951 2020 4293e 6913*2^1593386+1 479661 L2125 2020 4294 427*2^1593361-1 479653 L1819 2019 4295e 5541*2^1593356+1 479652 L2981 2020 4296 1147*2^1593256+1 479621 L3035 2012 4297e 9843*2^1593228+1 479614 L1823 2020 4298 20794390^65536+1 479589 L4249 2017 Generalized Fermat 4299e 4105*2^1593090+1 479572 L1188 2020 4300e 7045*2^1593020+1 479551 L2125 2020 4301e 8857*2^1593008+1 479548 L5100 2020 4302e 1415*2^1593009+1 479547 L1188 2020 4303e 7525*2^1592910+1 479518 L1204 2020 4304e 1347*2^1592795+1 479483 L5100 2020 4305 737*2^1592724-1 479461 L191 2006 4306e 8475*2^1592695+1 479453 L5134 2020 4307e 4715*2^1592647+1 479439 L2142 2020 4308 20673706^65536+1 479424 L4245 2017 Generalized Fermat 4309 20670628^65536+1 479420 L4245 2017 Generalized Fermat 4310 79*2^1592422+1 479369 L1885 2011 4311e 2619*2^1592310+1 479337 L4851 2020 4312e 9193*2^1592256+1 479321 L3593 2020 4313 853*2^1592254+1 479320 L3035 2012 4314e 4983*2^1592090+1 479271 L4087 2020 4315 110413*2^1591999-1 479245 L111 2005 4316 99*2^1591984-1 479237 L282 2009 4317e 5979*2^1591939+1 479226 L5062 2020 4318 4233*28^331135+1 479209 p385 2015 4319e 2713*2^1591836+1 479194 L4907 2020 4320 315002*151^219911-1 479187 L4001 2018 4321 20495674^65536+1 479178 L4201 2017 Generalized Fermat 4322e 5915*2^1591715+1 479158 L1204 2020 4323e 9933*2^1591704+1 479155 L5045 2020 4324 555*2^1591677-1 479146 L2017 2019 4325e 7581*2^1591643+1 479137 L1823 2020 4326e 1653*2^1591444+1 479076 L1188 2020 4327 20417546^65536+1 479069 L4286 2017 Generalized Fermat 4328 20416586^65536+1 479068 L4308 2017 Generalized Fermat 4329 1179*2^1591362+1 479051 g387 2006 4330 875*2^1591229+1 479011 L3221 2012 4331e 6799*2^1591194+1 479001 L4851 2020 4332 20368808^65536+1 479001 L4201 2017 Generalized Fermat 4333 20338906^65536+1 478959 L4245 2017 Generalized Fermat 4334 20338564^65536+1 478959 L4549 2017 Generalized Fermat 4335 1377*2^1591036-1 478953 L1828 2014 4336e 2373*2^1590977+1 478936 L1444 2020 4337 20317650^65536+1 478929 L4252 2017 Generalized Fermat 4338 65623*2^1590940+1 478926 L3886 2014 4339e 7287*2^1590918+1 478918 L1209 2020 4340 135*2^1590711+1 478854 L1204 2013 4341 169*2^1590665-1 478841 L2074 2014 4342e 7137*2^1590535+1 478803 L4830 2020 4343 1227*2^1590433-1 478772 L1828 2014 4344 279*2^1590369-1 478752 L1828 2013 4345 1135*2^1590353-1 478748 L1828 2014 4346 427*2^1590349-1 478746 L2017 2019 4347e 6129*2^1590270+1 478723 L4762 2020 4348e 3133*2^1590150+1 478687 L5100 2020 4349e 8591*2^1590081+1 478667 L4375 2020 4350 20109598^65536+1 478636 L4550 2017 Generalized Fermat 4351 740*383^185249+1 478538 L2012 2014 4352e 4647*2^1589572+1 478513 L2125 2020 4353e 7709*2^1589355+1 478448 L4375 2020 4354e 7837*2^1589340+1 478443 L2125 2020 4355 701*48^284564+1 478424 L4444 2019 4356 121*2^1589157-1 478387 L65 2005 4357 44*872^162680-1 478365 L4453 2016 4358 19916902^65536+1 478362 L4245 2017 Generalized Fermat 4359e 1953*2^1588964+1 478330 L1188 2020 4360e 2189*2^1588675+1 478243 L5100 2020 4361 19810832^65536+1 478210 L4549 2017 Generalized Fermat 4362e 1625*2^1588443+1 478173 L3465 2020 4363e 2687*2^1588439+1 478172 L3919 2020 4364 285*2^1588353+1 478145 L1733 2013 4365e 2115*2^1588339+1 478142 L1188 2020 4366e 2155*2^1588226+1 478107 L1444 2020 4367e 9885*2^1588147+1 478084 L2914 2020 4368e 6453*2^1588090+1 478067 L5100 2020 4369e 5221*2^1588024+1 478047 L1823 2020 4370 33834*151^219386-1 478042 L4001 2018 4371e 1825*2^1587934+1 478020 L2142 2020 4372 1281*2^1587882-1 478004 L1828 2014 4373e 8417*2^1587815+1 477984 L2125 2020 4374e 5271*2^1587785+1 477975 L2125 2020 4375e 3933*2^1587464+1 477878 L1188 2020 4376e 3611*2^1587425+1 477867 L4979 2020 4377e 4005*2^1587347+1 477843 L1823 2020 4378e 2675*2^1587299+1 477829 L5062 2020 4379 263*2^1587302-1 477828 L2101 2012 4380e 7575*2^1587296+1 477828 L3593 2020 4381e 3235*2^1587214+1 477803 L1808 2020 4382 289*2^1587151-1 477783 L1828 2011 4383 19514276^65536+1 477781 L4201 2017 Generalized Fermat 4384 1197*2^1587140+1 477780 L3260 2012 4385 19502212^65536+1 477763 p160 2005 Generalized Fermat 4386e 9139*2^1587042+1 477752 L4087 2020 4387e 5575*2^1586970+1 477730 L5146 2020 4388e 8335*2^1586934+1 477719 L1444 2020 4389e 3961*2^1586840+1 477691 L1444 2020 4390 19451454^65536+1 477689 L4544 2017 Generalized Fermat 4391 19432158^65536+1 477661 L4245 2017 Generalized Fermat 4392 1191*2^1586696+1 477647 L2876 2012 4393 19415886^65536+1 477637 L4545 2017 Generalized Fermat 4394 1039*2^1586474+1 477580 L1502 2012 4395e 2051*2^1586437+1 477569 L1444 2020 4396e 4179*2^1586359+1 477546 L4907 2020 4397 261*2^1586347+1 477541 L3237 2013 4398 2*5^683080-1 477453 L5109 2020 4399e 8915*2^1585903+1 477409 L5004 2020 4400e 7479*2^1585889+1 477405 L3593 2020 4401e 8949*2^1585871+1 477399 L4893 2020 4402 19194688^65536+1 477311 L4245 2017 Generalized Fermat 4403f 5967*2^1585568+1 477308 L4851 2020 4404 1221*2^1585485-1 477282 L1828 2014 4405 19165998^65536+1 477268 L4245 2017 Generalized Fermat 4406f 7881*2^1585396+1 477256 L5085 2020 4407 19149988^65536+1 477245 L4201 2017 Generalized Fermat 4408f 5217*2^1585290+1 477224 L5004 2020 4409f 9867*2^1585271+1 477219 L5062 2020 4410f 9463*2^1585024+1 477144 L3760 2020 4411 277*2^1584740+1 477057 L1502 2013 4412f 8029*2^1584718+1 477052 L2125 2020 4413 404*837^163205+1 477007 L4944 2020 4414 4056*703^167545-1 476997 L4001 2016 4415f 9063*2^1584502+1 476987 L4893 2020 4416 1908*22^355313+1 476984 L1471 2013 4417f 6271*2^1584416+1 476961 L4169 2020 4418f 7161*2^1584363+1 476945 L5004 2020 4419f 3335*2^1584363+1 476945 L4063 2020 4420f 7513*2^1584340+1 476938 L5114 2020 4421f 7359*2^1584325+1 476934 L5004 2020 4422 1017*2^1584225-1 476903 L1828 2014 4423f 3457*2^1584076+1 476858 L5133 2020 4424f 6737*2^1584003+1 476837 L3035 2020 4425f 1575*2^1583906+1 476807 L5131 2020 4426 393*2^1583890-1 476801 L3844 2014 4427b 866*138^222803+1 476775 L4944 2020 4428f 5163*2^1583752+1 476761 L3035 2020 4429 551*2^1583718-1 476750 L3994 2018 4430 18788582^65536+1 476702 L4537 2017 Generalized Fermat 4431f 8879*2^1583519+1 476691 L1444 2020 4432 763*2^1583512+1 476688 L1935 2012 4433 3125*2^1583223+1 476602 L4951 2019 4434f 2733*2^1583157+1 476582 L5111 2020 4435f 8463*2^1583150+1 476580 L1188 2020 4436 277*2^1583097-1 476563 L2484 2013 4437 433*2^1583059-1 476551 L3994 2018 4438 18682542^65536+1 476541 L4530 2017 Generalized Fermat 4439 855*2^1582921+1 476510 L3035 2012 4440 4009*2^1582889-1 476501 L1959 2015 4441 6326*333^188895+1 476481 L4592 2017 4442 7183*2^1582702+1 476445 L1188 2020 4443 8285*2^1582691+1 476442 L1188 2020 4444 18612352^65536+1 476434 L4245 2017 Generalized Fermat 4445 2955*2^1582609-1 476417 L3887 2017 4446 471*2^1582593-1 476411 L3994 2018 4447f 1743*2^1582558+1 476401 L1387 2020 4448 1098133#-1 476311 p346 2012 Primorial 4449 7093*2^1582212+1 476298 L4878 2020 4450 5923*2^1582122+1 476270 L4878 2020 4451 2597*2^1581923+1 476210 L5113 2020 4452 5889*2^1581821+1 476180 L4666 2020 4453 8473*2^1581780+1 476168 L1808 2020 4454 (2^64-189)*10^476124+1 476144 p342 2013 4455 311*2^1581686-1 476138 L623 2009 4456 5661*2^1581669+1 476134 L5111 2020 4457 6945*2^1581535+1 476094 L5119 2020 4458 18387422^65536+1 476088 L4309 2017 Generalized Fermat 4459 5013*2^1581509+1 476086 L3035 2020 4460 3235*2^1581444+1 476066 L5110 2020 4461 18364744^65536+1 476053 L4387 2017 Generalized Fermat 4462 3849*2^1581389+1 476050 L2552 2020 4463 9405*2^1581303+1 476024 L3166 2020 4464 3303*2^1581274+1 476015 L3972 2020 4465 10038*1027^158056+1 476001 L4001 2018 4466 7637*2^1581163+1 475982 L5114 2020 4467 8403*2^1581138+1 475974 L5107 2020 4468 3703*2^1580980+1 475926 L4746 2020 4469 2287*2^1580914+1 475906 L2125 2020 4470 1477*2^1580902+1 475903 L2125 2020 4471 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 4472 18255116^65536+1 475883 L4536 2017 Generalized Fermat 4473 1185*2^1580824-1 475879 L1828 2014 4474 8317*2^1580774+1 475865 L4878 2020 4475 2455*2^1580770+1 475863 L3910 2020 4476 6963*2^1580698+1 475842 L3166 2020 4477 2853*2^1580542+1 475795 L2125 2020 4478 6225*2^1580522+1 475789 L4878 2020 4479 1221*2^1580487+1 475778 L3166 2020 4480 8175*2^1580425+1 475760 L2125 2020 4481 5317*2^1580412+1 475756 L5108 2020 4482 4289*2^1580365+1 475741 L2125 2020 4483 989*2^1580147+1 475675 L3333 2012 4484 10009*2^1580131-1 475671 L4405 2020 4485 7339*2^1580126+1 475670 L4609 2020 4486 40962*1027^157930+1 475622 L4001 2018 4487 4211*2^1579943+1 475614 L5100 2020 4488 3117*2^1579931+1 475611 L5038 2020 4489 9333*2^1579717+1 475547 L5097 2020 4490 8427*2^1579624+1 475519 L3166 2020 4491 6999*2^1579481+1 475476 L4732 2020 4492 6111*2^1579437+1 475462 L5097 2020 4493 2017*2^1579428+1 475459 L5095 2020 4494 159*2^1579426+1 475457 L3179 2013 4495 4494381*2^1579256+1 475411 L2425 2011 4496 3437965*2^1579256+1 475410 L2425 2011 4497 552073*2^1579256+1 475410 L2425 2011 4498 396687*2^1579256+1 475410 L2425 2011 4499 3635*2^1579169+1 475381 L1753 2020 4500 2717*2^1579159+1 475378 L4957 2020 4501 449*2^1579160-1 475378 L3994 2018 4502 17931126^65536+1 475373 L4245 2017 Generalized Fermat 4503 1167*2^1579018+1 475335 L1728 2012 4504 6981*2^1578849+1 475285 L4746 2020 4505 2785*2^1578812+1 475274 L3910 2020 4506 3933*2^1578529+1 475189 L5091 2020 4507 603*2^1578398+1 475148 L333 2012 4508 2488*5^679769-1 475142 p321 2011 4509 3875*2^1578293+1 475118 L3972 2020 4510 17770454^65536+1 475117 L4245 2017 Generalized Fermat 4511 8363*2^1578229+1 475099 L4746 2020 4512 17757426^65536+1 475096 L4530 2017 Generalized Fermat 4513 2443*2^1578220+1 475095 L3166 2020 4514 17716338^65536+1 475030 L4245 2017 Generalized Fermat 4515 600921*2^1577963+1 475020 g337 2018 4516 5083*2^1577966+1 475019 L3035 2020 4517 1293*2^1577862+1 474987 L1188 2020 4518 1195*2^1577839-1 474980 L1828 2014 4519 17684828^65536+1 474979 g410 2007 Generalized Fermat 4520 17655444^65536+1 474932 g410 2007 Generalized Fermat 4521 9191*2^1577553+1 474895 L4746 2020 4522 17629398^65536+1 474890 g410 2007 Generalized Fermat 4523 5231*2^1577523+1 474886 L4746 2020 4524 3607*2^1577492+1 474876 L5085 2020 4525 2277*2^1577467+1 474869 L5086 2020 4526 1712*333^188252+1 474859 L4001 2017 4527 365*2^1577413+1 474852 L1204 2013 4528 17594396^65536+1 474833 L4245 2017 Generalized Fermat 4529 553*2^1577344+1 474831 L3260 2012 4530a (968^79512-1)^2-2 474826 p403 2021 4531 9865*2^1577298+1 474819 L4824 2020 4532 427*2^1577169-1 474778 L3994 2018 4533 7579*2^1577158+1 474776 L5082 2020 4534 2397*2^1577139+1 474770 L1209 2020 4535 8775*2^1576883+1 474694 L5082 2020 4536 17493552^65536+1 474670 L4380 2017 Generalized Fermat 4537 6271*2^1576688+1 474635 L4824 2020 4538 3189*2^1576686+1 474634 L3035 2020 4539 5141*2^1576565+1 474598 L2979 2020 4540 7797*2^1576550+1 474593 L4582 2020 4541 3045*2^1576543+1 474591 L5079 2020 4542 8935*2^1576440+1 474560 L1201 2020 4543 4611*2^1576419+1 474554 L4155 2020 4544 7485*2^1576410+1 474551 L2125 2020 4545 4065*2^1576362-1 474536 L1959 2015 4546 909*2^1576339+1 474529 L2085 2012 4547 8567*2^1576307+1 474520 L1479 2020 4548 7471*2^1576296+1 474517 L4824 2020 4549 805*2^1576258+1 474504 L3035 2012 4550 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 4551 5423*2^1576233+1 474498 L4155 2020 4552 3593*2^1576037+1 474438 L1175 2020 4553 171*2^1575999-1 474426 L384 2014 4554 17328156^65536+1 474399 L4526 2017 Generalized Fermat 4555 1447*2^1575810+1 474370 L4155 2020 4556 99*2^1575803+1 474366 L1500 2011 4557 373*2^1575751-1 474351 L1819 2012 4558 8053*2^1575744+1 474351 L5075 2020 4559 2665*2^1575688+1 474333 L5074 2020 4560 5175*2^1575567+1 474297 L4746 2020 4561 17265602^65536+1 474296 L4525 2017 Generalized Fermat 4562 557*2^1575504-1 474277 L3994 2018 4563 4211*2^1575491+1 474274 L4882 2020 4564 1003*2^1575486+1 474272 L1484 2012 4565 1285*2^1575376+1 474239 L1209 2020 4566 3479*2^1575059+1 474144 L5004 2020 4567 17157558^65536+1 474118 L4285 2017 Generalized Fermat 4568 29*2^1574753+1 474050 L391 2008 4569 3453*2^1574682+1 474031 L2669 2020 4570 2355*2^1574667+1 474026 L5073 2020 4571 1347*2^1574633-1 474015 L1828 2014 4572 7479*2^1574579+1 474000 L2873 2020 4573 2409*2^1574455+1 473962 L4754 2020 4574 7237*2^1574336+1 473927 L1444 2020 4575 4245*2^1574165+1 473875 L4730 2020 4576 1869*2^1574159+1 473873 L3278 2020 4577 6801*2^1573945+1 473809 L1142 2020 4578 3939*2^1573822+1 473772 L2981 2020 4579 8719*2^1573766+1 473755 L1204 2020 4580 1593*2^1573725+1 473742 L1204 2020 4581 67*2^1573454+1 473659 L1125 2011 4582 10005*2^1573410-1 473648 L4405 2020 4583 6629*2^1573339+1 473627 L1204 2020 4584 16858742^65536+1 473618 L4519 2017 Generalized Fermat 4585 9599*2^1573177+1 473578 L1204 2020 4586 2519*2^1573003+1 473525 L2158 2020 4587 6563*2^1572945+1 473508 L3784 2020 4588 16787702^65536+1 473498 L4295 2017 Generalized Fermat 4589 2073*2^1572906+1 473496 L5026 2020 4590 7719*2^1572714+1 473438 L1204 2020 4591 5085*2^1572714+1 473438 L4746 2020 4592 7211*2^1572621+1 473410 L1188 2020 4593 3291*2^1572583+1 473399 L1204 2020 4594 6671*2^1572515+1 473379 L3029 2020 4595 9405*2^1572448+1 473358 L4674 2020 4596 703*2^1572182+1 473277 L2366 2012 4597 2861*2^1572127+1 473261 L3784 2020 4598 4349*2^1571977+1 473216 L2979 2020 4599 4635*2^1571918+1 473199 L1209 2020 4600 5889*2^1571719+1 473139 L5065 2020 4601 557*2^1571700-1 473132 L3994 2018 4602 2355*2^1571668-1 473123 L2484 2017 4603 1573*2^1571590+1 473099 L1204 2020 4604 3567*2^1571560+1 473091 L5066 2020 4605 175*2^1571521-1 473078 L2074 2013 4606 5487*2^1571515+1 473077 L5065 2020 4607 3087*2^1571426+1 473050 L2981 2020 4608 9123*2^1571392+1 473041 L5064 2020 4609 1985*2^1571265+1 473002 L3784 2020 4610 4003*2^1571218+1 472988 L4888 2020 4611 5143*2^1571040+1 472934 L2873 2020 4612 9275*2^1571019+1 472928 L2979 2020 4613 7631*2^1571013+1 472926 L1137 2020 4614 4655*2^1570941+1 472905 L5062 2020 4615 8391*2^1570896+1 472891 L3784 2020 4616 4067*2^1570800-1 472862 L1959 2015 4617 6333*2^1570798+1 472862 L3278 2020 4618 4901*2^1570761+1 472850 L1204 2020 4619 111*2^1570718-1 472836 L1862 2012 4620 4663*2^1570696+1 472831 L4992 2020 4621 3803*2^1570401+1 472742 L4951 2020 4622 3891*2^1570357+1 472729 L4754 2020 4623 16326986^65536+1 472706 L4508 2016 Generalized Fermat 4624 26*800^162819+1 472680 p355 2012 4625 7641*2^1570180+1 472676 L2979 2020 4626 4237*2^1570088+1 472648 L1188 2020 4627e 645*748^164447-1 472608 L4944 2020 4628 429*2^1569942+1 472603 L2675 2013 4629 3303*2^1569865+1 472580 L3784 2020 4630 8617*2^1569852+1 472577 L5060 2020 4631 5643*2^1569661+1 472519 L3593 2020 4632 3487*2^1569498+1 472470 L4290 2020 4633 334*319^188699+1 472466 p365 2019 4634 2953*2^1569454+1 472457 L2981 2020 4635 6751*2^1569384+1 472436 L3181 2020 4636 3499*2^1569242+1 472393 L4754 2020 4637 16120142^65536+1 472343 L4502 2016 Generalized Fermat 4638 3467*2^1568923+1 472297 L1410 2020 4639 2993*2^1568853+1 472276 L4778 2020 4640 4183*2^1568799-1 472260 L1959 2014 4641 1605*2^1568792+1 472257 L2981 2020 4642 197*2^1568755+1 472245 L1204 2013 4643 16034826^65536+1 472192 L4500 2016 Generalized Fermat 4644 5369*2^1568471+1 472161 L4851 2020 4645 483*2^1568404+1 472140 L1204 2013 4646 1953*2^1568160+1 472067 L4851 2020 4647 15948188^65536+1 472037 L4495 2016 Generalized Fermat 4648 9121*2^1568036+1 472030 L5058 2020 4649 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 4650 7665*2^1567988+1 472016 L1204 2020 4651 5245*2^1567878+1 471983 L1204 2020 4652 139*2^1567874+1 471980 p189 2006 4653 7193*2^1567845+1 471973 L4293 2020 4654 3287*2^1567827+1 471967 L1201 2020 4655 15893070^65536+1 471939 L4249 2016 Generalized Fermat 4656c 717*2^1567550-1 471883 L1817 2020 4657 7871*2^1567413+1 471843 L2979 2020 4658 1345*2^1567289-1 471805 L1828 2014 4659 103040!-1 471794 p301 2010 Factorial 4660 331882*5^674961-1 471784 p333 2011 4661 1325*2^1567203+1 471779 L2981 2020 4662 15800506^65536+1 471773 L4252 2016 Generalized Fermat 4663 2325*2^1567145+1 471762 L2979 2020 4664 9939*2^1567058+1 471736 L3784 2020 4665 191*2^1567005+1 471718 L3035 2013 4666 106*380^182846+1 471706 p365 2018 4667 9535*2^1566892+1 471686 L2608 2020 4668 2853*2^1566884+1 471683 L1201 2020 4669 9567*2^1566759+1 471646 L2973 2020 4670 2983*2^1566580+1 471592 L5055 2020 4671 69*2^1566375-1 471528 L1828 2011 4672 5405*2^1566119+1 471453 L4951 2020 4673 15603948^65536+1 471416 L4456 2016 Generalized Fermat 4674 1079*2^1565923+1 471393 L1344 2012 4675 33910*1027^156522+1 471382 L4700 2018 4676 2347*2^1565874+1 471379 L3784 2020 4677 6171*2^1565805+1 471359 L2125 2020 4678 8847*2^1565780+1 471351 L4895 2020 4679 9459*2^1565365+1 471226 L5004 2020 4680 15499198^65536+1 471225 L4456 2016 Generalized Fermat 4681 285*2^1565353-1 471221 L3202 2013 4682 729*366^183817-1 471215 L2054 2011 4683 15471020^65536+1 471173 L4488 2016 Generalized Fermat 4684e 805*2^1565131-1 471155 L1817 2020 4685 15454262^65536+1 471142 L4456 2016 Generalized Fermat 4686 5797*2^1565056+1 471133 L4970 2020 4687 7461*2^1565033+1 471126 L2375 2020 4688 6501*2^1564987+1 471112 L2080 2020 4689 2960*241^197729-1 470998 L4944 2019 4690 5577*2^1564603+1 470997 L4582 2020 4691 2373*2^1564589+1 470992 L5050 2020 4692 8315*2^1564567+1 470986 L2608 2020 4693 6355*2^1564550+1 470981 L1209 2020 4694 7447*2^1564486+1 470962 L1823 2020 4695 9165*2^1564376+1 470929 L5031 2020 4696 5*6^605168-1 470913 L4881 2019 4697 2925*2^1564031-1 470824 L2484 2017 4698 6367*2^1563996+1 470814 L4851 2020 4699 5745*2^1563994+1 470813 L1188 2020 4700 6585*2^1563766+1 470745 L2279 2020 4701 340020*151^216036-1 470743 L4001 2018 4702 8971*2^1563752+1 470741 L5048 2020 4703 7303*2^1563684+1 470720 L3662 2020 4704 1573*2^1563486+1 470660 L4951 2020 4705 5133*2^1563452+1 470650 L5046 2020 4706 685*2^1563423-1 470641 L1817 2020 4707 9129*2^1563357+1 470622 L5045 2020 4708 1889*2^1563247+1 470588 L4553 2020 4709 597*2^1563213-1 470577 L2519 2018 4710b 14056*381^182324+1 470569 L4944 2020 4711 285*2^1563167-1 470563 L3202 2013 4712 1047*2^1563150+1 470559 L3221 2012 4713 8439*2^1562991+1 470512 L1823 2020 4714 19000302866132191930...(470418 other digits)...64447092025915867137 470458 p360 2013 4715 3221*2^1562803+1 470455 L1808 2020 4716 6099*2^1562799+1 470454 L2669 2020 4717 15069494^65536+1 470424 L4478 2016 Generalized Fermat 4718 5853*2^1562688+1 470420 L2979 2020 4719 103*2^1562619-1 470398 L2484 2012 4720 2689*2^1562478+1 470357 L4770 2020 4721 15005274^65536+1 470303 L4476 2016 Generalized Fermat 4722 10115*2^1562075+1 470236 p344 2017 4723 149*2^1561951+1 470197 L2322 2013 4724 14947856^65536+1 470194 L4456 2016 Generalized Fermat 4725 891*2^1561849+1 470167 L2626 2012 4726 9251*2^1561837+1 470164 L4730 2020 4727 137132*151^215769-1 470161 L4001 2018 4728 14914430^65536+1 470130 L4467 2016 Generalized Fermat 4729 14914230^65536+1 470130 L4261 2016 Generalized Fermat 4730 93*2^1561686+1 470117 L1741 2011 4731 1935*2^1561481+1 470056 L4851 2020 4732 6703*2^1561448+1 470047 L2979 2020 4733 2373*2^1561418+1 470038 L5042 2020 4734 14832496^65536+1 469973 L4456 2016 Generalized Fermat 4735 14832074^65536+1 469972 L4456 2016 Generalized Fermat 4736 8727*2^1561191+1 469970 L4951 2020 4737 931*2^1561084+1 469937 L1167 2012 4738 14807318^65536+1 469925 L4387 2016 Generalized Fermat 4739 3197*2^1560987+1 469908 L4148 2020 4740 14778298^65536+1 469869 L4456 2016 Generalized Fermat 4741 8059*2^1560766+1 469842 L1209 2020 4742 6509*2^1560739+1 469834 L2279 2020 4743 14750712^65536+1 469816 L4387 2016 Generalized Fermat 4744 8545*2^1560526+1 469770 L4851 2020 4745 695*2^1560515+1 469765 L2117 2012 4746 1473*2^1560453+1 469747 L3171 2020 4747 14705866^65536+1 469729 L4456 2016 Generalized Fermat 4748 8669*2^1560369+1 469722 L5038 2020 4749 2893*2^1560346+1 469715 L4878 2020 4750 219*2^1560099+1 469639 L1505 2013 4751 2549*2^1560053+1 469627 L1774 2020 4752 9305*2^1559821+1 469557 L1209 2020 4753 6867*2^1559819+1 469557 L1479 2020 4754b 2416*138^219421+1 469538 L4944 2020 4755 9003*2^1559725+1 469528 L3784 2020 4756 8813*2^1559353+1 469416 L2823 2020 4757 6551*2^1559233+1 469380 L4885 2020 4758 14518950^65536+1 469365 L4451 2016 Generalized Fermat 4759 371*2^1559073+1 469331 L1745 2013 4760 5831*2^1559037+1 469321 L4824 2020 4761 6731*2^1559013+1 469314 L5035 2020 4762 651*2^1558979+1 469303 L3329 2012 4763 8881*2^1558852+1 469266 L1957 2020 4764 6667*2^1558820+1 469256 L4754 2020 4765 7615*2^1558670+1 469211 L4851 2020 4766 6489*2^1558511+1 469163 L4951 2020 4767 8425*2^1558502+1 469160 L2914 2020 4768 3383*2^1558333+1 469109 L3784 2020 4769 3141*2^1558303+1 469100 L4646 2020 4770 3215*2^1558293+1 469097 L5004 2020 4771 7975*2^1558158+1 469057 L4883 2020 4772 9913*2^1558112+1 469043 L4882 2020 4773 1839*2^1558090+1 469036 L4148 2020 4774 7831*2^1558056+1 469026 L5031 2020 4775 2655*2^1558057+1 469026 L5032 2020 4776 2227*2^1558042+1 469021 L4907 2020 4777 4597*2^1557924+1 468986 L4761 2020 4778 3219*2^1557703+1 468919 L4666 2020 4779 3885*2^1557646+1 468902 L1808 2020 4780 3531*2^1557497+1 468857 L4746 2020 4781 3639*2^1556957+1 468695 L1336 2020 4782 2249*2^1556947+1 468692 L3784 2020 4783 9293*2^1556781+1 468642 L3784 2020 4784 9809*2^1556555+1 468574 L5028 2020 4785 3363*2^1556529+1 468566 L3784 2020 4786 7651*2^1556432+1 468537 L4087 2020 4787 3633*2^1556433+1 468537 L4364 2020 4788 8643*2^1556269+1 468488 L4148 2020 4789 14059910^65536+1 468451 L4387 2016 Generalized Fermat 4790 1591*2^1556140+1 468449 L4666 2020 4791 14050484^65536+1 468432 L4387 2016 Generalized Fermat 4792 3423*2^1555994-1 468405 L860 2017 4793 2065*2^1555824+1 468354 L5026 2020 4794 262904*151^214927-1 468327 L4700 2018 4795 3749*2^1555697+1 468316 L1307 2020 4796 1865*2^1555665+1 468306 L4666 2020 4797 3825*2^1555587+1 468282 L5004 2020 4798 390327*2^1555555+1 468275 L4828 2018 4799 13968798^65536+1 468266 L4429 2016 Generalized Fermat 4800 4005*2^1555509+1 468259 L4895 2020 4801 13944760^65536+1 468217 L4371 2016 Generalized Fermat 4802 5727*2^1555330+1 468205 L1487 2020 4803 3615*2^1555289-1 468193 L860 2017 4804 1429*2^1555222+1 468172 L1188 2020 4805 4559*2^1555017+1 468111 L1307 2020 4806 817*2^1554994+1 468103 L2085 2012 4807 7471*2^1554820+1 468052 L4746 2020 4808 15876*1027^155415-1 468048 L4001 2018 4809 4*3^980925+1 468021 L4962 2019 4810 8693*2^1554629+1 467994 L1125 2020 4811 6171*2^1554620+1 467992 L1957 2020 4812 2031*2^1554613+1 467989 L4895 2020 4813 7885*2^1554608+1 467988 L4895 2020 4814 117*2^1554601-1 467984 L3519 2013 4815 13830802^65536+1 467983 L4424 2016 Generalized Fermat 4816 3615*2^1554565-1 467975 L860 2017 4817 1341*2^1554556+1 467972 L5004 2020 4818 2493*2^1554324+1 467902 L4878 2020 4819 9793*2^1554294+1 467894 L1957 2020 4820 3591*2^1554003+1 467806 L1957 2020 4821 7649*2^1553995+1 467803 L5004 2020 4822 1185*2^1553995+1 467803 L2366 2012 4823 9921*2^1553952+1 467791 L2891 2020 4824 4663*2^1553932+1 467784 L4895 2020 4825 1749*2^1553890+1 467771 L5004 2020 4826 3959*2^1553833+1 467754 L4895 2020 4827 9501*2^1553584+1 467680 L4878 2020 4828 161*2^1553570-1 467674 L177 2011 4829 3149*2^1553539+1 467666 L4746 2020 4830 2345*2^1553489+1 467651 L5015 2020 4831 5289*2^1553477+1 467647 L4895 2020 4832 1043*2^1553422-1 467630 L1828 2014 4833 13657452^65536+1 467624 L4410 2016 Generalized Fermat 4834 9469*2^1553278+1 467588 L1957 2020 4835 8407*2^1553270+1 467585 L3973 2020 4836 8099*2^1553253+1 467580 L1957 2020 4837 7589*2^1553251+1 467580 L2279 2020 4838 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 4839 8453*2^1552885+1 467469 L5004 2020 4840 3881*2^1552845+1 467457 L5012 2020 4841 5097*2^1552838+1 467455 L4883 2019 4842 7343*2^1552809+1 467446 L4883 2019 4843 4521*2^1552804+1 467445 L1209 2019 4844 3039*2^1552709+1 467416 L5004 2019 4845 8613*2^1552704+1 467415 L4878 2019 4846 5859*2^1552591+1 467381 L5004 2019 4847 3411*2^1552383+1 467318 L1957 2019 4848 1361*2^1552370-1 467314 L1828 2014 4849 9465*2^1552143+1 467246 L5004 2019 4850 13466298^65536+1 467223 L4415 2016 Generalized Fermat 4851 5301*2^1552029+1 467212 L4448 2019 4852 3215*2^1551991+1 467200 L2051 2019 4853 7863*2^1551984+1 467198 L4728 2019 4854 987*2^1551973-1 467194 L1817 2019 4855 1669*2^1551930+1 467181 L4847 2019 4856 1323*2^1551755-1 467128 L1828 2014 4857 13398688^65536+1 467080 L4410 2016 Generalized Fermat 4858 7315*2^1551434+1 467033 L3760 2019 4859 2451*2^1551300+1 466992 L5004 2019 4860 649*2^1551271-1 466982 L1817 2019 4861 8953*2^1551122+1 466939 L1957 2019 4862 13332130^65536+1 466938 L4411 2016 Generalized Fermat 4863 7511*2^1550903+1 466873 L1957 2019 4864 327542*151^214253-1 466858 L4001 2018 4865 4287*2^1550687+1 466807 L1209 2019 4866 4057*2^1550624+1 466788 L1209 2019 4867 5171*2^1550539+1 466763 L1209 2019 4868 669*2^1550535-1 466761 L1817 2019 4869 5217*2^1550350+1 466706 L1957 2019 4870 8157*2^1550268+1 466682 L4998 2019 4871 765*2^1550239-1 466672 L1817 2019 4872 29009*24^338099+1 466653 L4806 2018 4873 4053*2^1550167-1 466651 L1959 2015 4874 458*217^199724-1 466650 L541 2019 4875 7245*2^1550087+1 466627 L1209 2019 4876 (30^157950+1)^2-2 466623 p392 2016 4877 3315*2^1549942+1 466583 L1209 2019 4878 903*2^1549834-1 466550 L1817 2019 4879 4983*2^1549753+1 466526 L3035 2019 4880 2283*2^1549700+1 466510 L4724 2019 4881 8683*2^1549578+1 466474 L1209 2019 4882 9935*2^1549379+1 466414 L4996 2019 4883 9837*2^1549319+1 466396 L1129 2019 4884 1827*2^1549287+1 466386 L2051 2019 4885 6429*2^1549242+1 466373 L2051 2019 4886 7597*2^1549154+1 466346 L2051 2019 4887 2609*2^1549069+1 466320 L4993 2019 4888 9559*2^1549058+1 466317 L4866 2019 4889 2015*2^1549057+1 466316 L3035 2019 4890 9795*2^1548994+1 466298 L3035 2019 4891 13029860^65536+1 466285 L4326 2016 Generalized Fermat 4892 1071*2^1548940+1 466281 L1204 2012 4893 71730*1027^154816+1 466245 L4700 2018 4894 9813*2^1548776+1 466233 L2051 2019 4895 1885*2^1548746+1 466223 L3035 2019 4896 5723*2^1548641+1 466192 L4732 2019 4897 1021*2^1548585-1 466174 L1828 2014 4898 5633*2^1548573+1 466171 L3035 2019 4899 8155*2^1548500+1 466149 L4992 2019 4900 7835*2^1548409+1 466122 L4995 2019 4901 5241*2^1548409+1 466122 L3035 2019 4902 12941970^65536+1 466093 L4371 2016 Generalized Fermat 4903 4067*2^1548295+1 466087 L3035 2019 4904 52*701^163776+1 466063 p268 2013 4905 1199*2^1548171+1 466049 L2981 2012 4906 12914686^65536+1 466032 L4400 2016 Generalized Fermat 4907 95*10^466002-1 466004 L3735 2014 Near-repdigit 4908 7165*2^1547988+1 465995 L4938 2019 4909 4125*2^1547912+1 465972 L4991 2019 4910 5225*2^1547849+1 465953 L2051 2019 4911 189*2^1547744-1 465920 L384 2014 4912 7075*2^1547656+1 465895 L3973 2019 4913 363*2^1547344-1 465800 L3870 2014 4914 7187*2^1547331+1 465797 L4148 2019 4915 4113*2^1547054-1 465714 L1959 2015 4916 3519*2^1547046+1 465711 L2676 2019 4917 5205*2^1547035+1 465708 L4938 2019 4918 12764608^65536+1 465700 L4395 2016 Generalized Fermat 4919 4101*2^1546943-1 465680 L1959 2015 4920 2697*2^1546800+1 465637 L4983 2019 4921 5161*2^1546780+1 465631 L4981 2019 4922 8919*2^1546706+1 465609 L4981 2019 4923 6269*2^1546695+1 465606 L4148 2019 4924 9175*2^1546684+1 465603 L3972 2019 4925 63428*151^213670-1 465587 L4001 2018 4926 409*2^1546542+1 465559 L3248 2013 4927 4775*2^1546493+1 465545 L2051 2019 4928 9759*2^1546487+1 465543 L4981 2019 4929 12660574^65536+1 465467 L4391 2016 Generalized Fermat 4930 4511*2^1546079+1 465420 L4978 2019 4931 2607*2^1546026+1 465404 L4746 2019 4932 135*2^1545961+1 465383 L2549 2013 4933 12620940^65536+1 465378 L4389 2016 Generalized Fermat 4934 539*2^1545909+1 465368 L3327 2012 4935 6507*2^1545778+1 465330 L3168 2019 4936 477*2^1545648+1 465290 L1484 2013 4937 6241*2^1545628+1 465285 L1125 2019 Generalized Fermat 4938 4053*2^1545380-1 465210 L1959 2015 4939 5739*2^1545370+1 465207 L4148 2019 4940 2565*2^1545236+1 465166 L4967 2019 4941 12510100^65536+1 465127 L4387 2016 Generalized Fermat 4942 12508790^65536+1 465124 L4380 2016 Generalized Fermat 4943 9157*2^1545064+1 465115 L1188 2019 4944 4087*2^1545033-1 465105 L1959 2014 4945 243828*151^213445-1 465098 L4001 2018 4946 7143*2^1544984+1 465091 L2914 2019 4947 5217*2^1544714+1 465009 L3166 2019 4948 81*2^1544545+1 464957 gt 2007 4949 1431*2^1544367+1 464904 L3035 2019 4950 3351*2^1544361+1 464903 L1957 2019 4951 1003*2^1544288+1 464881 L1129 2012 4952 2765*2^1544271+1 464876 L3035 2019 4953 7205*2^1544267+1 464875 L4970 2019 4954 5*10^464843-1 464844 p297 2011 Near-repdigit 4955 1885*2^1544144+1 464837 L4746 2019 4956 8579*2^1544085+1 464820 L4893 2019 4957 12376146^65536+1 464820 L4380 2016 Generalized Fermat 4958 5553*2^1543890+1 464761 L4256 2019 4959 3995*2^1543759+1 464722 L4969 2019 4960 3291*2^1543701+1 464704 L2603 2019 4961 95*2^1543676-1 464695 L2338 2011 4962 2487*2^1543644+1 464687 L4938 2019 4963 9767*2^1543619+1 464680 L1486 2019 4964 63642*1027^154283+1 464639 L4001 2018 4965 6627*2^1543398+1 464613 L4967 2019 4966 4007*2^1543343+1 464597 L4194 2019 4967 6699*2^1543135+1 464534 L4724 2019 4968 2493*2^1542852+1 464449 L3035 2019 4969 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 4970 3555*2^1542812-1 464437 L860 2017 4971 5049*2^1542810+1 464436 L1436 2019 4972 3773*2^1542593+1 464371 L4827 2019 4973 227*2^1542323+1 464288 L1204 2013 4974 4155*2^1542311+1 464286 L4952 2019 4975 7839*2^1542254+1 464269 L4256 2019 4976 849*2^1542241-1 464264 L1817 2019 4977 703*2^1542084+1 464217 L2038 2012 4978 8453*2^1542065+1 464212 L4148 2019 4979 12102810^65536+1 464185 L4371 2016 Generalized Fermat 4980 3667*2^1541840+1 464144 L4827 2019 4981 12084448^65536+1 464141 L4370 2016 Generalized Fermat 4982 7259*2^1541791+1 464130 L4957 2019 4983 7371*2^1541648+1 464087 L2125 2019 4984 8903*2^1541309+1 463985 L3035 2019 4985 1475*2^1541271+1 463972 L4938 2019 4986 5679*2^1541223+1 463959 L4953 2019 4987 1659*2^1541195+1 463950 L4953 2019 4988 149*2^1541152-1 463936 L384 2013 4989 53*2^1541133+1 463929 L1158 2011 4990 9487*2^1541110+1 463925 L3166 2019 4991 2471*2^1540887+1 463857 L4952 2019 4992 11948010^65536+1 463818 L4367 2016 Generalized Fermat 4993 83*2^1540750-1 463814 L1959 2011 4994 9105*2^1540714+1 463806 L4148 2019 4995 5421*2^1540637+1 463782 L1957 2019 4996 1583*2^1540605+1 463772 L4951 2019 4997 2331*2^1540391+1 463708 L3166 2019 4998 1061*2^1540377+1 463703 L2322 2012 4999 6817*2^1540336+1 463692 L4262 2019 5000 4797*2^1540198+1 463650 L2603 2019 5001 341351*22^341351-1 458243 p260 2017 Generalized Woodall 5002 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5003 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5004 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 5005 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5006 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 5007 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 5008 5*10^445773-1 445774 p297 2011 Near-repdigit 5009 176660*18^353320-1 443519 p325 2011 Generalized Woodall 5010 1467763*2^1467763-1 441847 L381 2007 Woodall 5011 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 5012 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5013 95*2^1433853+1 431635 L2503 2011 Divides GF(1433852,3) 5014 94550!-1 429390 p290 2010 Factorial 5015 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5016 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 5017 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5018 2985*2^1404275-770527213395*2^1290000-1 422733 p199 2017 Arithmetic progression (3,d=2985*2^1404274-770527213395*2^1290000) 5019 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5020 2^1398269-1 420921 G1 1996 Mersenne 35 5021 999999998*10^419343-1 419352 L1958 2019 Near-repdigit 5022 182402*14^364804-1 418118 p325 2011 Generalized Woodall 5023 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5024 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 5025 338707*2^1354830+1 407850 L124 2005 Cullen 5026 11*2^1343347+1 404389 p169 2005 Divides GF(1343346,6) 5027 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5028 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5029 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5030 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 5031 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5032 9422094211005*2^1290000-1 388342 L3494 2020 Arithmetic progression (3,d=2227792035315*2^1290001) 5033 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5034 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5035 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5036 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5037 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5038 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5039 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5040 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5041 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5042 1489088842587*2^1290000-1 388341 L2511 2014 Arithmetic progression (1,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5043 1188581180295*2^1290000-1 388341 L3765 2014 Arithmetic progression (1,d=160128309135*2^1290001) [L3494] 5044 1957*2^1284992+1 386825 L3913 2014 Divides GF(1284991,6) 5045 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 5046 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5047 1268979*2^1268979-1 382007 L201 2007 Woodall 5048 2^1257787-1 378632 SG 1996 Mersenne 34 5049 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5050 259738*3^779214+1 371785 L2777 2011 Generalized Cullen 5051 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 5052 177482*117^177482+1 367072 g407 2008 Generalized Cullen 5053 843301#-1 365851 p302 2010 Primorial 5054 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5055 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5056 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5057 1195203*2^1195203-1 359799 L124 2005 Woodall 5058 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 5059 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5060 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 5061 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 5062 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5063 93*2^1087202+1 327283 L669 2010 Divides GF(1087199,12) 5064 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5065 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5066 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 5067 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5068 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 5069 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5070 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5071 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5072 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5073 113*2^916801+1 275987 L153 2009 Divides GF(916800,5), GF(916800,12) 5074 3*2^916773+1 275977 g245 2001 Divides GF(916771,3), GF(916772,10) 5075 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5076 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5077 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5078 2^859433-1 258716 SG 1994 Mersenne 33 5079 2^756839-1 227832 SG 1992 Mersenne 32 5080 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5081 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 5082 10^219113-535*10^109555-1 219113 p363 2016 Palindrome 5083d 10^216091-7*(10^37627-1)/9*10^89232-1 216091 p413 2020 Palindrome 5084 10^214575-20002*10^107285-1 214575 p363 2016 Palindrome 5085 10^214479-535*10^107238-1 214479 p363 2016 Palindrome 5086 Phi(3,10^104279)+(137*10^104280+731*10^93395)*(10^10884-1)/999 208559 p44 2014 Palindrome 5087 Phi(3,10^104276)+(137*10^104277+731*10^99683)*(10^4593-1)/999 208553 p44 2014 Palindrome 5088 Phi(3,10^104257)+(137*10^104258+731*10^99193)*(10^5064-1)/999 208515 p44 2014 Palindrome 5089 Phi(3,10^103289)+(137*10^103290+731*10^90449)*(10^12840-1)/999 206579 p44 2014 Palindrome 5090 13*2^684560+1 206075 g267 2003 Divides GF(684557,10), GF(684559,6) 5091 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5092 667071*2^667071-1 200815 g55 2000 Woodall 5093 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5094 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5095 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5096 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5097 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 5098 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 5099 519*2^567235+1 170758 L656 2009 Divides Fermat F(567233) 5100 392113#+1 169966 p16 2001 Primorial 5101 366439#+1 158936 p16 2001 Primorial 5102 481899*2^481899+1 145072 gm 1998 Cullen 5103 34790!-1 142891 p85 2002 Factorial 5104 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5105 361275*2^361275+1 108761 DS 1998 Cullen 5106 26951!+1 107707 p65 2002 Factorial 5107 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5108 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5109 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5110 21480!-1 83727 p65 2001 Factorial 5111 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5112 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5113 262419*2^262419+1 79002 DS 1998 Cullen 5114 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5115 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5116 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5117 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5118 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5119 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5120 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5121 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5122 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5123 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5124 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5125 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5126 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5127 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5128f (27987^15313-1)/27986 68092 CH13 2020 Generalized repunit 5129 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5130 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5131 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5132 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5133 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 5134 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 5135 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5136 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 5137 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 5138 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5139 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5140 145823#+1 63142 p21 2000 Primorial 5141 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5142f (28507^13831-1)/28506 61612 CH13 2020 Generalized repunit 5143 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5144 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5145 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5146 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5147 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5148 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5149 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5150 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5151 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5152 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5153 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5154 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5155 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5156 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5157 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5158 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5159 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5160 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5161 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5162 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5163 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5164 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5165 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5166 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5167 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5168 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5169 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5170 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5171 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5172 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5173 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5174 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5175 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5176 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5177 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5178 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5179 33218925*2^169690-1 51090 g259 2002 Twin (p) 5180 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5181 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5182 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5183 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5184 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5185 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5186 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5187e 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 5188e 3706785456*13^42069-1 46873 p412 2020 Twin (p) 5189 22835841624*7^54321+1 45917 p296 2010 Twin (p+2) 5190 22835841624*7^54321-1 45917 p296 2010 Twin (p) 5191 1679081223*2^151618+1 45651 L527 2012 Twin (p+2) 5192 1679081223*2^151618-1 45651 L527 2012 Twin (p) 5193 9606632571*2^151515+1 45621 p282 2014 Twin (p+2) 5194 9606632571*2^151515-1 45621 p282 2014 Twin (p) 5195 151023*2^151023-1 45468 g25 1998 Woodall 5196a 773985*2^150559+1 45329 L5115 2021 Twin (p+2) 5197 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5198 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5199 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5200 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5201 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5202 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5203 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5204 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5205 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5206 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5207 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5208 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 5209 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 5210 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5211 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5212 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5213 84966861*2^140219+1 42219 L3121 2012 Twin (p+2) 5214 84966861*2^140219-1 42219 L3121 2012 Twin (p) 5215 31737014565*2^140004-1 42156 L95 2010 Sophie Germain (2p+1) 5216 31737014565*2^140003-1 42156 L95 2010 Sophie Germain (p) 5217 14962863771*2^140002-1 42155 L95 2010 Sophie Germain (2p+1) 5218 12378188145*2^140002-1 42155 L95 2010 Twin (p) 5219 14962863771*2^140001-1 42155 L95 2010 Sophie Germain (p) 5220 13375563435*2^137137-1 41293 p364 2018 Sophie Germain (2p+1) 5221 13375563435*2^137136-1 41293 p364 2018 Sophie Germain (p) 5222 10429091973*2^135136-1 40691 p364 2018 Sophie Germain (2p+1) 5223 10429091973*2^135135-1 40690 p364 2018 Sophie Germain (p) 5224 73378515705*2^133148-1 40093 L167 2018 Sophie Germain (2p+1) 5225 73378515705*2^133147-1 40093 L167 2018 Sophie Germain (p) 5226 p(1289844341) 40000 c84 2020 Partitions, ECPP 5227 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5228 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5229 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5230 2^116224-15905 34987 c87 2017 ECPP 5231 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5232 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5233 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5234 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5235 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 5236 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5237 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5238 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5239 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5240 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5241 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5242 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5243 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5244 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5245 V(148091) 30950 c81 2015 Lucas number, ECPP 5246 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5247 49363*2^98727-1 29725 Y 1997 Woodall 5248 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5249 -τ(331^2128) 29492 c80 2015 ECPP 5250 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5251 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5252 V(140057) 29271 c76 2014 Lucas number,ECPP 5253 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5254 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5255 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5256 primV(205011) 28552 x39 2009 Lucas primitive part 5257 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5258 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5259 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5260 90825*2^90825+1 27347 Y 1997 Cullen 5261 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5262 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5263 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5264 tau(157^2206) 26643 FE1 2011 ECPP 5265 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5266 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5267 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5268 1036053977*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10664254*60013#) 5269 1027676400*60013#+1 25992 p155 2019 Arithmetic progression (4,d=6813491*60013#) 5270 1025139165*60013#+1 25992 p115 2019 Arithmetic progression (4,d=6205834*60013#) 5271 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5272 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5273 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5274 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5275f 10^25333-2*10^5182-3 25333 c95 2020 ECPP 5276 Phi(12345,7176)/31531760245313526865033921 25331 c54 2017 ECPP 5277 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5278e (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5279 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5280 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5281 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5282 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5283 6753^5122+5122^6753 25050 FE1 2010 ECPP 5284 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5285 floor((3/2)^137752)+13566 24257 c35 2015 ECPP 5286 -tau(691^1522) 23770 c65 2014 ECPP 5287 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5288a 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5289 6917!-1 23560 g1 1998 Factorial 5290 primV(67,-1,13081)/65419672274940815357 23451 c84 2019 ECPP 5291 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5292 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5293 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5294 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5295 τ(257^1698) 22506 c72 2014 ECPP 5296 10^22250+57913 22251 c35 2014 ECPP 5297 2^73845+14717 22230 c61 2013 ECPP 5298 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5299 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5300 6380!+1 21507 g1 1998 Factorial 5301 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5302b -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5303c Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5304 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5305 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5306 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5307 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5308 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5309 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5310 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5311 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5312 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5313 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5314 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5315 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5316 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5317 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5318 V(94823) 19817 c73 2014 Lucas number, ECPP 5319 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5320 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5321 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5322 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5323 V(89849) 18778 c70 2014 Lucas number, ECPP 5324 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5325 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5326 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5327 42209#+1 18241 p8 1999 Primorial 5328 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5329e V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5330 7457*2^59659+1 17964 Y 1997 Cullen 5331 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5332 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5333 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5334 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5335 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5336 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5337 U(81839) 17103 p54 2001 Fibonacci number 5338 V(81671) 17069 c66 2013 Lucas number, ECPP 5339 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5340f V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5341 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5342 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5343 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5344 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5345 p(221444161) 16569 c77 2017 Partitions, ECPP 5346e U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5347 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 5348 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5349 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5350 U(2554,-1,4751) 16185 CH3 2005 Generalized Lucas number 5351f V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5352 U(1599,-1,5039) 16141 x23 2007 Generalized Lucas number 5353 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5354 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5355 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5356 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5357 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5358 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5359 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5360 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5361 (V(824,1,5277)-1)/(V(824,1,3)-1) 15379 x25 2013 Lehmer primitive part 5362 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5363 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5364 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5365 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5366 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5367 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5368 (V(42995,1,3231)+1)/(V(42995,1,9)+1) 14929 x25 2012 Lehmer primitive part 5369 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5370 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5371 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5372 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5373 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5374 (V(8003,1,3771)+1)/(V(8003,1,9)+1) 14685 x25 2013 Lehmer primitive part 5375 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5376 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5377 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5378 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5379 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5380 (V(5111,1,3789)+1)/(V(5111,1,9)+1) 14019 x25 2013 Lehmer primitive part 5381 (V(5763,1,3753)+1)/(V(5763,1,27)+1) 14013 x25 2011 Lehmer primitive part 5382 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5383 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5384 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5385 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5386 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5387 (V(5132,1,3753)+1)/(V(5132,1,27)+1) 13825 x25 2011 Lehmer primitive part 5388 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5389 (V(4527,1,3771)+1)/(V(4527,1,9)+1) 13754 x25 2013 Lehmer primitive part 5390 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5391 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5392 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5393 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5394 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5395 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5396 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5397 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5398 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5399 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5400 p(131328565) 12758 c77 2017 Partitions, ECPP 5401 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5402 p(130249452) 12705 c85 2017 Partitions, ECPP 5403 p(130243561) 12705 c85 2017 Partitions, ECPP 5404 p(130242827) 12705 c85 2017 Partitions, ECPP 5405 p(130232271) 12705 c85 2017 Partitions, ECPP 5406 p(130201087) 12703 c85 2017 Partitions, ECPP 5407 p(130168020) 12701 c85 2017 Partitions, ECPP 5408 p(130142600) 12700 c85 2017 Partitions, ECPP 5409 p(130123073) 12699 c85 2017 Partitions, ECPP 5410 p(130086648) 12697 c85 2017 Partitions, ECPP 5411 p(130085878) 12697 c85 2017 Partitions, ECPP 5412 p(130060601) 12696 c85 2016 Partitions, ECPP 5413 p(130000231) 12693 c59 2016 Partitions, ECPP 5414 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5415 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5416 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5417 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5418 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5419 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5420 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5421 p(122110618) 12302 c77 2015 Partitions, ECPP 5422 p(120052058) 12198 c59 2012 Partitions, ECPP 5423 p(120037981) 12197 c59 2014 Partitions, ECPP 5424 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5425 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5426 primV(57724) 12063 p54 2001 Lucas primitive part, cyclotomy 5427 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5428 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5429 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5430 primV(59018) 11789 c74 2015 Lucas primitive part, ECPP 5431 V(56003) 11704 p193 2006 Lucas number 5432 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5433 p(110030755) 11677 c59 2014 Partitions, ECPP 5434 primV(77231) 11637 c74 2015 Lucas primitive part, ECPP 5435 primV(83481) 11631 c74 2015 Lucas primitive part, ECPP 5436 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5437 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5438 primV(64652) 11577 c74 2015 Lucas primitive part, ECPP 5439 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5440 primV(56356) 11557 c74 2015 Lucas primitive part, ECPP 5441 primV(58672) 11557 c74 2015 Lucas primitive part, ECPP 5442 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5443 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5444 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5445 primU(67825) 11336 x23 2007 Fibonacci primitive part 5446 3610!-1 11277 C 1993 Factorial 5447 p(100115477) 11138 c59 2016 Partitions, ECPP 5448 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5449 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5450 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5451 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5452 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5453 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5454 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5455 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5456 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5457 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5458 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5459 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5460 3507!-1 10912 C 1992 Factorial 5461 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5462 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5463 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5464 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5465 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5466 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5467 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5468 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5469 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5470 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5471 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5472 V(51169) 10694 p54 2001 Lucas number 5473 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5474 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5475 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5476 U(50833) 10624 CH4 2005 Fibonacci number 5477 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5478 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 5479 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5480 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5481 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5482 1213266377*2^35000+2429 10546 c4 2014 ECPP, consecutive primes arithmetic progression (2,d=2430) 5483 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5484 1043085905*2^35000+18197 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=18198) 5485 1043085905*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (2,d=18198) 5486 1043085905*2^35000-18199 10546 c4 2014 ECPP, consecutive primes arithmetic progression (1,d=18198) 5487 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5488 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5489 3221449497221499*2^34567+5 10422 c58 2015 Triplet (3), ECPP 5490 3221449497221499*2^34567+1 10422 p296 2015 Triplet (2) 5491 3221449497221499*2^34567-1 10422 p296 2015 Triplet (1) 5492 1288726869465789*2^34567+1 10421 p296 2014 Triplet (3) 5493 1288726869465789*2^34567-1 10421 p296 2014 Triplet (2) 5494 1288726869465789*2^34567-5 10421 c58 2014 ECPP, Triplet (1) 5495 24029#+1 10387 C 1993 Primorial 5496 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5497 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5498 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5499 195262026*24001#+1 10377 p155 2018 Arithmetic progression (5,d=10601738*24001#) 5500 184591880*24001#+1 10377 p155 2018 Arithmetic progression (5,d=17881715*24001#) 5501 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5502 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5503 23801#+1 10273 C 1993 Primorial 5504 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5505 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5506 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5507 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5508 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5509 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5510 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5511 32469*2^32469+1 9779 MM 1997 Cullen 5512 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5513 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5514 8073*2^32294+1 9726 MM 1997 Cullen 5515 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5516 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5517 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5518 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5519 V(44507) 9302 CH3 2005 Lucas number 5520 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5521 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5522 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5523 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5524 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 5525 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5526 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5527 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 5528 (2^28759-1)/226160777 8649 c60 2012 Mersenne cofactor, ECPP 5529 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5530 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5531 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5532 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5533 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5534 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5535 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5536 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5537 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5538 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5539 primB(119945) 8165 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5540 primB(99835) 8126 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5541 primB(96545) 8070 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5542 (2^26903-1)/1113285395642134415541632833178044793 8063 c55 2011 Mersenne cofactor, ECPP 5543 18523#+1 8002 D 1989 Primorial 5544 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5545 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5546 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5547 U(37511) 7839 x13 2005 Fibonacci number 5548 primB(145545) 7824 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5549 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5550 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5551 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5552 (2^25933-1)/1343522383641330719274248287/55891374030173104216060503792\ 56829183569 7740 c86 2017 Mersenne cofactor 5553 V(36779) 7687 CH3 2005 Lucas number 5554 (2^25243-1)/252431/403889/43014073/449245236879223161338352589831 7551 c84 2016 Mersenne cofactor, ECPP 5555 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5556 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5557 V(35449) 7409 p12 2001 Lucas number 5558 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5559 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5560 V(34759)/27112021 7257 c33 2005 Lucas cofactor, ECPP 5561 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5562 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5563 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 5564 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP 5565 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5566 U(33997)/8119544695419968014626314520991088099382355441843013 7053 c8 2013 Fibonacci cofactor, ECPP 5567 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5568 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5569 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5570 V(33353)/279902102741094707003083072429 6941 c8 2013 Lucas cofactor, ECPP 5571 23005*2^23005-1 6930 Y 1997 Woodall 5572 22971*2^22971-1 6920 Y 1997 Woodall 5573 Phi(2405,-10000) 6912 c47 2009 Unique, ECPP 5574 15877#-1 6845 CD 1992 Primorial 5575 Phi(10887,10) 6841 c33 2005 Unique, ECPP 5576 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5577 primU(40295) 6737 p12 2001 Fibonacci primitive part 5578 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5579 (2^22193-1)/1482314857/335842152520679489/5501204091835435410769069847\ 32919 6622 c90 2018 Mersenne cofactor 5580 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5581 Phi(7357,-10) 6301 c33 2004 Unique, ECPP 5582 Phi(6437,10) 6240 c47 2008 Unique, ECPP 5583 (2^20887-1)/(694257144641*3156563122511*28533972487913*189380444251383\ 6092687) 6229 c4 2009 Mersenne cofactor, ECPP 5584 primU(43653) 6082 CH7 2010 Fibonacci primitive part 5585 primU(70455) 6019 c8 2013 Fibonacci primitive part, ECPP 5586 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5587 primU(43359) 5939 c8 2013 Fibonacci primitive part, ECPP 5588 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5589 13649#+1 5862 D 1987 Primorial 5590 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5591 18885*2^18885-1 5690 K 1987 Woodall 5592 1963!-1 5614 CD 1992 Factorial 5593 13033#-1 5610 CD 1992 Primorial 5594 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5595 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5596 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5597 U(25561) 5342 p54 2001 Fibonacci number 5598 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5599 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5600 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5601 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5602 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5603 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5604 11549#+1 4951 D 1986 Primorial 5605 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5606 7911*2^15823-1 4768 K 1987 Woodall 5607 Phi(6685,-10) 4560 c8 2003 Unique, ECPP 5608 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5609 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5610 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5611 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5612 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5613 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5614 1477!+1 4042 D 1984 Factorial 5615 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5616 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5617 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 5618 12379*2^12379-1 3731 K 1984 Woodall 5619 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5620 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5621 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5622 642*Bern(1802)/15720728189 3641 c8 2003 Irregular, ECPP 5623 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5624 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5625 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5626 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5627 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5628 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5629 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5630 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5631 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 5632 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 5633 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 5634 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 5635 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5636 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5637 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5638 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5639 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5640 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5641 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5642 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5643 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5644 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5645 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5646 26997933312*7001#+7811555753 3020 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5647 25506692100*7001#+7811555783 3020 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5648 V(14449) 3020 DK 1995 Lucas number 5649 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5650 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5651 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 5652 2915000572*7001#+1 3019 p155 2012 Arithmetic progression (6,d=3093612*7001#) 5653 U(14431) 3016 p54 2001 Fibonacci number 5654 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5655 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5656 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5657 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5658 V(13963) 2919 c11 2002 Lucas number, ECPP 5659 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5660 9531*2^9531-1 2874 K 1984 Woodall 5661 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5662 6569#-1 2811 D 1992 Primorial 5663 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5664 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5665 V(12251) 2561 p54 2001 Lucas number 5666 974!-1 2490 CD 1992 Factorial 5667 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5668 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 5669 7755*2^7755-1 2339 K 1984 Woodall 5670 -2090369190*Bern(1236)/(103*939551962476779*157517441360851951) 2276 c4 2002 Irregular, ECPP 5671 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5672 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5673 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5674 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5675 115624080541*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10462990078*5303#) 5676 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5677 V(10691) 2235 DK 1995 Lucas number 5678 872!+1 2188 D 1983 Factorial 5679b -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 5680 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 5681 -E(886)/68689 2051 c4 2002 Euler irregular, ECPP 5682 4787#+1 2038 D 1984 Primorial 5683b 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5684b 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5685b 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5686b 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5687b 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5688 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5689c 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5690c 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5691c 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5692c 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5693c 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5694 6611*2^6611+1 1994 K 1984 Cullen 5695 4583#-1 1953 D 1992 Primorial 5696 U(9311) 1946 DK 1995 Fibonacci number 5697 4547#+1 1939 D 1984 Primorial 5698 4297#-1 1844 D 1992 Primorial 5699 V(8467) 1770 c2 2000 Lucas number, ECPP 5700 4093#-1 1750 CD 1992 Primorial 5701 5795*2^5795+1 1749 K 1984 Cullen 5702 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5703 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5704 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5705 V(7741) 1618 DK 1995 Lucas number 5706 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5707 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5708 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5709 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5710 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5711 83*2^5318-1 1603 K 1984 Woodall 5712 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5713 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5714 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5715 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5716 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5717 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5718 163252711105*3371#/2+4 1443 c67 2014 Quintuplet (5) 5719 163252711105*3371#/2+2 1443 c67 2014 Quintuplet (4) 5720 163252711105*3371#/2-2 1443 c67 2014 Quintuplet (3) 5721 163252711105*3371#/2-4 1443 c67 2014 Quintuplet (2) 5722 163252711105*3371#/2-8 1443 c67 2014 Quintuplet (1) 5723 4713*2^4713+1 1423 K 1984 Cullen 5724 3229#+1 1368 D 1984 Primorial 5725 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5726 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5727 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5728 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5729 546!-1 1260 D 1992 Factorial 5730 V(5851) 1223 DK 1995 Lucas number 5731 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5732 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 5733 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5734 U(5387) 1126 WM 1990 Fibonacci number 5735 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5736 993530619517*2503#+1633050373 1073 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5737 495690450643*2503#+1633050403 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5738 150822742857*2503#+1633050373 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5739 94807777362*2503#+1633050373 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5740 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 5741 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5742 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5743 469!-1 1051 BC 1981 Factorial 5744 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5745 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5746 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5747 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5748 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5749 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5750 R(1031) 1031 WD 1985 Repunit 5751 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5752 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5753 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5754 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5755 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5756 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5757 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5758 V(4793) 1002 DK 1995 Lucas number 5759 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): BC Penk, Crandall, Buhler C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Water, Broadhurst, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c35 Cami, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c61 Kaiser1, Broadhurst, NewPGen, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c65 Lygeros, Rozier, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Dubner, Underwood, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c72 Deloche, Lygeros, Rozier, Primo c73 Lifchitz, Underwood, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Underwood, Water, Primo c77 Batalov, Primo c79 Batalov, Water, Broadhurst, Primo c80 Lygeros, Rozier, Anonymous, Primo c81 Underwood, Water, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c85 Lasher, Broadhurst, Primo c86 Polzer, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Underwood, Broadhurst, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo CD Dubner, Caldwell, Cruncher CH10 Batalov, Primo, OpenPFGW, CHG CH12 Propper, Batalov, Primo, OpenPFGW, CHG CH13 Propper, Batalov, Primo, OpenPFGW, CHG CH2 Wu_T, Primo, OpenPFGW, CHG CH3 Water, Broadhurst, Primo, OpenPFGW, CHG CH4 Irvine, Water, Broadhurst, Primo, OpenPFGW, CHG CH7 Broadhurst, OpenPFGW, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Keller, Dubner, Cruncher DS Smith_Darren, Proth.exe FE1 Morain, FastECPP FE8 Oakes, Morain, Water, Broadhurst, FastECPP FE9 Morain, Water, Broadhurst, FastECPP g0 Gallot, Proth.exe g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g387 Muzik, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g410 Anonymous, AthGFNSieve, GFNSearch, GFN16Sieve, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe g430 Brockwell, NewPGen, OpenPFGW, Proth.exe gm Morii, Proth.exe gt Taura, Proth.exe K Keller L47 Bishop_D, ProthSieve, RieselSieve, LLR L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L62 Ewing, NewPGen, 12121search, LLR L65 Clowes, NewPGen, 12121search, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L111 Fisher, ProthSieve, RieselSieve, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L134 Childers, ProthSieve, RieselSieve, LLR L137 Jaworski, Rieselprime, LLR L145 Minovic, Ksieve, NewPGen, Rieselprime, LLR L153 Eckhard, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L167 Curtis, NewPGen, Rieselprime, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L330 Tjung, Srsieve, Rieselprime, LLR L333 Jogibhai, NewPGen, PrimeGrid, TPS, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L391 Rodenkirch, Srsieve, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L621 Sutton1, Srsieve, Rieselprime, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L623 Jaworski, Srsieve, NPLB, LLR L632 Stokkedalen, Rieselprime, LLR L656 Yama, Srsieve, PrimeGrid, LLR L669 Harvey, Srsieve, PrimeGrid, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L806 Stevens, Srsieve, LLR L840 Vogel, Srsieve, Rieselprime, LLR L860 Burt, Srsieve, FreeDCPrimeSearch, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1122 Parker, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1135 Frith, PSieve, Srsieve, PrimeGrid, LLR L1137 Brown5, PSieve, Srsieve, PrimeGrid, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1142 Dickinson, PSieve, Srsieve, PrimeGrid, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1167 Chambers, PSieve, Srsieve, PrimeGrid, LLR L1175 Louwe, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1224 Domanov1, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1307 Fries, PSieve, Srsieve, PrimeGrid, LLR L1312 Nye, PSieve, Srsieve, PrimeGrid, LLR L1333 Jacques, PSieve, Srsieve, PrimeGrid, LLR L1336 Burt, PSieve, Srsieve, PrimeGrid, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1354 Vynogradov, PSieve, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1379 Uehara1, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1410 Canossi, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1415 Englund, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1436 Markle, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1479 Schori, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1484 Morris, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1487 Krompolc, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1500 Melvold, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1505 Watanabe, PSieve, Srsieve, PrimeGrid, LLR L1512 Obara, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1584 ODonnell, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1733 Murphy, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1753 Iwasaki, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1819 Gunn, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1827 Chatfield, PSieve, Srsieve, NPLB, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1842 Ohlsson, PSieve, Srsieve, PrimeGrid, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1933 Ingram, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1958 DUrso, Srsieve, NewPGen, OpenPFGW, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1980 Mueller3, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2028 Klein, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2038 Siegert, PSieve, Srsieve, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2058 Sas, PSieve, Srsieve, PrimeGrid, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2080 Schick, PSieve, Srsieve, PrimeGrid, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2101 Tutusaus, PSieve, Srsieve, Rieselprime, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2131 Johnson4, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2241 Wintrip, PSieve, Srsieve, PrimeGrid, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2279 Millerick, PSieve, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2375 Manz, PSieve, Srsieve, PrimeGrid, LLR L2399 Bouch, PSieve, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2419 Gathright, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2503 Zhan1, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2511 Johnson6, TwinGen, PrimeGrid, LLR L2516 Koschewski, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2533 Yoshikawa, PSieve, Srsieve, PrimeGrid, LLR L2539 Gielkens, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2559 Watanabe1, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2608 Gilliland, PSieve, Srsieve, PrimeGrid, LLR L2623 Pabis, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2636 Fick, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2669 Chu, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2734 Mamonov, PSieve, Srsieve, PrimeGrid, LLR L2735 Kenney, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2787 Kapicioglu, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2876 Pryazhentsev, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2895 Leonard1, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2938 VanLeeuwen, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2963 Newberry, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2979 Terry, PSieve, Srsieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2989 Jurka, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3014 Janda, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3108 Horotan, PSieve, Srsieve, PrimeGrid, LLR L3110 Ruge, PSieve, Srsieve, PrimeGrid, LLR L3113 Utendorf, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3121 Kwok, NewPGen, TPS, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3127 Gilles, PSieve, Srsieve, PrimeGrid, LLR L3131 Kopp, PSieve, Srsieve, PrimeGrid, LLR L3139 Berker, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3157 Becker2, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3166 Jackson1, PSieve, Srsieve, PrimeGrid, LLR L3167 Delisle, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3181 Klucken, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3188 Oenen, PSieve, Srsieve, PrimeGrid, LLR L3190 Vogel, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3192 Gundermann, PSieve, Srsieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3202 Sharma, PSieve, Rieselprime, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3237 Reifschneider, PSieve, Srsieve, PrimeGrid, LLR L3248 Kumagai, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3271 Hedlund, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3277 Wijnen, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3279 Hollander, PSieve, Srsieve, PrimeGrid, LLR L3289 Evans1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3312 Perchenko, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3327 Mierzejowski, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3333 Romer, PSieve, Srsieve, PrimeGrid, LLR L3335 Kramer2, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3338 DeJesus, PSieve, Srsieve, PrimeGrid, LLR L3343 Woerner, PSieve, Srsieve, PrimeGrid, LLR L3344 Fausten, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3397 Volf, PSieve, Srsieve, PrimeGrid, LLR L3405 Odom, PSieve, Srsieve, PrimeGrid, LLR L3409 Rehnberg, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3412 Niermann, PSieve, Srsieve, PrimeGrid, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3423 Collins, PSieve, Srsieve, PrimeGrid, LLR L3427 Pasanen, PSieve, Srsieve, PrimeGrid, LLR L3428 Cristian, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3436 Linder, PSieve, Srsieve, PrimeGrid, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3441 Ilves, PSieve, Srsieve, PrimeGrid, LLR L3444 Crane, PSieve, Srsieve, PrimeGrid, LLR L3445 Bishopp, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3452 Resto, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3456 Murai, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3465 Sekanina, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3473 Mizelle, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3630 Brebois, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3641 Adams4, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3658 Furushima, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3691 Williams5, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3765 Ruch, TwinGen, PrimeGrid, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3844 Sorbera, PSieve, Srsieve, NPLB, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3870 Inouye, PSieve, Srsieve, NPLB, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3913 Kadohara, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3972 Clark, PSieve, Srsieve, PrimeGrid, LLR L3973 Jedrzejczyk, PSieve, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3994 Domanov1, PSieve, Srsieve, NPLB, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4063 Kemenes, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4094 Garnett, TwinGen, PSearch, PRP, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4169 Vera, PSieve, Srsieve, PrimeGrid, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4194 Ito1, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4261 Webster, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4290 Ito2, PSieve, Srsieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4330 Hu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4345 Karlsson2, Srsieve, CRUS, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4366 Grabar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4367 Bell1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4370 Steer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4375 Hall, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4389 Fields, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4391 Schneider4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4400 Norman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4411 Leudesdorff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4415 Jeong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4429 Lacroix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4448 Bulanov, PSieve, Srsieve, PrimeGrid, LLR L4451 Keller2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4453 Laqua2, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4467 Weber1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4478 Cox1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4495 Ostaszewski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4500 Pagola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4502 Buzak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4508 Doerscheln, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4519 Zinser, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4536 Riedl1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4537 Mayer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4545 Maloney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4549 Schick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4553 Racanelli, PSieve, Srsieve, PrimeGrid, LLR L4557 Carnevali, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4563 Witte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4567 Chida, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4581 Stein1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4587 Korhonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4589 Melvold, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4592 Anand, Srsieve, CRUS, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4594 Conti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4596 Doussy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4599 Loureiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4613 Machat, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4619 Harvanek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4629 Chen2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4646 Kumsta, PSieve, Srsieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4655 Hartel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4674 Adamec, PSieve, Srsieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4678 Huber, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4679 Windischmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4686 Whiteley1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4688 Treitschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4693 Lee3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4705 Jessen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4709 Wigginton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4722 Cowles, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4725 Barton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4728 Read, PSieve, Srsieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4731 Goodman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4734 Howe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4736 Prestemon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4751 Holmes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4756 Dumange, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4759 Sites, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4762 Goetz, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4767 Jones4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4770 Sipes, PSieve, Srsieve, PrimeGrid, LLR L4772 Bird1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4777 Kampmeier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4778 Somer, PSieve, Srsieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4788 Griffin1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4803 Goulis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4811 Zaugg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4813 Ketelsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4817 Furr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4820 Clinton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4827 Silvestre, PSieve, Srsieve, PrimeGrid, LLR L4828 Gahan, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4831 Ash, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4836 Benson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4846 Dravers, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4847 Brezovnik, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4853 Jackson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4856 Kucherov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4857 Ylijoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4862 McNary, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4863 Belolipetskiy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4865 Schmeisser, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4866 Parker3, PSieve, Srsieve, PrimeGrid, LLR L4867 Schmeer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4872 Raynor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4878 McKernan, PSieve, Srsieve, PrimeGrid, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4882 Liu6, PSieve, Srsieve, PrimeGrid, LLR L4883 Hewitt1, PSieve, Srsieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4885 Piaive, PSieve, Srsieve, PrimeGrid, LLR L4886 Peele, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4887 Hernas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4888 Gutierrez, PSieve, Srsieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4894 Bredl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4895 Ayiomamitis, PSieve, Srsieve, PrimeGrid, LLR L4897 Tauberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4916 Nguyen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4919 Rigamonti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4921 Kapicioglu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4931 Schmeer, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4934 Benz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4938 Ma1, PSieve, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4940 Baur, Srsieve, CRUS, LLR L4941 Moreno1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4943 Stroup, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 SRBase, Srsieve, CRUS, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4946 VanDingenen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4947 Doescher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4949 Winskill1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4950 Baur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4952 Candido, PSieve, Srsieve, PrimeGrid, LLR L4953 Weiss2, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4957 Clavier, PSieve, Srsieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4967 Dahlby, PSieve, Srsieve, PrimeGrid, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4969 Novikov1, PSieve, Srsieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4971 Shintani, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4978 Milligan, PSieve, Srsieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4982 Milligan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4983 Bertelloni, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4986 Bertelloni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4989 Wei, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4991 Doescher, PSieve, Srsieve, PrimeGrid, LLR L4992 Doornink, PSieve, Srsieve, PrimeGrid, LLR L4993 Murphy2, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4995 Kasuya1, PSieve, Srsieve, PrimeGrid, LLR L4996 Shushpanov, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4998 Kreth, PSieve, Srsieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5004 Mortimore, PSieve, Srsieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5006 Eisler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5010 Karpin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5012 McCormack, PSieve, Srsieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5015 Pan1, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5017 Ueda, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5026 Gelhar, PSieve, Srsieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5028 Wendelboe, PSieve, Srsieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5032 Weiss1, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5034 Miller6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5035 Jessen, PSieve, Srsieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5038 Clemence, PSieve, Srsieve, PrimeGrid, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5040 Heyward, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5042 Andresson, PSieve, Srsieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5045 Wallbaum, PSieve, Srsieve, PrimeGrid, LLR L5046 Nielsen1, PSieve, Srsieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5048 Gauch, PSieve, Srsieve, PrimeGrid, LLR L5049 Stephens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5050 Friedel, PSieve, Srsieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5052 Staunton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5054 Drager, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5055 Sedlacek, PSieve, Srsieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5058 Vaisanen, PSieve, Srsieve, PrimeGrid, LLR L5059 Kopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5060 Lawson2, PSieve, Srsieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5062 Early, PSieve, Srsieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5064 Pedley, PSieve, Srsieve, PrimeGrid, LLR L5065 Corlatti, PSieve, Srsieve, PrimeGrid, LLR L5066 Fleischman, PSieve, Srsieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5073 Jung2, PSieve, Srsieve, PrimeGrid, LLR L5074 Harvey2, PSieve, Srsieve, PrimeGrid, LLR L5075 Daykin, PSieve, Srsieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5082 Guo, PSieve, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5086 Sondergard, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5091 Lamerichs, PSieve, Srsieve, PrimeGrid, LLR L5092 Javens1, Srsieve, CRUS, LLR L5093 Kasuya1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5095 Lee7, PSieve, Srsieve, PrimeGrid, LLR L5096 Mauno, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5097 Gomor, PSieve, Srsieve, PrimeGrid, LLR L5098 Trice1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5103 Foulher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5107 Kawamura1, PSieve, Srsieve, PrimeGrid, LLR L5108 Lowe1, PSieve, Srsieve, PrimeGrid, LLR L5109 NeSmith, Coveiro, NewPGen, Prime95, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5111 Asano, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5113 Kucherov, PSieve, Srsieve, PrimeGrid, LLR L5114 Gulla, PSieve, Srsieve, PrimeGrid, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5117 Trunov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5119 Duducz, PSieve, Srsieve, PrimeGrid, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5121 Spinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5124 Nitobe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5128 Gulla, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5131 Hall1, PSieve, Srsieve, PrimeGrid, LLR L5132 Clemence, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5133 Luk, PSieve, Srsieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5135 AnkerRasch, PSieve, Srsieve, PrimeGrid, LLR L5136 Dunchouk, PSieve, Srsieve, PrimeGrid, LLR L5137 Bolton, PSieve, Srsieve, PrimeGrid, LLR L5138 Jaros1, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5140 Kaczmarek, PSieve, Srsieve, PrimeGrid, LLR L5141 McDevitt, PSieve, Srsieve, PrimeGrid, LLR L5142 Volosovsky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5145 Wunderlich, PSieve, Srsieve, PrimeGrid, LLR L5146 Cole, PSieve, Srsieve, PrimeGrid, LLR L5147 McDonald4, PSieve, Srsieve, PrimeGrid, LLR L5148 Guggolz, PSieve, Srsieve, PrimeGrid, LLR L5149 Miller9, PSieve, Srsieve, PrimeGrid, LLR L5150 Tapper, PSieve, Srsieve, PrimeGrid, LLR L5151 Molne, PSieve, Srsieve, PrimeGrid, LLR L5152 Carpenter2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5153 Veneklaas, PSieve, Srsieve, PrimeGrid, LLR L5154 Karpenko, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5160 Yao, PSieve, Srsieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5163 Kawamura1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5164 Nishikawa, PSieve, Srsieve, PrimeGrid, LLR L5165 AnkerRasch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5170 Soule, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5182 Jacques2, PSieve, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5187 Jonas, PSieve, Srsieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5190 Whyte, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5193 Tapper, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5204 Lachance, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, SRBase, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5212 Novak3, PSieve, Srsieve, PrimeGrid, LLR L5213 Smith10, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5219 Fernando, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5221 NeSmith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5222 Wolff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5224 Leupold, PSieve, Srsieve, PrimeGrid, LLR L5225 Barr1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p54 Water, Broadhurst, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Underwood, Frind, OpenPFGW p115 DavisK, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p160 Ayuchan, AthGFNSieve, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p169 Eaton, NewPGen, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p190 DiMaria, NewPGen, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p221 AndersonLee, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p261 Gunn, Srsieve, CRUS, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p280 Vogel, Srsieve, SierpinskiRiesel, OpenPFGW p281 Domanov1, Srsieve, NPLB, Prime95, OpenPFGW p282 Rajala, NewPGen, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p289 Steine, Srsieve, CRUS, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p321 Dinkel, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p323 Myllyvirta, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p328 Gruenewald, Srsieve, CRUS, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p333 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p341 Schmidt2, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p342 Trice, OpenPFGW p344 Tajima, Srsieve, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p351 Lewis1, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p352 Hubbard, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p353 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p365 Poplin, Srsieve, CRUS, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p376 Moore, Srsieve, CRUS, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p392 Batalov, Cksieve, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Gage, Slowinski WD Dubner, Williams, Cruncher WM Williams, Morain x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Water, Broadhurst x23 Renze, Water, Broadhurst, Primo, OpenPFGW x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Water, Broadhurst, Primo, OpenPFGW x28 Iskra x33 Carmody, Renze, Water, Broadhurst, Primo, OpenPFGW x36 Irvine, Carmody, Renze, Water, Broadhurst, Primo, OpenPFGW x38 Broadhurst, Primo, OpenPFGW x39 Keller, Dubner, Broadhurst, Primo, OpenPFGW x44 Zhou, Unknown x45 Batalov, Primo, OpenPFGW, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown Y Young