THE LARGEST KNOWN PRIMES (The 5,000 largest known primes) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Thu Feb 2 05:51:58 PM CST 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13f 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 14 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 15 202705*2^21320516+1 6418121 L5181 2021 16 2^20996011-1 6320430 G6 2003 Mersenne 40 17 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 18 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 19 7*2^20267500+1 6101127 L4965 2022 20 168451*2^19375200+1 5832522 L4676 2017 21 69*2^19374980-1 5832452 L4965 2022 22 3*2^18924988-1 5696990 L5530 2022 23 69*2^18831865-1 5668959 L4965 2021 24 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 25 3*2^18196595-1 5477722 L5461 2022 26 3*2^17748034-1 5342692 L5404 2021 27 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 28 3622*5^7558139-1 5282917 L4965 2022 29 7*6^6772401+1 5269954 L4965 2019 30b 2*3^10852677+1 5178044 L4965 2023 Divides phi 31 8508301*2^17016603-1 5122515 L4784 2018 Woodall 32 3*2^16819291-1 5063112 L5230 2021 33 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 34 69*2^15866556-1 4776312 L4965 2021 35 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 36b 11*2^15502315+1 4666663 L4965 2023 37d 37*2^15474010+1 4658143 L4965 2022 38d 93839*2^15337656-1 4617100 L4965 2022 39 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 40 6*5^6546983+1 4576146 L4965 2020 41 69*2^14977631-1 4508719 L4965 2021 42 192971*2^14773498-1 4447272 L4965 2021 43 4*5^6181673-1 4320805 L4965 2022 44 6962*31^2863120-1 4269952 L5410 2020 45 37*2^14166940+1 4264676 L4965 2022 46 99739*2^14019102+1 4220176 L5008 2019 47 69*2^13832885-1 4164116 L4965 2022 48 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 49f 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 50e 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 51 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 52 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 53 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 54e 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 55 2^13466917-1 4053946 G5 2001 Mersenne 39 56 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 57 206039*2^13104952-1 3944989 L4965 2021 58 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 59 19249*2^13018586+1 3918990 SB10 2007 60 2293*2^12918431-1 3888839 L4965 2021 61f 81*2^12804541+1 3854553 L4965 2022 62 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 63 69*2^12231580-1 3682075 L4965 2021 64 27*2^12184319+1 3667847 L4965 2021 65 3761*2^11978874-1 3606004 L4965 2022 66 3*2^11895718-1 3580969 L4159 2015 67 37*2^11855148+1 3568757 L4965 2022 68c 5897794^524288+1 3549792 x50 2022 Generalized Fermat 69 3*2^11731850-1 3531640 L4103 2015 70 69*2^11718455-1 3527609 L4965 2020 71 41*2^11676439+1 3514960 L4965 2022 72 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 73 81*2^11616017+1 3496772 L4965 2022 74 69*2^11604348-1 3493259 L4965 2020 75 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 76 3*2^11484018-1 3457035 L3993 2014 77 193997*2^11452891+1 3447670 L4398 2018 78 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 79 9221*2^11392194-1 3429397 L5267 2021 80 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 81 5*2^11355764-1 3418427 L4965 2021 82 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 83 146561*2^11280802-1 3395865 L5181 2020 84 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 85 6929*2^11255424-1 3388225 L4965 2022 86 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 87 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 88 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 89 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 90 9271*2^11134335-1 3351773 L4965 2021 91 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 92 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 93 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 94 27*2^10902757-1 3282059 L4965 2022 95 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 96 11*2^10803449+1 3252164 L4965 2022 97 11*2^10797109+1 3250255 L4965 2022 98 7*2^10612737-1 3194754 L4965 2022 99 37*2^10599476+1 3190762 L4965 2022 100 5*2^10495620-1 3159498 L4965 2021 101 5*2^10349000-1 3115361 L4965 2021 102 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 103 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 104 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 105 475856^524288+1 2976633 L3230 2012 Generalized Fermat 106c 2*3^6236772+1 2975697 L4965 2022 107 9*2^9778263+1 2943552 L4965 2020 108 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 109 356926^524288+1 2911151 L3209 2012 Generalized Fermat 110 341112^524288+1 2900832 L3184 2012 Generalized Fermat 111d 213988*5^4138363-1 2892597 L5621 2022 112 43*2^9596983-1 2888982 L4965 2022 113 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 114 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 115f 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 116 27653*2^9167433+1 2759677 SB8 2005 117 90527*2^9162167+1 2758093 L1460 2010 118 6795*2^9144320-1 2752719 L4965 2021 119 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 120 57*2^9075622-1 2732037 L4965 2022 121 63838*5^3887851-1 2717497 L5558 2022 122 13*2^8989858+1 2706219 L4965 2020 123 4159*2^8938471-1 2690752 L4965 2022 124 273809*2^8932416-1 2688931 L1056 2017 125 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 126 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 127 2038*366^1028507-1 2636562 L2054 2016 128 64598*5^3769854-1 2635020 L5427 2022 129 8*785^900325+1 2606325 L4786 2022 130 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 131 75898^524288+1 2558647 p334 2011 Generalized Fermat 132 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 133 39*2^8413422+1 2532694 L5232 2021 134 31*2^8348000+1 2513000 L5229 2021 135 27*2^8342438-1 2511326 L3483 2021 136 3687*2^8261084-1 2486838 L4965 2021 137 273662*5^3493296-1 2441715 L5444 2021 138f 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 139 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 140 102818*5^3440382-1 2404729 L5427 2021 141 11*2^7971110-1 2399545 L2484 2019 142 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 143 3177*2^7954621-1 2394584 L4965 2021 144 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 145 7*6^3072198+1 2390636 L4965 2019 146 3765*2^7904593-1 2379524 L4965 2021 147 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 148d 5113*2^7895471-1 2376778 L4965 2022 149 861*2^7895451-1 2376771 L4965 2021 150 28433*2^7830457+1 2357207 SB7 2004 151 2589*2^7803339-1 2349043 L4965 2022 152 5*2^7755002-1 2334489 L4965 2021 153d 2945*2^7753232-1 2333959 L4965 2022 154 2545*2^7732265-1 2327648 L4965 2021 155 5539*2^7730709-1 2327180 L4965 2021 156 4817*2^7719584-1 2323831 L4965 2021 157 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 158 9467*2^7680034-1 2311925 L4965 2022 159 45*2^7661004+1 2306194 L5200 2020 160 15*2^7619838+1 2293801 L5192 2020 161 3597*2^7580693-1 2282020 L4965 2021 162 7401*2^7523295-1 2264742 L4965 2021 163 45*2^7513661+1 2261839 L5179 2020 164 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 165 1875*2^7474308-1 2249995 L4965 2022 166 4*5^3189669-1 2229484 L4965 2022 167 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 168d 3197*2^7359542-1 2215447 L4965 2022 169 109838*5^3168862-1 2214945 L5129 2020 170 101*2^7345194-1 2211126 L1884 2019 171 15*2^7300254+1 2197597 L5167 2020 172 422429!+1 2193027 p425 2022 Factorial 173 1759*2^7284439-1 2192838 L4965 2021 174 737*2^7269322-1 2188287 L4665 2017 175 118568*5^3112069+1 2175248 L690 2020 176 6039*2^7207973-1 2169820 L4965 2021 177 502573*2^7181987-1 2162000 L3964 2014 178 402539*2^7173024-1 2159301 L3961 2014 179 3343*2^7166019-1 2157191 L1884 2016 180 161041*2^7107964+1 2139716 L4034 2015 181 27*2^7046834+1 2121310 L3483 2018 182 1759*2^7046791-1 2121299 L4965 2021 183 327*2^7044001-1 2120459 L4965 2021 184 5*2^7037188-1 2118406 L4965 2021 185 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 186 33661*2^7031232+1 2116617 SB11 2007 187 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 188 207494*5^3017502-1 2109149 L5083 2020 189 15*2^6993631-1 2105294 L4965 2021 190 8943501*2^6972593-1 2098967 L466 2022 191f 6020095*2^6972593-1 2098967 L466 2022 192 2^6972593-1 2098960 G4 1999 Mersenne 38 193d 273*2^6963847-1 2096330 L4965 2022 194 6219*2^6958945-1 2094855 L4965 2021 195 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 196 238694*5^2979422-1 2082532 L5081 2020 197 4*72^1119849-1 2079933 L4444 2016 198 33*2^6894190-1 2075360 L4965 2021 199 2345*2^6882320-1 2071789 L4965 2022 200 146264*5^2953282-1 2064261 L1056 2020 201 69*2^6838971-1 2058738 L5037 2020 202 35816*5^2945294-1 2058677 L5076 2020 203 127*2^6836153-1 2057890 L1862 2018 204 19*2^6833086+1 2056966 L5166 2020 205 40597*2^6808509-1 2049571 L3749 2013 206 283*2^6804731-1 2048431 L2484 2020 207 1861709*2^6789999+1 2044000 L5191 2020 208 5781*2^6789459-1 2043835 L4965 2021 209 8435*2^6786180-1 2042848 L4965 2021 210 51*2^6753404+1 2032979 L4965 2020 211 9995*2^6711008-1 2020219 L4965 2020 212 39*2^6684941+1 2012370 L5162 2020 213 6679881*2^6679881+1 2010852 L917 2009 Cullen 214 37*2^6660841-1 2005115 L3933 2014 215 39*2^6648997+1 2001550 L5161 2020 216 304207*2^6643565-1 1999918 L3547 2013 217 69*2^6639971-1 1998833 L5037 2020 218 6471*2^6631137-1 1996175 L4965 2021 219 1319*2^6506224-1 1958572 L4965 2021 220 322498*5^2800819-1 1957694 L4954 2019 221 88444*5^2799269-1 1956611 L3523 2019 222 13*2^6481780+1 1951212 L4965 2020 223 21*2^6468257-1 1947141 L4965 2021 224 138514*5^2771922+1 1937496 L4937 2019 225 33*2^6432160-1 1936275 L4965 2022 226 15*2^6429089-1 1935350 L4965 2021 227 398023*2^6418059-1 1932034 L3659 2013 228 631*2^6359347-1 1914357 L4965 2021 229e 4965*2^6356707-1 1913564 L4965 2022 230 1995*2^6333396-1 1906546 L4965 2021 231 1582137*2^6328550+1 1905090 L801 2009 Cullen 232c 18395930^262144+1 1904404 x50 2022 Generalized Fermat 233c 17191822^262144+1 1896697 x50 2022 Generalized Fermat 234d 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 235f 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 236 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 237 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 238 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 239 3303*2^6264946-1 1885941 L4965 2021 240 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 241 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 242 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 243 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 244 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 245 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 246 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 247 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 248 7*6^2396573+1 1864898 L4965 2019 249 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 250 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 251 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 252 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 253 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 254 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 255 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 256 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 257 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 258 194368*5^2638045-1 1843920 L690 2018 259 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 260 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 261 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 262 66916*5^2628609-1 1837324 L690 2018 263 3*2^6090515-1 1833429 L1353 2010 264 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 265 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 266 8349*2^6082397-1 1830988 L4965 2021 267 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 268 32*470^683151+1 1825448 L4064 2021 269 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 270 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 271 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 272 9999*2^6037057-1 1817340 L4965 2021 273 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 274 33*2^6019138-1 1811943 L4965 2022 275 1583*2^5989282-1 1802957 L4036 2015 276 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 277 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 278 327926*5^2542838-1 1777374 L4807 2018 279 81556*5^2539960+1 1775361 L4809 2018 280 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 281 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 282 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 283 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 284 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 285 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 286 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 287 7*2^5775996+1 1738749 L3325 2012 288 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 289 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 290 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 291 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 292 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 293 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 294 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 295 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 296 1243*2^5686715-1 1711875 L1828 2016 297 25*2^5658915-1 1703505 L1884 2021 298 41*2^5651731+1 1701343 L1204 2020 299 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 300 9*2^5642513+1 1698567 L3432 2013 301 10*3^3550446+1 1693995 L4965 2020 302 2622*11^1621920-1 1689060 L2054 2015 303 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 304 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 305 301562*5^2408646-1 1683577 L4675 2017 306 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 307 171362*5^2400996-1 1678230 L4669 2017 308 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 309 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 310 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 311 252191*2^5497878-1 1655032 L3183 2012 312 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 313 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 314 258317*2^5450519+1 1640776 g414 2008 315 7*6^2104746+1 1637812 L4965 2019 316 5*2^5429494-1 1634442 L3345 2017 317 43*2^5408183-1 1628027 L1884 2018 318 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 319 2*296598^296598-1 1623035 L4965 2022 320 1349*2^5385004-1 1621051 L1828 2017 321 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 322 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 323 45*2^5308037+1 1597881 L4761 2019 324d 5468*70^864479-1 1595053 L5410 2022 325 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 326 7*2^5229669-1 1574289 L4965 2021 327 180062*5^2249192-1 1572123 L4435 2016 328 124125*6^2018254+1 1570512 L4001 2019 329 27*2^5213635+1 1569462 L3760 2015 330 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 331 308084!+1 1557176 p425 2022 Factorial 332 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 333 25*2^5152151-1 1550954 L1884 2020 334 53546*5^2216664-1 1549387 L4398 2016 335 773620^262144+1 1543643 L3118 2012 Generalized Fermat 336 39*2^5119458+1 1541113 L1204 2019 337 607*26^1089034+1 1540957 L5410 2021 338 81*2^5115131+1 1539810 L4965 2022 339 223*2^5105835-1 1537012 L2484 2019 340 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 341 81*2^5100331+1 1535355 L4965 2022 342 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 343 51*2^5085142-1 1530782 L760 2014 344 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 345 676754^262144+1 1528413 L2975 2012 Generalized Fermat 346 296024*5^2185270-1 1527444 L671 2016 347 5359*2^5054502+1 1521561 SB6 2003 348 13*2^4998362+1 1504659 L3917 2014 349 525094^262144+1 1499526 p338 2012 Generalized Fermat 350 92158*5^2145024+1 1499313 L4348 2016 351 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 352 77072*5^2139921+1 1495746 L4340 2016 353 2*3^3123036+1 1490068 L5043 2020 354 519397*2^4908893-1 1477730 L5410 2022 355 306398*5^2112410-1 1476517 L4274 2016 356 265711*2^4858008+1 1462412 g414 2008 357 154222*5^2091432+1 1461854 L3523 2015 358 1271*2^4850526-1 1460157 L1828 2012 359 333*2^4846958-1 1459083 L5546 2022 360 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 361 361658^262144+1 1457075 p332 2011 Generalized Fermat 362 100186*5^2079747-1 1453686 L4197 2015 363 288465!+1 1449771 p3 2022 Factorial 364 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 365 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 366 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 367 653*10^1435026-1 1435029 p355 2014 368 197*2^4765318-1 1434506 L5175 2021 369b 1401*2^4759435-1 1432736 L4965 2023 370b 2169*2^4754343-1 1431204 L4965 2023 371 188*468^535963+1 1431156 L4832 2019 372c 1809*2^4752792-1 1430737 L4965 2022 373c 2427*2^4749044-1 1429609 L4965 2022 374c 2259*2^4746735-1 1428913 L4965 2022 375c 2223*2^4729304-1 1423666 L4965 2022 376c 1851*2^4727663-1 1423172 L4965 2022 377c 1725*2^4727375-1 1423085 L4965 2022 378c 1611*2^4724014-1 1422074 L4965 2022 379c 1383*2^4719270-1 1420645 L4965 2022 380c 1749*2^4717431-1 1420092 L4965 2022 381c 2325*2^4713991-1 1419057 L4965 2022 382 3267113#-1 1418398 p301 2021 Primorial 383 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 384c 2337*2^4705660-1 1416549 L4965 2022 385 1229*2^4703492-1 1415896 L1828 2018 386 144052*5^2018290+1 1410730 L4146 2015 387 195*2^4685711-1 1410542 L5175 2021 388 9*2^4683555-1 1409892 L1828 2012 389 31*2^4673544+1 1406879 L4990 2019 390 34*993^469245+1 1406305 L4806 2018 391 79*2^4658115-1 1402235 L1884 2018 392 39*2^4657951+1 1402185 L1823 2019 393 4*650^498101-1 1401116 L4294 2021 394 11*2^4643238-1 1397755 L2484 2014 395 68*995^465908-1 1396712 L4001 2017 396 7*6^1793775+1 1395830 L4965 2019 397 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 398 27*2^4583717-1 1379838 L2992 2014 399 121*2^4553899-1 1370863 L3023 2012 400 9473*2^4543680-1 1367788 L5037 2022 401 27*2^4542344-1 1367384 L1204 2014 402 29*2^4532463+1 1364409 L4988 2019 403 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 404 145310^262144+1 1353265 p314 2011 Generalized Fermat 405 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 406c 303*2^4471002-1 1345909 L5545 2022 407 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 408 36772*6^1723287-1 1340983 L1301 2014 409 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 410 151*2^4424321-1 1331856 L1884 2016 411 195*2^4373994-1 1316706 L5175 2020 412 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 413 49*2^4365175-1 1314051 L1959 2017 414 49*2^4360869-1 1312755 L1959 2017 415 13*2^4333087-1 1304391 L1862 2018 416 353159*2^4331116-1 1303802 L2408 2011 417 9959*2^4308760-1 1297071 L5037 2022 418 23*2^4300741+1 1294654 L4147 2019 419 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 420 141941*2^4299438-1 1294265 L689 2011 421 612749*2^4254500-1 1280738 L5410 2022 422 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 423 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 424 3*2^4235414-1 1274988 L606 2008 425 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 426 45*436^481613+1 1271213 L5410 2020 427 109208*5^1816285+1 1269534 L3523 2014 428 1091*2^4215518-1 1269001 L1828 2018 429 191*2^4203426-1 1265360 L2484 2012 430 1259*2^4196028-1 1263134 L1828 2016 431 325918*5^1803339-1 1260486 L3567 2014 432 133778*5^1785689+1 1248149 L3903 2014 433 81*2^4131975+1 1243851 L4965 2022 434 17*2^4107544-1 1236496 L4113 2015 435 24032*5^1768249+1 1235958 L3925 2014 436 172*159^561319-1 1235689 L4001 2017 437 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 438 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 439 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 440 64*425^467857-1 1229712 p268 2021 441 97*2^4066717-1 1224206 L2484 2019 442 1031*2^4054974-1 1220672 L1828 2017 443e 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 444 37*2^4046360+1 1218078 L2086 2019 445 39653*430^460397-1 1212446 L4187 2016 446e 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 447 40734^262144+1 1208473 p309 2011 Generalized Fermat 448 9*2^4005979-1 1205921 L1828 2012 449 12*68^656921+1 1203815 L4001 2016 450 67*688^423893+1 1202836 L4001 2017 451 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 452 (146^276995+1)^2-2 1199030 p405 2022 453 138172*5^1714207-1 1198185 L3904 2014 454 50*383^463313+1 1196832 L2012 2021 455 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 456 29*2^3964697+1 1193495 L1204 2019 457 39*2^3961129+1 1192421 L1486 2019 458 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 459f 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 460c P1174253 1174253 p414 2022 461 22478*5^1675150-1 1170884 L3903 2014 462 1199*2^3889576-1 1170883 L1828 2018 463 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 464 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 465a 711*2^3886480+1 1169950 L5320 2023 466b 375*2^3884634+1 1169394 L5600 2023 467 94*872^397354+1 1168428 L5410 2019 468b 269*2^3877485+1 1167242 L5649 2023 469b 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 470b 313*2^3869536+1 1164849 L5600 2023 471b 159*2^3860863+1 1162238 L5226 2023 472b 445*2^3860780+1 1162214 L5640 2023 473b 397*2^3859450+1 1161813 L5226 2023 474b 685*2^3856790+1 1161013 L5226 2023 475 27*2^3855094-1 1160501 L3033 2012 476c 537*2^3853860+1 1160131 L5636 2022 477 164*978^387920-1 1160015 L4700 2018 478c 175*2^3850344+1 1159072 L5226 2022 479c 685*2^3847268+1 1158146 L5226 2022 480c 655*2^3846352+1 1157871 L5282 2022 481c 583*2^3846196+1 1157824 L5226 2022 482c 615*2^3844151+1 1157208 L5226 2022 483d 14772*241^485468-1 1156398 L5410 2022 484c 525*2^3840963+1 1156248 L5613 2022 485c 313*2^3837304+1 1155147 L5298 2022 486 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 487c 431*2^3835247+1 1154528 L5161 2022 488c 97*2^3833722+1 1154068 L5226 2022 489 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 490 125*392^444161+1 1151839 L4832 2022 491d 255*2^3824348+1 1151246 L5226 2022 492 30*514^424652-1 1151218 L4001 2017 493d 569*2^3823191+1 1150898 L5226 2022 494 24518^262144+1 1150678 g413 2008 Generalized Fermat 495d 563*2^3819237+1 1149708 L5178 2022 496d 345*2^3817949+1 1149320 L5373 2022 497 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 498 241*2^3815727-1 1148651 L2484 2019 499d 351*2^3815467+1 1148573 L5226 2022 500 109*980^383669-1 1147643 L4001 2018 501d 427*2^3811610+1 1147412 L5614 2022 502d 569*2^3810475+1 1147071 L5610 2022 503e 213*2^3807864+1 1146284 L5609 2022 504e 87*2^3806438+1 1145854 L5607 2022 505e 369*2^3805321+1 1145519 L5541 2022 506 123547*2^3804809-1 1145367 L2371 2011 507 2564*75^610753+1 1145203 L3610 2014 508e 539*2^3801705+1 1144430 L5161 2022 509e 159*2^3801463+1 1144357 L5197 2022 510e 235*2^3801284+1 1144303 L5608 2022 511 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 512e 519*2^3800625+1 1144105 L5315 2022 513e 281*2^3798465+1 1143455 L5178 2022 514 166*443^432000+1 1143249 L5410 2020 515e 85*2^3797698+1 1143223 L5161 2022 516 326834*5^1634978-1 1142807 L3523 2014 517e 459*2^3795969+1 1142704 L5161 2022 518f 447*2^3780151+1 1137942 L5596 2022 519f 345*2^3779921+1 1137873 L5557 2022 520f 477*2^3779871+1 1137858 L5197 2022 521f 251*2^3774587+1 1136267 L5592 2022 522f 439*2^3773958+1 1136078 L5557 2022 523 43*182^502611-1 1135939 L4064 2020 524 415267*2^3771929-1 1135470 L2373 2011 525 11*2^3771821+1 1135433 p286 2013 526f 427*2^3768104+1 1134315 L5192 2022 527 1455*2^3768024-1 1134292 L1134 2022 528f 711*2^3767492+1 1134131 L5161 2022 529 265*2^3765189-1 1133438 L2484 2018 530f 297*2^3765140+1 1133423 L5197 2022 531f 381*2^3764189+1 1133137 L5589 2022 532f 115*2^3763650+1 1132974 L5554 2022 533f 411*2^3759067+1 1131595 L5589 2022 534f 405*2^3757192+1 1131031 L5590 2022 535 938237*2^3752950-1 1129757 L521 2007 Woodall 536 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 537 701*2^3744713+1 1127274 L5554 2022 538 207394*5^1612573-1 1127146 L3869 2014 539 684*10^1127118+1 1127121 L4036 2017 540 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 541 104944*5^1610735-1 1125861 L3849 2014 542 23451*2^3739388+1 1125673 L591 2015 543 615*2^3738023+1 1125260 L5161 2022 544 347*2^3737875+1 1125216 L5178 2022 545 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 546 375*2^3733510+1 1123902 L5584 2022 547 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 548 629*2^3731479+1 1123290 L5283 2022 549 113*2^3728113+1 1122276 L5161 2022 550 303*2^3725438+1 1121472 L5161 2022 551 187*2^3723972+1 1121030 L5178 2022 552 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 553 105*2^3720512+1 1119988 L5493 2022 554 447*2^3719024+1 1119541 L5493 2022 555 177*2^3717746+1 1119156 L5279 2022 556 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 557 123*2^3716758+1 1118858 L5563 2022 558 313*2^3716716+1 1118846 L5237 2022 559 367*2^3712952+1 1117713 L5264 2022 560 53*2^3709297+1 1116612 L5197 2022 561 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 562 395*2^3701693+1 1114324 L5536 2022 563 589*2^3699954+1 1113800 L5576 2022 564 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 565 119*2^3698412-1 1113336 L2484 2018 566 391*2^3693728+1 1111926 L5493 2022 567 485*2^3688111+1 1110235 L5237 2022 568 341*2^3686613+1 1109784 L5573 2022 569 87*2^3686558+1 1109767 L5573 2022 570 675*2^3682616+1 1108581 L5231 2022 571 569*2^3682167+1 1108446 L5488 2022 572 330286*5^1584399-1 1107453 L3523 2014 573 34*951^371834-1 1107391 L5410 2019 574 45*2^3677787+1 1107126 L1204 2019 575 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 576 13*2^3675223-1 1106354 L1862 2016 577 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 578 463*2^3671262+1 1105163 L5524 2022 579 735*2^3670991+1 1105082 L5575 2022 580 475*2^3670046+1 1104797 L5524 2022 581 15*2^3668194-1 1104238 L3665 2013 582 273*2^3665736+1 1103499 L5192 2022 583 13*2^3664703-1 1103187 L1862 2016 584 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 585 609*2^3662931+1 1102655 L5573 2022 586 118*892^373012+1 1100524 L5071 2020 587 33300*430^417849-1 1100397 L4393 2016 588 655*2^3653008+1 1099668 L5574 2022 589e 291*268^452750-1 1099341 L5410 2022 590 33*2^3649810+1 1098704 L4958 2019 591 295*2^3642206+1 1096416 L5161 2022 592 989*2^3640585+1 1095929 L5115 2020 593 567*2^3639287+1 1095538 L4959 2019 594 639*2^3635707+1 1094460 L1823 2019 595 753*2^3631472+1 1093185 L1823 2019 596 2*205731^205731-1 1093111 L4965 2022 597 65531*2^3629342-1 1092546 L2269 2011 598 1121*2^3629201+1 1092502 L4761 2019 599 215*2^3628962-1 1092429 L2484 2018 600 113*2^3628034-1 1092150 L2484 2014 601 1175*2^3627541+1 1092002 L4840 2019 602 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 603 951*2^3623185+1 1090691 L1823 2019 604 29*920^367810-1 1090113 L4064 2015 605 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 606 485*2^3618563+1 1089299 L3924 2019 607 95*2^3614033+1 1087935 L1474 2019 608 1005*2^3612300+1 1087414 L1823 2019 609 861*2^3611815+1 1087268 L1745 2019 610 1087*2^3611476+1 1087166 L4834 2019 611 485767*2^3609357-1 1086531 L622 2008 612 675*2^3606447+1 1085652 L3278 2019 613 669*2^3606266+1 1085598 L1675 2019 614 65077*2^3605944+1 1085503 L4685 2020 615 1365*2^3605491+1 1085365 L1134 2022 616 851*2^3604395+1 1085034 L2125 2019 617 1143*2^3602429+1 1084443 L4754 2019 618 1183*2^3601898+1 1084283 L1823 2019 619 189*2^3596375+1 1082620 L3760 2016 620 1089*2^3593267+1 1081685 L3035 2019 621 19581121*2^3589357-1 1080512 p49 2022 622 1101*2^3589103+1 1080431 L1823 2019 623 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 624 275*2^3585539+1 1079358 L3803 2016 625 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 626 651*2^3579843+1 1077643 L3035 2018 627 583*2^3578402+1 1077210 L3035 2018 628 309*2^3577339+1 1076889 L4406 2016 629 1185*2^3574583+1 1076060 L4851 2018 630 251*2^3574535+1 1076045 L3035 2016 631 1485*2^3574333+1 1075985 L1134 2022 632 1019*2^3571635+1 1075173 L1823 2018 633 119*2^3571416-1 1075106 L2484 2018 634 35*2^3570777+1 1074913 L2891 2014 635 33*2^3570132+1 1074719 L2552 2014 636 5*2^3569154-1 1074424 L503 2009 637 81*492^399095-1 1074352 L4001 2015 638 22934*5^1536762-1 1074155 L3789 2014 639 265*2^3564373-1 1072986 L2484 2018 640 771*2^3564109+1 1072907 L2125 2018 641 381*2^3563676+1 1072776 L4190 2016 642 555*2^3563328+1 1072672 L4850 2018 643 1183*2^3560584+1 1071846 L1823 2018 644 415*2^3559614+1 1071554 L3035 2016 645c 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 646 1103*2^3558176-1 1071121 L1828 2018 647 1379*2^3557072-1 1070789 L1828 2018 648 681*2^3553141+1 1069605 L3035 2018 649 599*2^3551793+1 1069200 L3824 2018 650 621*2^3551472+1 1069103 L4687 2018 651 773*2^3550373+1 1068772 L1808 2018 652 1199*2^3548380-1 1068172 L1828 2018 653 191*2^3548117+1 1068092 L4203 2015 654 867*2^3547711+1 1067971 L4155 2018 655 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 656 351*2^3545752+1 1067381 L4082 2016 657a 138896860^131072+1 1067279 L4745 2023 658a 138894074^131072+1 1067278 L5041 2023 659a 138830036^131072+1 1067252 L5662 2023 660a 138527284^131072+1 1067128 L5663 2023 661 93*2^3544744+1 1067077 L1728 2014 662b 138000006^131072+1 1066911 L5051 2023 663b 137900696^131072+1 1066870 L4249 2023 664b 137878102^131072+1 1066860 L5051 2023 665 1159*2^3543702+1 1066764 L1823 2018 666b 137521726^131072+1 1066713 L4672 2023 667b 137486564^131072+1 1066699 L5586 2023 668b 136227118^131072+1 1066175 L5416 2023 669b 136192168^131072+1 1066160 L5556 2023 670b 136124076^131072+1 1066132 L5041 2023 671b 136122686^131072+1 1066131 L5375 2023 672 178658*5^1525224-1 1066092 L3789 2014 673b 135744154^131072+1 1065973 L5068 2023 674b 135695350^131072+1 1065952 L4249 2023 675b 135623220^131072+1 1065922 L5657 2023 676b 135513092^131072+1 1065876 L5656 2023 677b 135497678^131072+1 1065869 L4387 2023 678b 135458028^131072+1 1065852 L5051 2023 679b 135332960^131072+1 1065800 L5655 2023 680b 135135930^131072+1 1065717 L4387 2023 681 1085*2^3539671+1 1065551 L3035 2018 682b 134706086^131072+1 1065536 L5378 2023 683b 134459616^131072+1 1065431 L5658 2023 684b 134447516^131072+1 1065426 L4387 2023 685b 134322272^131072+1 1065373 L4387 2023 686b 134206304^131072+1 1065324 L4684 2023 687b 134176868^131072+1 1065311 L5375 2023 688b 133954018^131072+1 1065217 L5088 2023 689b 133676500^131072+1 1065099 L4387 2023 690b 133569020^131072+1 1065053 L5277 2023 691b 133345154^131072+1 1064958 L4210 2023 692b 133180238^131072+1 1064887 L5586 2023 693b 133096042^131072+1 1064851 L4755 2023 694 465*2^3536871+1 1064707 L4459 2016 695 1019*2^3536312-1 1064539 L1828 2012 696b 131820886^131072+1 1064303 L5069 2023 697b 131412078^131072+1 1064126 L5653 2023 698b 131370186^131072+1 1064108 L5036 2023 699b 131309874^131072+1 1064082 L5069 2023 700b 131112524^131072+1 1063996 L4245 2023 701 1179*2^3534450+1 1063979 L3035 2018 702b 130907540^131072+1 1063907 L4526 2023 703b 130593462^131072+1 1063771 L4559 2023 704 447*2^3533656+1 1063740 L4457 2016 705b 130518578^131072+1 1063738 L5029 2023 706 1059*2^3533550+1 1063708 L1823 2018 707b 130198372^131072+1 1063598 L5416 2023 708b 130148002^131072+1 1063576 L4387 2023 709b 130128232^131072+1 1063567 L5029 2023 710b 130051980^131072+1 1063534 L5416 2023 711b 130048816^131072+1 1063533 L4245 2023 712 345*2^3532957+1 1063529 L4314 2016 713 553*2^3532758+1 1063469 L1823 2018 714b 129292212^131072+1 1063201 L4285 2023 715b 129159632^131072+1 1063142 L5051 2023 716b 128558886^131072+1 1062877 L5518 2023 717b 128520182^131072+1 1062860 L4745 2023 718 543131*2^3529754-1 1062568 L4925 2022 719b 127720948^131072+1 1062504 L5378 2023 720 141*2^3529287+1 1062424 L4185 2015 721b 127093036^131072+1 1062224 L4591 2023 722b 126611934^131072+1 1062008 L4776 2023 723b 126423276^131072+1 1061923 L4201 2023 724b 126334514^131072+1 1061883 L4249 2023 725 13*2^3527315-1 1061829 L1862 2016 726b 126199098^131072+1 1061822 L4591 2023 727b 126189358^131072+1 1061818 L4704 2023 728b 125966884^131072+1 1061717 L4747 2023 729b 125714084^131072+1 1061603 L4745 2023 730b 125141096^131072+1 1061343 L4559 2023 731 1393*2^3525571-1 1061306 L1828 2017 732b 125006494^131072+1 1061282 L5639 2023 733b 124877454^131072+1 1061223 L4245 2023 734b 124875502^131072+1 1061222 L4591 2023 735b 124749274^131072+1 1061164 L4591 2023 736b 124586054^131072+1 1061090 L4249 2023 737b 124582356^131072+1 1061088 L5606 2023 738b 124543852^131072+1 1061071 L4249 2023 739b 124393514^131072+1 1061002 L4774 2023 740b 124219534^131072+1 1060922 L4249 2023 741b 124133348^131072+1 1060883 L5088 2023 742b 124080788^131072+1 1060859 L5639 2023 743 1071*2^3523944+1 1060816 L1675 2018 744b 123910270^131072+1 1060780 L4249 2023 745b 123856592^131072+1 1060756 L4201 2023 746c 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 747b 123306230^131072+1 1060502 L5638 2023 748c 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 749c 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 750c 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 751c 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 752c 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 753c 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 754c 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 755c 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 756c 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 757 329*2^3518451+1 1059162 L1823 2016 758 135*2^3518338+1 1059128 L4045 2015 759c 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 760 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 761c 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 762 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 763c 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 764c 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 765c 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 766d 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 767d 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 768d 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 769 599*2^3515959+1 1058412 L1823 2018 770d 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 771d 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 772d 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 773d 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 774d 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 775d 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 776d 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 777d 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 778d 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 779d 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 780e 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 781 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 782e 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 783e 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 784e 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 785e 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 786 1135*2^3510890+1 1056887 L1823 2018 787e 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 788f 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 789f 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 790f 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 791f 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 792f 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 793 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 794 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 795 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 796 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 797 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 798 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 799 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 800 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 801 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 802 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 803 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 804 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 805 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 806 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 807 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 808 428639*2^3506452-1 1055553 L2046 2011 809 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 810 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 811 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 812 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 813 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 814 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 815 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 816 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 817 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 818 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 819 104*383^408249+1 1054591 L2012 2021 820 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 821 555*2^3502765+1 1054441 L1823 2018 822 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 823 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 824 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 825 643*2^3501974+1 1054203 L1823 2018 826 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 827 1159*2^3501490+1 1054057 L2125 2018 828 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 829 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 830 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 831 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 832 1189*2^3499042+1 1053320 L4724 2018 833 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 834 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 835 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 836 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 837 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 838 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 839 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 840 609*2^3497474+1 1052848 L1823 2018 841 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 842 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 843 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 844 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 845 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 846 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 847 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 848 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 849 87*2^3496188+1 1052460 L1576 2014 850 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 851 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 852 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 853 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 854 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 855 783*2^3494129+1 1051841 L3824 2018 856 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 857 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 858 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 859 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 860 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 861 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 862 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 863 51*2^3490971+1 1050889 L1823 2014 864 1485*2^3490746+1 1050823 L1134 2021 865 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 866 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 867 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 868 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 869 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 870 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 871 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 872 753*2^3488818+1 1050242 L1823 2018 873 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 874 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 875 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 876 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 877 699*2^3487253+1 1049771 L1204 2018 878 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 879 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 880 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 881 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 882 249*2^3486411+1 1049517 L4045 2015 883 195*2^3486379+1 1049507 L4108 2015 884 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 885 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 886 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 887 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 888 59912*5^1500861+1 1049062 L3772 2014 889 495*2^3484656+1 1048989 L3035 2016 890 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 891 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 892 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 893 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 894 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 895 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 896 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 897 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 898 323*2^3482789+1 1048427 L1204 2016 899 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 900 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 901 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 902 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 903 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 904 1149*2^3481694+1 1048098 L1823 2018 905 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 906 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 907 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 908 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 909 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 910 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 911 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 912 701*2^3479779+1 1047521 L2125 2018 913 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 914 813*2^3479728+1 1047506 L4724 2018 915 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 916 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 917 197*2^3477399+1 1046804 L2125 2015 918 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 919 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 920 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 921 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 922 95940796^131072+1 1046218 L4591 2021 Generalized Fermat 923 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 924 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 925 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 926 491*2^3473837+1 1045732 L4343 2016 927 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 928 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 929 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 930 1061*2^3471354-1 1044985 L1828 2017 931 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 932 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 933 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 934 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 935 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 936 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 937 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 938 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 939 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 940 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 941 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 942 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 943 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 944 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 945 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 946 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 947 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 948 641*2^3464061+1 1042790 L1444 2018 949 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 950 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 951 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 952 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 953 453*2^3461688+1 1042075 L3035 2016 954 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 955 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 956 571*2^3460216+1 1041632 L3035 2018 957 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 958 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 959 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 960 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 961 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 962 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 963 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 964 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 965 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 966 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 967 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 968 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 969 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 970 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 971 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 972 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 973 1155*2^3455254+1 1040139 L4711 2017 974 37292*5^1487989+1 1040065 L3553 2013 975 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 976 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 977 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 978 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 979 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 980 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 981 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 982 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 983 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 984 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 985 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 986a 1623*2^3451109+1 1038891 L5308 2023 987a 8895*2^3450982+1 1038854 L5666 2023 988 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 989b 6337*2^3449506+1 1038409 L5197 2023 990b 4381*2^3449456+1 1038394 L5392 2023 991b 2727*2^3449326+1 1038355 L5421 2023 992b 2877*2^3449311+1 1038350 L5517 2023 993b 7507*2^3448920+1 1038233 L5284 2023 994a 3629*2^3448919+1 1038232 L5192 2023 995 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 996 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 997 1273*2^3448551-1 1038121 L1828 2012 998b 1461*2^3448423+1 1038082 L4944 2023 999b 3235*2^3448352+1 1038061 L5571 2023 1000b 4755*2^3448344+1 1038059 L5524 2023 1001b 5655*2^3448288+1 1038042 L5651 2023 1002b 4873*2^3448176+1 1038009 L5524 2023 1003 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1004b 8139*2^3447967+1 1037946 L5652 2023 1005 1065*2^3447906+1 1037927 L4664 2017 1006b 1717*2^3446756+1 1037581 L5517 2023 1007b 6357*2^3446434+1 1037484 L5284 2023 1008 1155*2^3446253+1 1037429 L3035 2017 1009b 9075*2^3446090+1 1037381 L5648 2023 1010 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1011 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1012b 1483*2^3445724+1 1037270 L5650 2023 1013 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1014b 2223*2^3445682+1 1037257 L5647 2023 1015b 8517*2^3445488+1 1037200 L5302 2023 1016b 2391*2^3445281+1 1037137 L5596 2023 1017b 6883*2^3444784+1 1036988 L5264 2023 1018 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1019 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1020b 8037*2^3443920+1 1036728 L5626 2023 1021b 1375*2^3443850+1 1036706 L5192 2023 1022 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1023 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1024 943*2^3442990+1 1036447 L4687 2017 1025b 7743*2^3442814+1 1036395 L5514 2023 1026c 5511*2^3442468+1 1036290 L5514 2022 1027 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1028c 6329*2^3441717+1 1036064 L5631 2022 1029c 3957*2^3441568+1 1036019 L5476 2022 1030 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1031c 4191*2^3441427+1 1035977 L5189 2022 1032c 2459*2^3441331+1 1035948 L5514 2022 1033c 4335*2^3441306+1 1035940 L5178 2022 1034c 2331*2^3441249+1 1035923 L5626 2022 1035 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1036 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1037 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1038c 2363*2^3440385+1 1035663 L5625 2022 1039c 5265*2^3440332+1 1035647 L5421 2022 1040c 6023*2^3440241+1 1035620 L5517 2022 1041 943*2^3440196+1 1035606 L1448 2017 1042c 6663*2^3439901+1 1035518 L5624 2022 1043 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1044 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1045 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1046d 5745*2^3439450+1 1035382 L5178 2022 1047 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1048d 5109*2^3439090+1 1035273 L5594 2022 1049 543*2^3438810+1 1035188 L3035 2017 1050 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1051d 3325*2^3438506+1 1035097 L5619 2022 1052 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1053 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1054 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1055d 4775*2^3438217+1 1035011 L5618 2022 1056 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1057d 6963*2^3437988+1 1034942 L5616 2022 1058 74*941^348034-1 1034913 L5410 2020 1059d 7423*2^3437856+1 1034902 L5192 2022 1060d 6701*2^3437801+1 1034886 L5615 2022 1061d 5741*2^3437773+1 1034877 L5517 2022 1062 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1063d 5601*2^3437259+1 1034722 L5612 2022 1064d 7737*2^3437192+1 1034702 L5611 2022 1065 113*2^3437145+1 1034686 L4045 2015 1066 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1067d 6387*2^3436719+1 1034560 L5613 2022 1068 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1069e 2921*2^3436299+1 1034433 L5231 2022 1070e 9739*2^3436242+1 1034416 L5178 2022 1071 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1072 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1073 1147*2^3435970+1 1034334 L3035 2017 1074e 4589*2^3435707+1 1034255 L5174 2022 1075e 7479*2^3435683+1 1034248 L5421 2022 1076e 2863*2^3435616+1 1034227 L5197 2022 1077 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1078e 9863*2^3434697+1 1033951 L5189 2022 1079e 4065*2^3434623+1 1033929 L5197 2022 1080 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1081f 9187*2^3434126+1 1033779 L5600 2022 1082e 9531*2^3434103+1 1033772 L5601 2022 1083f 1757*2^3433547+1 1033604 L5594 2022 1084f 1421*2^3433099+1 1033469 L5237 2022 1085f 3969*2^3433007+1 1033442 L5189 2022 1086f 6557*2^3433003+1 1033441 L5261 2022 1087f 7335*2^3432982+1 1033435 L5231 2022 1088f 7125*2^3432836+1 1033391 L5594 2022 1089f 2517*2^3432734+1 1033360 L5231 2022 1090 911*2^3432643+1 1033332 L1355 2017 1091f 5413*2^3432626+1 1033328 L5231 2022 1092 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1093f 3753*2^3432413+1 1033263 L5261 2022 1094f 2691*2^3432191+1 1033196 L5585 2022 1095f 3933*2^3432125+1 1033177 L5387 2022 1096 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1097 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1098 1435*2^3431284+1 1032923 L5587 2022 1099 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1100 6783*2^3430781+1 1032772 L5261 2022 1101 8079*2^3430683+1 1032743 L5585 2022 1102 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1103 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1104 6605*2^3430187+1 1032593 L5463 2022 1105 3761*2^3430057+1 1032554 L5582 2022 1106 6873*2^3429937+1 1032518 L5294 2022 1107 8067*2^3429891+1 1032504 L5581 2022 1108 3965*2^3429719+1 1032452 L5579 2022 1109 3577*2^3428812+1 1032179 L5401 2022 1110 8747*2^3428755+1 1032163 L5493 2022 1111 9147*2^3428638+1 1032127 L5493 2022 1112 3899*2^3428535+1 1032096 L5174 2022 1113 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1114 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1115 8891*2^3428303+1 1032026 L5532 2022 1116 2147*2^3427371+1 1031745 L5189 2022 1117 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1118 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1119 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1120 1127*2^3427219+1 1031699 L3035 2017 1121 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1122 3021*2^3427059+1 1031652 L5554 2022 1123 3255*2^3426983+1 1031629 L5231 2022 1124 1733*2^3426753+1 1031559 L5565 2022 1125 2339*2^3426599+1 1031513 L5237 2022 1126 4729*2^3426558+1 1031501 L5493 2022 1127 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1128 5445*2^3425839+1 1031285 L5237 2022 1129 159*2^3425766+1 1031261 L4045 2015 1130 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1131 3405*2^3425045+1 1031045 L5261 2022 1132 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1133 1695*2^3424517+1 1030886 L5387 2022 1134 4715*2^3424433+1 1030861 L5557 2022 1135 5525*2^3424423+1 1030858 L5387 2022 1136 8615*2^3424231+1 1030801 L5261 2022 1137 5805*2^3424200+1 1030791 L5237 2022 1138 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1139 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1140 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1141b 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1142 2109*2^3423797+1 1030669 L5197 2022 1143 4929*2^3423494+1 1030579 L5554 2022 1144 2987*2^3422911+1 1030403 L5226 2022 1145 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1146 4843*2^3422644+1 1030323 L5553 2022 1147 5559*2^3422566+1 1030299 L5555 2022 1148 7583*2^3422501+1 1030280 L5421 2022 1149 1119*2^3422189+1 1030185 L1355 2017 1150 2895*2^3422030+1 1030138 L5237 2022 1151b 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1152 2835*2^3421697+1 1030037 L5387 2022 1153 3363*2^3421353+1 1029934 L5226 2022 1154 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1155 9147*2^3421264+1 1029908 L5237 2022 1156 9705*2^3420915+1 1029803 L5540 2022 1157 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1158 8919*2^3420758+1 1029755 L5226 2022 1159 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1160 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1161 5489*2^3420137+1 1029568 L5174 2022 1162 9957*2^3420098+1 1029557 L5237 2022 1163 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1164 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1165 7213*2^3419370+1 1029337 L5421 2022 1166 7293*2^3419264+1 1029305 L5192 2022 1167 975*2^3419230+1 1029294 L3545 2017 1168 4191*2^3419227+1 1029294 L5421 2022 1169 2393*2^3418921+1 1029202 L5197 2022 1170 999*2^3418885+1 1029190 L3035 2017 1171 2925*2^3418543+1 1029088 L5174 2022 1172 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1173 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1174 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1175 7383*2^3418297+1 1029014 L5189 2022 1176 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1177 907*2^3417890+1 1028891 L3035 2017 1178 5071*2^3417884+1 1028890 L5237 2022 1179 3473*2^3417741+1 1028847 L5541 2022 1180 191249*2^3417696-1 1028835 L1949 2010 1181 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1182 3299*2^3417329+1 1028723 L5421 2022 1183 6947*2^3416979+1 1028618 L5540 2022 1184 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1185 8727*2^3416652+1 1028519 L5226 2022 1186 8789*2^3416543+1 1028486 L5197 2022 1187 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1188 7917*2^3415947+1 1028307 L5537 2022 1189 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1190 2055*2^3415873+1 1028284 L5535 2022 1191 4731*2^3415712+1 1028236 L5192 2022 1192 2219*2^3415687+1 1028228 L5178 2022 1193 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1194 5877*2^3415419+1 1028148 L5532 2022 1195 3551*2^3415275+1 1028104 L5231 2022 1196 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1197 2313*2^3415046+1 1028035 L5226 2022 1198 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1199 7637*2^3414875+1 1027984 L5507 2022 1200 2141*2^3414821+1 1027967 L5226 2022 1201 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1202 3667*2^3414686+1 1027927 L5226 2022 1203 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1204 6159*2^3414623+1 1027908 L5226 2022 1205 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1206 4577*2^3413539+1 1027582 L5387 2022 1207 5137*2^3413524+1 1027577 L5261 2022 1208 8937*2^3413364+1 1027529 L5527 2022 1209 8829*2^3413339+1 1027522 L5531 2022 1210 7617*2^3413315+1 1027515 L5197 2022 1211 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1212 3141*2^3413112+1 1027453 L5463 2022 1213 8831*2^3412931+1 1027399 L5310 2022 1214 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1215 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1216 5421*2^3412877+1 1027383 L5310 2022 1217 9187*2^3412700+1 1027330 L5337 2022 1218 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1219 8243*2^3412577+1 1027292 L5524 2022 1220 1751*2^3412565+1 1027288 L5523 2022 1221 9585*2^3412318+1 1027215 L5197 2022 1222 9647*2^3412247+1 1027193 L5178 2022 1223 3207*2^3412108+1 1027151 L5189 2022 1224 479*2^3411975+1 1027110 L2873 2016 1225 245*2^3411973+1 1027109 L1935 2015 1226 177*2^3411847+1 1027071 L4031 2015 1227 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1228 9963*2^3411566+1 1026988 L5237 2022 1229 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1230 9785*2^3411223+1 1026885 L5189 2022 1231 5401*2^3411136+1 1026858 L5261 2022 1232 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1233 9431*2^3411105+1 1026849 L5237 2022 1234 8227*2^3410878+1 1026781 L5316 2022 1235 4735*2^3410724+1 1026734 L5226 2022 1236 9515*2^3410707+1 1026730 L5237 2022 1237 6783*2^3410690+1 1026724 L5434 2022 1238 8773*2^3410558+1 1026685 L5261 2022 1239 4629*2^3410321+1 1026613 L5517 2022 1240 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1241 113*2^3409934-1 1026495 L2484 2014 1242 5721*2^3409839+1 1026468 L5226 2022 1243 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1244 6069*2^3409493+1 1026364 L5237 2022 1245 1981*910^346850+1 1026347 L1141 2021 1246 5317*2^3409236+1 1026287 L5471 2022 1247 7511*2^3408985+1 1026211 L5514 2022 1248 7851*2^3408909+1 1026188 L5176 2022 1249 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1250 6027*2^3408444+1 1026048 L5239 2022 1251 59*2^3408416-1 1026038 L426 2010 1252 2153*2^3408333+1 1026014 L5237 2022 1253 9831*2^3408056+1 1025932 L5233 2022 1254 3615*2^3408035+1 1025925 L5217 2022 1255 6343*2^3407950+1 1025899 L5226 2022 1256 8611*2^3407516+1 1025769 L5509 2022 1257 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1258 7111*2^3407452+1 1025750 L5508 2022 1259 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1260 6945*2^3407256+1 1025691 L5507 2022 1261 6465*2^3407229+1 1025682 L5301 2022 1262 1873*2^3407156+1 1025660 L5440 2022 1263 7133*2^3406377+1 1025426 L5279 2022 1264 7063*2^3406122+1 1025349 L5178 2022 1265 3105*2^3405800+1 1025252 L5502 2022 1266 953*2^3405729+1 1025230 L3035 2017 1267 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1268 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1269 373*2^3404702+1 1024921 L3924 2016 1270 7221*2^3404507+1 1024863 L5231 2022 1271 6641*2^3404259+1 1024788 L5501 2022 1272 9225*2^3404209+1 1024773 L5250 2022 1273 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1274 833*2^3403765+1 1024639 L3035 2017 1275 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1276 2601*2^3403459+1 1024547 L5350 2022 1277 8835*2^3403266+1 1024490 L5161 2022 1278 7755*2^3403010+1 1024412 L5161 2022 1279 3123*2^3402834+1 1024359 L5260 2022 1280 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1281 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1282 1417*2^3402246+1 1024182 L5497 2022 1283 5279*2^3402241+1 1024181 L5250 2022 1284 6651*2^3402137+1 1024150 L5476 2022 1285 1779*2^3401715+1 1024022 L5493 2022 1286 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1287 8397*2^3401502+1 1023959 L5476 2022 1288 4057*2^3401472+1 1023949 L5492 2022 1289 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1290 4095*2^3401174+1 1023860 L5418 2022 1291 5149*2^3400970+1 1023798 L5176 2022 1292 4665*2^3400922+1 1023784 L5308 2022 1293 24*414^391179+1 1023717 L4273 2016 1294 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1295 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1296 1725*2^3400371+1 1023617 L5197 2022 1297 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1298 9399*2^3400243+1 1023580 L5488 2022 1299 1241*2^3400127+1 1023544 L5279 2022 1300 1263*2^3399876+1 1023468 L5174 2022 1301 1167*2^3399748+1 1023430 L3545 2017 1302 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1303 7679*2^3398569+1 1023076 L5295 2022 1304 6447*2^3398499+1 1023054 L5302 2022 1305 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1306 2785*2^3398332+1 1023004 L5250 2022 1307 611*2^3398273+1 1022985 L3035 2017 1308 2145*2^3398034+1 1022914 L5302 2022 1309 3385*2^3397254+1 1022679 L5161 2022 1310 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1311 4463*2^3396657+1 1022500 L5476 2022 1312 2889*2^3396450+1 1022437 L5178 2022 1313 8523*2^3396448+1 1022437 L5231 2022 1314 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1315 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1316 3349*2^3396326+1 1022400 L5480 2022 1317 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1318 4477*2^3395786+1 1022238 L5161 2022 1319 3853*2^3395762+1 1022230 L5302 2022 1320 2693*2^3395725+1 1022219 L5284 2022 1321 8201*2^3395673+1 1022204 L5178 2022 1322 255*2^3395661+1 1022199 L3898 2014 1323 1049*2^3395647+1 1022195 L3035 2017 1324 9027*2^3395623+1 1022189 L5263 2022 1325 2523*2^3395549+1 1022166 L5472 2022 1326 3199*2^3395402+1 1022122 L5264 2022 1327 342924651*2^3394939-1 1021988 L4166 2017 1328 3825*2^3394947+1 1021985 L5471 2022 1329 1895*2^3394731+1 1021920 L5174 2022 1330 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1331 555*2^3393389+1 1021515 L2549 2017 1332 1865*2^3393387+1 1021515 L5237 2022 1333 4911*2^3393373+1 1021511 L5231 2022 1334 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1335 5229*2^3392587+1 1021275 L5463 2022 1336 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1337 609*2^3392301+1 1021188 L3035 2017 1338 9787*2^3392236+1 1021169 L5350 2022 1339 303*2^3391977+1 1021090 L2602 2016 1340 805*2^3391818+1 1021042 L4609 2017 1341 6475*2^3391496+1 1020946 L5174 2022 1342 67*2^3391385-1 1020911 L1959 2014 1343 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1344 4639*2^3390634+1 1020687 L5189 2022 1345 5265*2^3390581+1 1020671 L5456 2022 1346 663*2^3390469+1 1020636 L4316 2017 1347 6945*2^3390340+1 1020598 L5174 2021 1348 5871*2^3390268+1 1020577 L5231 2021 1349 7443*2^3390141+1 1020539 L5226 2021 1350 5383*2^3389924+1 1020473 L5350 2021 1351 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1352 9627*2^3389331+1 1020295 L5231 2021 1353 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1354 8253*2^3388624+1 1020082 L5226 2021 1355 3329*2^3388472-1 1020036 L4841 2020 1356 4695*2^3388393+1 1020012 L5237 2021 1357 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1358 7177*2^3388144+1 1019937 L5174 2021 1359 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1360 9611*2^3388059+1 1019912 L5435 2021 1361 1833*2^3387760+1 1019821 L5226 2021 1362 9003*2^3387528+1 1019752 L5189 2021 1363 3161*2^3387141+1 1019635 L5226 2021 1364 7585*2^3387110+1 1019626 L5189 2021 1365 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1366 453*2^3387048+1 1019606 L2602 2016 1367 5177*2^3386919+1 1019568 L5226 2021 1368 8739*2^3386813+1 1019537 L5226 2021 1369 2875*2^3386638+1 1019484 L5226 2021 1370 7197*2^3386526+1 1019450 L5178 2021 1371 1605*2^3386229+1 1019360 L5226 2021 1372 8615*2^3386181+1 1019346 L5442 2021 1373 3765*2^3386141+1 1019334 L5174 2021 1374 5379*2^3385806+1 1019233 L5237 2021 1375 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1376 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1377 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1378 173198*5^1457792-1 1018959 L3720 2013 1379 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1380 2109*2^3384733+1 1018910 L5261 2021 1381 7067*2^3384667+1 1018891 L5439 2021 1382 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1383 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1384 2077*2^3384472+1 1018831 L5237 2021 1385 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1386 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1387 9165*2^3383917+1 1018665 L5435 2021 1388 5579*2^3383209+1 1018452 L5434 2021 1389 8241*2^3383131+1 1018428 L5387 2021 1390 7409*2^3382869+1 1018349 L5161 2021 1391 4883*2^3382813+1 1018332 L5161 2021 1392 9783*2^3382792+1 1018326 L5189 2021 1393 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1394 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1395 8877*2^3381936+1 1018069 L5429 2021 1396 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1397 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1398 6675*2^3381688+1 1017994 L5197 2021 1399 2445*2^3381129+1 1017825 L5231 2021 1400 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1401 3381*2^3380585+1 1017662 L5237 2021 1402 7899*2^3380459+1 1017624 L5421 2021 1403 5945*2^3379933+1 1017465 L5418 2021 1404 1425*2^3379921+1 1017461 L1134 2020 1405 4975*2^3379420+1 1017311 L5161 2021 1406 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1407 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1408 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1409 9065*2^3378851+1 1017140 L5414 2021 1410 2369*2^3378761+1 1017112 L5197 2021 1411 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1412 621*2^3378148+1 1016927 L3035 2017 1413 7035*2^3378141+1 1016926 L5408 2021 1414 2067*2^3378115+1 1016918 L5405 2021 1415 1093*2^3378000+1 1016883 L4583 2017 1416 9577*2^3377612+1 1016767 L5406 2021 1417 861*2^3377601+1 1016763 L4582 2017 1418 5811*2^3377016+1 1016587 L5261 2021 1419 2285*2^3376911+1 1016555 L5261 2021 1420 4199*2^3376903+1 1016553 L5174 2021 1421 6405*2^3376890+1 1016549 L5269 2021 1422 1783*2^3376810+1 1016525 L5261 2021 1423 5401*2^3376768+1 1016513 L5174 2021 1424 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1425 2941*2^3376536+1 1016443 L5174 2021 1426 1841*2^3376379+1 1016395 L5401 2021 1427 6731*2^3376133+1 1016322 L5261 2021 1428 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1429 8121*2^3375933+1 1016262 L5356 2021 1430 5505*2^3375777+1 1016214 L5174 2021 1431 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1432 3207*2^3375314+1 1016075 L5237 2021 1433 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1434 5307*2^3374939+1 1015962 L5392 2021 1435 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1436 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1437 208003!-1 1015843 p394 2016 Factorial 1438 6219*2^3374198+1 1015739 L5393 2021 1439 3777*2^3374072+1 1015701 L5261 2021 1440 9347*2^3374055+1 1015696 L5387 2021 1441 1461*2^3373383+1 1015493 L5384 2021 1442 6395*2^3373135+1 1015419 L5382 2021 1443 7869*2^3373021+1 1015385 L5381 2021 1444 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1445 4905*2^3372216+1 1015142 L5261 2021 1446 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1447 2839*2^3372034+1 1015087 L5174 2021 1448 7347*2^3371803+1 1015018 L5217 2021 1449 9799*2^3371378+1 1014890 L5261 2021 1450 4329*2^3371201+1 1014837 L5197 2021 1451 3657*2^3371183+1 1014831 L5360 2021 1452 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1453 179*2^3371145+1 1014819 L3763 2014 1454 5155*2^3371016+1 1014781 L5237 2021 1455 7575*2^3371010+1 1014780 L5237 2021 1456 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1457 9195*2^3370798+1 1014716 L5178 2021 1458 1749*2^3370786+1 1014711 L5362 2021 1459 8421*2^3370599+1 1014656 L5174 2021 1460 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1461 4357*2^3369572+1 1014346 L5231 2021 1462 6073*2^3369544+1 1014338 L5358 2021 1463 839*2^3369383+1 1014289 L2891 2017 1464 65*2^3369359+1 1014280 L5236 2021 1465 8023*2^3369228+1 1014243 L5356 2021 1466 677*2^3369115+1 1014208 L2103 2017 1467 1437*2^3369083+1 1014199 L5282 2021 1468 9509*2^3368705+1 1014086 L5237 2021 1469 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1470 4851*2^3368668+1 1014074 L5307 2021 1471 7221*2^3368448+1 1014008 L5353 2021 1472 5549*2^3368437+1 1014005 L5217 2021 1473 715*2^3368210+1 1013936 L4527 2017 1474 617*2^3368119+1 1013908 L4552 2017 1475 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1476 1847*2^3367999+1 1013872 L5352 2021 1477 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1478 6497*2^3367743+1 1013796 L5285 2021 1479 2533*2^3367666+1 1013772 L5326 2021 1480 6001*2^3367552+1 1013738 L5350 2021 1481 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1482 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1483 777*2^3367372+1 1013683 L4408 2017 1484 9609*2^3367351+1 1013678 L5285 2021 1485 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1486 2529*2^3367317+1 1013667 L5237 2021 1487 5941*2^3366960+1 1013560 L5189 2021 1488 5845*2^3366956+1 1013559 L5197 2021 1489 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1490 9853*2^3366608+1 1013454 L5178 2021 1491 61*2^3366033-1 1013279 L4405 2017 1492 7665*2^3365896+1 1013240 L5345 2021 1493 8557*2^3365648+1 1013165 L5346 2021 1494 369*2^3365614+1 1013154 L4364 2016 1495 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1496 8201*2^3365283+1 1013056 L5345 2021 1497 9885*2^3365151+1 1013016 L5344 2021 1498 5173*2^3365096+1 1012999 L5285 2021 1499 8523*2^3364918+1 1012946 L5237 2021 1500 3985*2^3364776+1 1012903 L5178 2021 1501 9711*2^3364452+1 1012805 L5192 2021 1502 7003*2^3364172+1 1012721 L5217 2021 1503 6703*2^3364088+1 1012696 L5337 2021 1504 7187*2^3364011+1 1012673 L5217 2021 1505 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1506 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1507 2345*2^3363157+1 1012415 L5336 2021 1508 6527*2^3363135+1 1012409 L5167 2021 1509 9387*2^3363088+1 1012395 L5161 2021 1510 8989*2^3362986+1 1012364 L5161 2021 1511 533*2^3362857+1 1012324 L3171 2017 1512 619*2^3362814+1 1012311 L4527 2017 1513 2289*2^3362723+1 1012284 L5161 2021 1514 7529*2^3362565+1 1012237 L5161 2021 1515 7377*2^3362366+1 1012177 L5161 2021 1516 4509*2^3362311+1 1012161 L5324 2021 1517 7021*2^3362208+1 1012130 L5178 2021 1518 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1519 104*873^344135-1 1012108 L4700 2018 1520 4953*2^3362054+1 1012083 L5323 2021 1521 8575*2^3361798+1 1012006 L5237 2021 1522 2139*2^3361706+1 1011978 L5174 2021 1523 6939*2^3361203+1 1011827 L5217 2021 1524 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1525 3^2120580-3^623816-1 1011774 CH9 2019 1526 8185*2^3360896+1 1011735 L5189 2021 1527 2389*2^3360882+1 1011730 L5317 2021 1528 2787*2^3360631+1 1011655 L5197 2021 1529 6619*2^3360606+1 1011648 L5316 2021 1530 2755*2^3360526+1 1011623 L5174 2021 1531 1445*2^3360099+1 1011494 L5261 2021 1532 8757*2^3359788+1 1011401 L5197 2021 1533 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1534 5085*2^3359696+1 1011373 L5261 2021 1535 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1536 6459*2^3359457+1 1011302 L5310 2021 1537 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1538 6115*2^3358998+1 1011163 L5309 2021 1539 7605*2^3358929+1 1011143 L5308 2021 1540 2315*2^3358899+1 1011133 L5197 2021 1541 6603*2^3358525+1 1011021 L5307 2021 1542 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1543 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1544 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1545 5893*2^3357490+1 1010709 L5285 2021 1546 6947*2^3357075+1 1010585 L5302 2021 1547 4621*2^3357068+1 1010582 L5301 2021 1548 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1549 1479*2^3356275+1 1010343 L5178 2021 1550 3645*2^3356232+1 1010331 L5296 2021 1551 1259*2^3356215+1 1010325 L5298 2021 1552 2075*2^3356057+1 1010278 L5174 2021 1553 4281*2^3356051+1 1010276 L5295 2021 1554 1275*2^3356045+1 1010274 L5294 2021 1555 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1556 4365*2^3355770+1 1010192 L5261 2021 1557 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1558 2183*2^3355297+1 1010049 L5266 2021 1559 3087*2^3355000+1 1009960 L5226 2021 1560 8673*2^3354760+1 1009888 L5233 2021 1561 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1562 3015*2^3353943+1 1009641 L5290 2021 1563 6819*2^3353877+1 1009622 L5174 2021 1564 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1565 6393*2^3353366+1 1009468 L5287 2021 1566 3573*2^3353273+1 1009440 L5161 2021 1567 4047*2^3353222+1 1009425 L5286 2021 1568 1473*2^3353114+1 1009392 L5161 2021 1569 1183*2^3353058+1 1009375 L3824 2017 1570 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1571 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1572 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1573 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1574 7123*2^3352180+1 1009111 L5161 2021 1575 2757*2^3352180+1 1009111 L5285 2021 1576 9307*2^3352014+1 1009061 L5284 2021 1577 2217*2^3351732+1 1008976 L5283 2021 1578 543*2^3351686+1 1008961 L4198 2017 1579 4419*2^3351666+1 1008956 L5279 2021 1580 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1581 3059*2^3351379+1 1008870 L5278 2021 1582 7789*2^3351046+1 1008770 L5276 2021 1583 9501*2^3350668+1 1008656 L5272 2021 1584 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1585 9691*2^3349952+1 1008441 L5242 2021 1586 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1587 3209*2^3349719+1 1008370 L5269 2021 1588 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1589 393*2^3349525+1 1008311 L3101 2016 1590 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1591 5487*2^3349303+1 1008245 L5266 2021 1592 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1593 2511*2^3349104+1 1008185 L5264 2021 1594 1005*2^3349046-1 1008167 L4518 2021 1595 7659*2^3348894+1 1008122 L5263 2021 1596 9703*2^3348872+1 1008115 L5262 2021 1597 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1598 7935*2^3348578+1 1008027 L5161 2021 1599 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1600 7821*2^3348400+1 1007973 L5260 2021 1601 7911*2^3347532+1 1007712 L5250 2021 1602 8295*2^3347031+1 1007561 L5249 2021 1603 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1604 4029*2^3346729+1 1007470 L5239 2021 1605 9007*2^3346716+1 1007466 L5161 2021 1606 8865*2^3346499+1 1007401 L5238 2021 1607 6171*2^3346480+1 1007395 L5174 2021 1608 6815*2^3346045+1 1007264 L5235 2021 1609 5*326^400785+1 1007261 L4786 2019 1610 5951*2^3345977+1 1007244 L5233 2021 1611 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1612 1257*2^3345843+1 1007203 L5192 2021 1613 4701*2^3345815+1 1007195 L5192 2021 1614 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1615 7545*2^3345355+1 1007057 L5231 2021 1616 5559*2^3344826+1 1006897 L5223 2021 1617 6823*2^3344692+1 1006857 L5223 2021 1618 4839*2^3344453+1 1006785 L5188 2021 1619 7527*2^3344332+1 1006749 L5220 2021 1620 7555*2^3344240+1 1006721 L5188 2021 1621 6265*2^3344080+1 1006673 L5197 2021 1622 1299*2^3343943+1 1006631 L5217 2021 1623 2815*2^3343754+1 1006574 L5216 2021 1624 5349*2^3343734+1 1006568 L5174 2021 1625 2863*2^3342920+1 1006323 L5179 2020 1626 7387*2^3342848+1 1006302 L5208 2020 1627 9731*2^3342447+1 1006181 L5203 2020 1628 7725*2^3341708+1 1005959 L5195 2020 1629 7703*2^3341625+1 1005934 L5178 2020 1630 7047*2^3341482+1 1005891 L5194 2020 1631 4839*2^3341309+1 1005838 L5192 2020 1632 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1633 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1634 8989*2^3340866+1 1005705 L5189 2020 1635 6631*2^3340808+1 1005688 L5188 2020 1636 1341*2^3340681+1 1005649 L5188 2020 1637 733*2^3340464+1 1005583 L3035 2016 1638 2636*138^469911+1 1005557 L5410 2021 1639 3679815*2^3340001+1 1005448 L4922 2019 1640 57*2^3339932-1 1005422 L3519 2015 1641 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1642 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1643 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1644 3651*2^3339341+1 1005246 L5177 2020 1645 3853*2^3339296+1 1005232 L5178 2020 1646 8015*2^3339267+1 1005224 L5176 2020 1647 3027*2^3339182+1 1005198 L5174 2020 1648 9517*2^3339002+1 1005144 L5172 2020 1649 4003*2^3338588+1 1005019 L3035 2020 1650 6841*2^3338336+1 1004944 L1474 2020 1651 2189*2^3338209+1 1004905 L5031 2020 1652 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1653 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1654 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1655 2957*2^3337667+1 1004742 L5144 2020 1656 1515*2^3337389+1 1004658 L1474 2020 1657 7933*2^3337270+1 1004623 L4666 2020 1658 1251*2^3337116+1 1004576 L4893 2020 1659 651*2^3337101+1 1004571 L3260 2016 1660 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1661 8397*2^3336654+1 1004437 L5125 2020 1662 8145*2^3336474+1 1004383 L5110 2020 1663 1087*2^3336385-1 1004355 L1828 2012 1664 5325*2^3336120+1 1004276 L2125 2020 1665 849*2^3335669+1 1004140 L3035 2016 1666 8913*2^3335216+1 1004005 L5079 2020 1667 7725*2^3335213+1 1004004 L3035 2020 1668 611*2^3334875+1 1003901 L3813 2016 1669 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1670 403*2^3334410+1 1003761 L4293 2016 1671 5491*2^3334392+1 1003756 L4815 2020 1672 6035*2^3334341+1 1003741 L2125 2020 1673 1725*2^3334341+1 1003740 L2125 2020 1674 4001*2^3334031+1 1003647 L1203 2020 1675 2315*2^3333969+1 1003629 L2125 2020 1676 6219*2^3333810+1 1003581 L4582 2020 1677 8063*2^3333721+1 1003554 L1823 2020 1678 9051*2^3333677+1 1003541 L3924 2020 1679 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1680 4091*2^3333153+1 1003383 L1474 2020 1681 9949*2^3332750+1 1003262 L5090 2020 1682 3509*2^3332649+1 1003231 L5085 2020 1683 3781*2^3332436+1 1003167 L1823 2020 1684 4425*2^3332394+1 1003155 L3431 2020 1685 6459*2^3332086+1 1003062 L2629 2020 1686 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1687 5257*2^3331758+1 1002963 L1188 2020 1688 2939*2^3331393+1 1002853 L1823 2020 1689 6959*2^3331365+1 1002845 L1675 2020 1690 8815*2^3330748+1 1002660 L3329 2020 1691 4303*2^3330652+1 1002630 L4730 2020 1692 8595*2^3330649+1 1002630 L4723 2020 1693 673*2^3330436+1 1002564 L3035 2016 1694 8163*2^3330042+1 1002447 L3278 2020 1695 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1696 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1697 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1698 2829*2^3329061+1 1002151 L4343 2020 1699 5775*2^3329034+1 1002143 L1188 2020 1700 7101*2^3328905+1 1002105 L4568 2020 1701 7667*2^3328807+1 1002075 L4087 2020 1702 129*2^3328805+1 1002073 L3859 2014 1703 7261*2^3328740+1 1002055 L2914 2020 1704 4395*2^3328588+1 1002009 L3924 2020 1705 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1706 143183*2^3328297+1 1001923 L4504 2017 1707 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1708 9681*2^3327987+1 1001828 L1204 2020 1709 2945*2^3327987+1 1001828 L2158 2020 1710 5085*2^3327789+1 1001769 L1823 2020 1711 8319*2^3327650+1 1001727 L1204 2020 1712 4581*2^3327644+1 1001725 L2142 2020 1713 655*2^3327518+1 1001686 L4490 2016 1714 8863*2^3327406+1 1001653 L1675 2020 1715 659*2^3327371+1 1001642 L3502 2016 1716 3411*2^3327343+1 1001634 L1675 2020 1717 4987*2^3327294+1 1001619 L3924 2020 1718 821*2^3327003+1 1001531 L3035 2016 1719 2435*2^3326969+1 1001521 L3035 2020 1720 1931*2^3326850-1 1001485 L4113 2022 1721 2277*2^3326794+1 1001469 L5014 2020 1722 6779*2^3326639+1 1001422 L3924 2020 1723 6195*2^3325993+1 1001228 L1474 2019 1724 555*2^3325925+1 1001206 L4414 2016 1725 9041*2^3325643+1 1001123 L3924 2019 1726 1965*2^3325639-1 1001121 L4113 2022 1727 1993*2^3325302+1 1001019 L3662 2019 1728 6179*2^3325027+1 1000937 L3048 2019 1729 4485*2^3324900+1 1000899 L1355 2019 1730 3559*2^3324650+1 1000823 L3035 2019 1731 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1732 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1733 6927*2^3324387+1 1000745 L3091 2019 1734 9575*2^3324287+1 1000715 L3824 2019 1735 1797*2^3324259+1 1000705 L3895 2019 1736 4483*2^3324048+1 1000642 L3035 2019 1737 791*2^3323995+1 1000626 L3035 2016 1738 6987*2^3323926+1 1000606 L4973 2019 1739 3937*2^3323886+1 1000593 L3035 2019 1740 2121*2^3323852+1 1000583 L1823 2019 1741 1571*2^3323493+1 1000475 L3035 2019 1742 2319*2^3323402+1 1000448 L4699 2019 1743 2829*2^3323341+1 1000429 L4754 2019 1744 4335*2^3323323+1 1000424 L1823 2019 1745 8485*2^3322938+1 1000308 L4858 2019 1746 6505*2^3322916+1 1000302 L4858 2019 1747 597*2^3322871+1 1000287 L3035 2016 1748 9485*2^3322811+1 1000270 L2603 2019 1749 8619*2^3322774+1 1000259 L3035 2019 1750 387*2^3322763+1 1000254 L1455 2016 1751 1965*2^3322579-1 1000200 L4113 2022 1752 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1753 6366*745^348190-1 1000060 L4189 2022 1754 5553507*2^3322000+1 1000029 p391 2016 1755 5029159647*2^3321910-1 1000005 L4960 2021 1756 5009522505*2^3321910-1 1000005 L4960 2021 1757 4766298357*2^3321910-1 1000005 L4960 2021 1758 4759383915*2^3321910-1 1000005 L4960 2021 1759 4635733263*2^3321910-1 1000005 L4960 2021 1760 4603393047*2^3321910-1 1000005 L4960 2021 1761 4550053935*2^3321910-1 1000005 L4960 2021 1762 4288198767*2^3321910-1 1000005 L4960 2021 1763 4229494557*2^3321910-1 1000005 L4960 2021 1764 4110178197*2^3321910-1 1000005 L4960 2021 1765 4022490843*2^3321910-1 1000005 L4960 2021 1766 3936623697*2^3321910-1 1000005 L4960 2021 1767 3751145343*2^3321910-1 1000005 L4960 2021 1768 3715773735*2^3321910-1 1000005 L4960 2021 1769 3698976057*2^3321910-1 1000005 L4960 2021 1770 3659465685*2^3321910-1 1000005 L4960 2020 1771 3652932033*2^3321910-1 1000005 L4960 2020 1772 3603204333*2^3321910-1 1000005 L4960 2020 1773 3543733545*2^3321910-1 1000005 L4960 2020 1774 3191900133*2^3321910-1 1000005 L4960 2020 1775 3174957723*2^3321910-1 1000005 L4960 2020 1776 2973510903*2^3321910-1 1000005 L4960 2019 1777 2848144257*2^3321910-1 1000005 L4960 2019 1778 2820058827*2^3321910-1 1000005 L4960 2019 1779 2611553775*2^3321910-1 1000004 L4960 2020 1780 2601087525*2^3321910-1 1000004 L4960 2019 1781 2386538565*2^3321910-1 1000004 L4960 2019 1782 2272291887*2^3321910-1 1000004 L4960 2019 1783 2167709265*2^3321910-1 1000004 L4960 2019 1784 2087077797*2^3321910-1 1000004 L4960 2019 1785 1848133623*2^3321910-1 1000004 L4960 2019 1786 1825072257*2^3321910-1 1000004 L4960 2019 1787 1633473837*2^3321910-1 1000004 L4960 2019 1788 1228267623*2^3321910-1 1000004 L4808 2019 1789 1148781333*2^3321910-1 1000004 L4808 2019 1790 1065440787*2^3321910-1 1000004 L4808 2019 1791 1055109357*2^3321910-1 1000004 L4960 2019 1792 992309607*2^3321910-1 1000004 L4808 2019 1793 926102325*2^3321910-1 1000004 L4808 2019 1794 892610007*2^3321910-1 1000004 L4960 2019 1795 763076757*2^3321910-1 1000004 L4960 2019 1796 607766997*2^3321910-1 1000004 L4808 2019 1797 539679177*2^3321910-1 1000004 L4808 2019 1798 425521077*2^3321910-1 1000004 L4808 2019 1799 132940575*2^3321910-1 1000003 L4808 2019 1800 239378138685*2^3321891+1 1000001 L5104 2020 1801 464253*2^3321908-1 1000000 L466 2013 1802 3^2095902+3^647322-1 1000000 x44 2018 1803 191273*2^3321908-1 1000000 L466 2013 1804 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1805 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1806 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1807 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1808 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1809 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1810 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1811 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1812 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1813 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1814 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1815 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1816 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1817 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1818 10^999999+308267*10^292000+1 1000000 CH10 2021 1819 10^999999-1022306*10^287000-1 999999 CH13 2021 1820 10^999999-1087604*10^287000-1 999999 CH13 2021 1821 531631540026641*6^1285077+1 999999 L3494 2021 1822 3139*2^3321905-1 999997 L185 2008 1823 42550702^131072+1 999937 L4309 2022 Generalized Fermat 1824 42414020^131072+1 999753 L5030 2022 Generalized Fermat 1825 4847*2^3321063+1 999744 SB9 2005 1826 42254832^131072+1 999539 L5375 2022 Generalized Fermat 1827 42243204^131072+1 999524 L4898 2022 Generalized Fermat 1828 42230406^131072+1 999506 L5453 2022 Generalized Fermat 1829 42168978^131072+1 999424 L5462 2022 Generalized Fermat 1830 439*2^3318318+1 998916 L5573 2022 1831 41688706^131072+1 998772 L5270 2022 Generalized Fermat 1832 41364744^131072+1 998327 L5453 2022 Generalized Fermat 1833 41237116^131072+1 998152 L5459 2022 Generalized Fermat 1834 41102236^131072+1 997965 L4245 2022 Generalized Fermat 1835 41007562^131072+1 997834 L4210 2022 Generalized Fermat 1836 41001148^131072+1 997825 L4210 2022 Generalized Fermat 1837 975*2^3312951+1 997301 L5231 2022 1838 40550398^131072+1 997196 L4245 2022 Generalized Fermat 1839 40463598^131072+1 997074 L4591 2022 Generalized Fermat 1840 689*2^3311423+1 996841 L5226 2022 1841 40151896^131072+1 996633 L4245 2022 Generalized Fermat 1842 593*2^3309333+1 996212 L5572 2022 1843 383*2^3309321+1 996208 L5570 2022 1844 49*2^3309087-1 996137 L1959 2013 1845 39746366^131072+1 996056 L4201 2022 Generalized Fermat 1846 139413*6^1279992+1 996033 L4001 2015 1847 51*2^3308171+1 995861 L2840 2015 1848 719*2^3308127+1 995849 L5192 2022 1849 39597790^131072+1 995842 L4737 2022 Generalized Fermat 1850 39502358^131072+1 995705 L5453 2022 Generalized Fermat 1851 39324372^131072+1 995448 L5202 2022 Generalized Fermat 1852 245114*5^1424104-1 995412 L3686 2013 1853 39100746^131072+1 995123 L5441 2022 Generalized Fermat 1854 38824296^131072+1 994719 L4245 2021 Generalized Fermat 1855 38734748^131072+1 994588 L4249 2021 Generalized Fermat 1856 175124*5^1422646-1 994393 L3686 2013 1857 453*2^3303073+1 994327 L5568 2022 1858 38310998^131072+1 993962 L4737 2021 Generalized Fermat 1859 531*2^3301693+1 993912 L5226 2022 1860 38196496^131072+1 993791 L4861 2021 Generalized Fermat 1861 38152876^131072+1 993726 L4245 2021 Generalized Fermat 1862 195*2^3301018+1 993708 L5569 2022 1863 341*2^3300789+1 993640 L5192 2022 1864 37909914^131072+1 993363 L4249 2021 Generalized Fermat 1865 849*2^3296427+1 992327 L5571 2022 1866 1611*22^738988+1 992038 L4139 2015 1867 36531196^131072+1 991254 L4249 2021 Generalized Fermat 1868 2017*2^3292325-1 991092 L3345 2017 1869 36422846^131072+1 991085 L4245 2021 Generalized Fermat 1870 36416848^131072+1 991076 L5202 2021 Generalized Fermat 1871 885*2^3290927+1 990671 L5161 2022 1872 36038176^131072+1 990481 L4245 2021 Generalized Fermat 1873 35997532^131072+1 990416 L4245 2021 Generalized Fermat 1874 35957420^131072+1 990353 L4245 2021 Generalized Fermat 1875 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1876 35391288^131072+1 989449 L5070 2021 Generalized Fermat 1877 35372304^131072+1 989419 L5443 2021 Generalized Fermat 1878 219*2^3286614+1 989372 L5567 2022 1879 61*2^3286535-1 989348 L4405 2016 1880 35327718^131072+1 989347 L4591 2021 Generalized Fermat 1881 35282096^131072+1 989274 L4245 2021 Generalized Fermat 1882 35141602^131072+1 989046 L4729 2021 Generalized Fermat 1883 35139782^131072+1 989043 L4245 2021 Generalized Fermat 1884 35047222^131072+1 988893 L4249 2021 Generalized Fermat 1885 531*2^3284944+1 988870 L5536 2022 1886 34957136^131072+1 988747 L5321 2021 Generalized Fermat 1887 301*2^3284232+1 988655 L5564 2022 1888 34871942^131072+1 988608 L4245 2021 Generalized Fermat 1889 34763644^131072+1 988431 L4737 2021 Generalized Fermat 1890 34585314^131072+1 988138 L4201 2021 Generalized Fermat 1891 311*2^3282455+1 988120 L5568 2022 1892 34530386^131072+1 988048 L5070 2021 Generalized Fermat 1893 833*2^3282181+1 988038 L5564 2022 1894 561*2^3281889+1 987950 L5477 2022 1895 34087952^131072+1 987314 L4764 2021 Generalized Fermat 1896 87*2^3279368+1 987191 L3458 2015 1897 965*2^3279151+1 987126 L5564 2022 1898 33732746^131072+1 986717 L4359 2021 Generalized Fermat 1899 33474284^131072+1 986279 L5051 2021 Generalized Fermat 1900 33395198^131072+1 986145 L4658 2021 Generalized Fermat 1901 427*2^3275606+1 986059 L5566 2022 1902 33191418^131072+1 985796 L4201 2021 Generalized Fermat 1903 337*2^3274106+1 985607 L5564 2022 1904 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 1905 1045*2^3273488+1 985422 L5192 2022 1906 32869172^131072+1 985241 L4285 2021 Generalized Fermat 1907 32792696^131072+1 985108 L5198 2021 Generalized Fermat 1908 1047*2^3272351+1 985079 L5563 2022 1909 32704348^131072+1 984955 L5312 2021 Generalized Fermat 1910 32608738^131072+1 984788 L5395 2021 Generalized Fermat 1911 933*2^3270993+1 984670 L5562 2022 1912 311*2^3270759+1 984600 L5560 2022 1913 32430486^131072+1 984476 L4245 2021 Generalized Fermat 1914 32417420^131072+1 984453 L4245 2021 Generalized Fermat 1915 65*2^3270127+1 984409 L3924 2015 1916 32348894^131072+1 984333 L4245 2021 Generalized Fermat 1917 579*2^3269850+1 984326 L5226 2022 1918 32286660^131072+1 984223 L5400 2021 Generalized Fermat 1919 32200644^131072+1 984071 L4387 2021 Generalized Fermat 1920 32137342^131072+1 983959 L4559 2021 Generalized Fermat 1921 32096608^131072+1 983887 L4559 2021 Generalized Fermat 1922 32055422^131072+1 983814 L4559 2021 Generalized Fermat 1923 31821360^131072+1 983397 L4861 2021 Generalized Fermat 1924 31768014^131072+1 983301 L4252 2021 Generalized Fermat 1925 335*2^3266237+1 983238 L5559 2022 1926 1031*2^3265915+1 983142 L5364 2022 1927 31469984^131072+1 982765 L5078 2021 Generalized Fermat 1928 5*2^3264650-1 982759 L384 2013 1929 223*2^3264459-1 982703 L1884 2012 1930 1101*2^3264400+1 982686 L5231 2022 1931 483*2^3264181+1 982620 L5174 2022 1932 525*2^3263227+1 982332 L5231 2022 1933 31145080^131072+1 982174 L4201 2021 Generalized Fermat 1934b 622*48^584089+1 981998 L5629 2023 1935 31044982^131072+1 981991 L5041 2021 Generalized Fermat 1936 683*2^3262037+1 981974 L5192 2022 1937 923*2^3261401+1 981783 L5477 2022 1938 30844300^131072+1 981622 L5102 2021 Generalized Fermat 1939 30819256^131072+1 981575 L4201 2021 Generalized Fermat 1940 9*2^3259381-1 981173 L1828 2011 1941 1059*2^3258751+1 980985 L5231 2022 1942 6*5^1403337+1 980892 L4965 2020 1943 30318724^131072+1 980643 L4309 2021 Generalized Fermat 1944 30315072^131072+1 980636 L5375 2021 Generalized Fermat 1945 30300414^131072+1 980609 L4755 2021 Generalized Fermat 1946 30225714^131072+1 980468 L4201 2021 Generalized Fermat 1947 875*2^3256589+1 980334 L5550 2022 1948 30059800^131072+1 980155 L4928 2021 Generalized Fermat 1949 30022816^131072+1 980085 L5273 2021 Generalized Fermat 1950 29959190^131072+1 979964 L4905 2021 Generalized Fermat 1951 29607314^131072+1 979292 L5378 2021 Generalized Fermat 1952 779*2^3253063+1 979273 L5192 2022 1953 29505368^131072+1 979095 L5378 2021 Generalized Fermat 1954 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 1955 29169314^131072+1 978443 L5380 2021 Generalized Fermat 1956 417*2^3248255+1 977825 L5178 2022 1957 28497098^131072+1 977116 L4308 2021 Generalized Fermat 1958 28398204^131072+1 976918 L5379 2021 Generalized Fermat 1959 28294666^131072+1 976710 L5375 2021 Generalized Fermat 1960 28175634^131072+1 976470 L5378 2021 Generalized Fermat 1961 33*2^3242126-1 975979 L3345 2014 1962 27822108^131072+1 975752 L4760 2021 Generalized Fermat 1963 39*2^3240990+1 975637 L3432 2014 1964 27758510^131072+1 975621 L4289 2021 Generalized Fermat 1965 27557876^131072+1 975208 L4245 2021 Generalized Fermat 1966 27544748^131072+1 975181 L4387 2021 Generalized Fermat 1967 27408050^131072+1 974898 L4210 2021 Generalized Fermat 1968 225*2^3236967+1 974427 L5529 2022 1969 27022768^131072+1 974092 L4309 2021 Generalized Fermat 1970 26896670^131072+1 973826 L5376 2021 Generalized Fermat 1971 1075*2^3234606+1 973717 L5192 2022 1972 26757382^131072+1 973530 L5375 2021 Generalized Fermat 1973 26599558^131072+1 973194 L4245 2021 Generalized Fermat 1974 6*5^1392287+1 973168 L4965 2020 1975 26500832^131072+1 972982 L4956 2021 Generalized Fermat 1976 325*2^3231474+1 972774 L5536 2022 1977 933*2^3231438+1 972763 L5197 2022 1978 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 1979 26172278^131072+1 972272 L4245 2021 Generalized Fermat 1980 697*2^3229518+1 972185 L5534 2022 1981 22598*745^338354-1 971810 L4189 2022 1982 385*2^3226814+1 971371 L5178 2022 1983 211195*2^3224974+1 970820 L2121 2013 1984 1173*2^3223546+1 970388 L5178 2022 1985 7*6^1246814+1 970211 L4965 2019 1986 25128150^131072+1 969954 L4738 2021 Generalized Fermat 1987 25124378^131072+1 969946 L5102 2021 Generalized Fermat 1988 1089*2^3221691+1 969829 L5178 2022 1989 35*832^332073-1 969696 L4001 2019 1990 600921*2^3219922-1 969299 g337 2018 1991 939*2^3219319+1 969115 L5178 2022 1992 24734116^131072+1 969055 L5070 2021 Generalized Fermat 1993 24644826^131072+1 968849 L5070 2021 Generalized Fermat 1994 24642712^131072+1 968844 L5070 2021 Generalized Fermat 1995 24641166^131072+1 968840 L5070 2021 Generalized Fermat 1996 129*2^3218214+1 968782 L5529 2022 1997 24522386^131072+1 968565 L5070 2021 Generalized Fermat 1998 24486806^131072+1 968483 L4737 2021 Generalized Fermat 1999 811*2^3216944+1 968400 L5233 2022 2000 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2001 1023*2^3214745+1 967738 L5178 2022 2002 187*2^3212152+1 966957 L5178 2022 2003 301*2^3211281-1 966695 L5545 2022 2004 6*409^369832+1 965900 L4001 2015 2005 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2006 1165*2^3207702+1 965618 L5178 2022 2007 94373*2^3206717+1 965323 L2785 2013 2008 2751*2^3206569-1 965277 L4036 2015 2009 761*2^3206341+1 965208 L5178 2022 2010 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2011 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2012 911*2^3205225+1 964872 L5364 2022 2013 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2014 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2015 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2016 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2017 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2018 113983*2^3201175-1 963655 L613 2008 2019 34*888^326732-1 963343 L4001 2017 2020 899*2^3198219+1 962763 L5503 2022 2021 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2022 4*3^2016951+1 962331 L4965 2020 2023 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2024 987*2^3195883+1 962060 L5282 2022 2025 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2026 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2027 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2028 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2029 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2030 671*2^3185411+1 958908 L5315 2022 2031 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2032 1027*2^3184540+1 958646 L5174 2022 2033 789*2^3183463+1 958321 L5482 2022 2034 855*2^3183158+1 958229 L5161 2022 2035 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2036 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2037 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2038 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2039 935*2^3180599+1 957459 L5477 2022 2040 573*2^3179293+1 957066 L5226 2022 2041 33*2^3176269+1 956154 L3432 2013 2042 81*2^3174353-1 955578 L3887 2022 2043 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2044 600921*2^3173683-1 955380 g337 2018 2045 587*2^3173567+1 955342 L5301 2022 2046 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2047 1414*95^482691-1 954633 L4877 2019 2048 305*2^3171039+1 954581 L5301 2022 2049 755*2^3170701+1 954479 L5302 2022 2050 775*2^3170580+1 954443 L5449 2022 2051 78*236^402022-1 953965 L5410 2020 2052 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2053 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2054 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2055 1087*2^3164677-1 952666 L1828 2012 2056 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2057 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2058 459*2^3163175+1 952214 L5178 2022 2059 15*2^3162659+1 952057 p286 2012 2060 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2061 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2062 849*2^3161727+1 951778 L5178 2022 2063 67*2^3161450+1 951694 L3223 2015 2064 119*2^3161195+1 951617 L5320 2022 2065 1759*2^3160863-1 951518 L4965 2021 2066 58*117^460033+1 951436 L5410 2020 2067 417*2^3160443+1 951391 L5302 2022 2068 9231*70^515544+1 951234 L5410 2021 2069 671*2^3159523+1 951115 L5188 2022 2070 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2071 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2072 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2073 19*2^3155009-1 949754 L1828 2012 2074 281*2^3151457+1 948686 L5316 2022 2075 179*2^3150265+1 948327 L5302 2021 2076 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2077 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2078 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2079 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2080 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2081 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2082 865*2^3147482+1 947490 L5178 2021 2083 963*2^3145753+1 946969 L5451 2021 2084 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2085 387*2^3144483+1 946587 L5450 2021 2086 1035*2^3144236+1 946513 L5449 2021 2087 1065*2^3143667+1 946342 L4944 2021 2088 193*2^3142150+1 945884 L5178 2021 2089 915*2^3141942+1 945822 L5448 2021 2090 939*2^3141397+1 945658 L5320 2021 2091 1063*2^3141350+1 945644 L5178 2021 2092 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2093 69*2^3140225-1 945304 L3764 2014 2094 3*2^3136255-1 944108 L256 2007 2095 417*2^3136187+1 944089 L5178 2021 2096 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2097 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2098 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2099 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2100 299*2^3130621+1 942414 L5178 2021 2101 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2102 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2103 571*2^3127388+1 941441 L5440 2021 2104 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2105 197*2^3126343+1 941126 L5178 2021 2106 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2107 1097*2^3124455+1 940558 L5178 2021 2108 3125*2^3124079+1 940445 L1160 2019 2109 495*2^3123624+1 940308 L5438 2021 2110 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2111 1041*2^3120649+1 939412 L5437 2021 2112 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2113 3317*2^3117162-1 938363 L5399 2021 2114 763*2^3115684+1 937918 L4944 2021 2115 581*2^3114611+1 937595 L5178 2021 2116 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2117 134*864^319246-1 937473 L5410 2020 2118 700057*2^3113753-1 937339 L5410 2022 2119 1197*2^3111838+1 936760 L5178 2021 2120 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2121 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2122 755*2^3110759+1 936435 L5320 2021 2123 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2124 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2125 628*80^491322+1 935033 L5410 2021 2126 761*2^3105087+1 934728 L5197 2021 2127 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2128 1019*2^3103680-1 934304 L1828 2012 2129 579*2^3102639+1 933991 L5315 2021 2130 99*2^3102401-1 933918 L1862 2017 2131 256612*5^1335485-1 933470 L1056 2013 2132 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2133 69*2^3097340-1 932395 L3764 2014 2134 153*2^3097277+1 932376 L4944 2021 2135 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2136 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2137 207*2^3095391+1 931808 L5178 2021 2138 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2139 45*2^3094632-1 931579 L1862 2018 2140 259*2^3094582+1 931565 L5214 2021 2141 553*2^3094072+1 931412 L4944 2021 2142 57*2^3093440-1 931220 L2484 2020 2143 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2144 513*2^3092705+1 931000 L4329 2016 2145 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2146 933*2^3091825+1 930736 L5178 2021 2147 38*875^316292-1 930536 L4001 2019 2148 5*2^3090860-1 930443 L1862 2012 2149 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2150 4*5^1330541-1 930009 L4965 2022 2151 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2152 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2153 297*2^3087543+1 929446 L5326 2021 2154 1149*2^3087514+1 929438 L5407 2021 2155 745*2^3087428+1 929412 L5178 2021 2156 373*520^342177+1 929357 L3610 2014 2157 19401*2^3086450-1 929119 L541 2015 2158 75*2^3086355+1 929088 L3760 2015 2159 65*2^3080952-1 927461 L2484 2020 2160 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2161 1139*2^3079783+1 927111 L5174 2021 2162 271*2^3079189-1 926931 L2484 2018 2163 766*33^610412+1 926923 L4001 2016 2164 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2165 555*2^3078792+1 926812 L5226 2021 2166 31*332^367560+1 926672 L4294 2018 2167 167*2^3077568-1 926443 L1862 2019 2168 10001*2^3075602-1 925853 L4405 2019 2169 116*107^455562-1 924513 L4064 2021 2170 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2171 14844*430^350980-1 924299 L4001 2016 2172 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2173 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2174 1105*2^3069884+1 924131 L5314 2021 2175 319*2^3069362+1 923973 L5377 2021 2176 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2177 973*2^3069092+1 923892 L5214 2021 2178 765*2^3068511+1 923717 L5174 2021 2179 60849*2^3067914+1 923539 L591 2014 2180 674*249^385359+1 923400 L5410 2019 2181 499*2^3066970+1 923253 L5373 2021 2182 553*2^3066838+1 923213 L5368 2021 2183 629*2^3066827+1 923210 L5226 2021 2184 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2185 261*2^3066009+1 922964 L5197 2021 2186 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2187 21*2^3065701+1 922870 p286 2012 2188 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2189 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2190 875*2^3063847+1 922313 L5364 2021 2191 43*2^3063674+1 922260 L3432 2013 2192 677*2^3063403+1 922180 L5346 2021 2193 8460*241^387047-1 921957 L5410 2019 2194 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2195 111*2^3060238-1 921226 L2484 2020 2196 1165*2^3060228+1 921224 L5360 2021 2197 5*2^3059698-1 921062 L503 2008 2198 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2199 453*2^3056181+1 920005 L5320 2021 2200 791*2^3055695+1 919859 L5177 2021 2201 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2202 582971*2^3053414-1 919175 L5410 2022 2203 123*2^3049038+1 917854 L4119 2015 2204 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2205 400*95^463883-1 917435 L4001 2019 2206 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2207 454*383^354814+1 916558 L2012 2020 2208 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2209 435*2^3041954+1 915723 L5320 2021 2210 639*2^3040438+1 915266 L5320 2021 2211 1045*2^3037988+1 914529 L5178 2021 2212 291*2^3037904+1 914503 L3545 2015 2213 311*2^3037565+1 914401 L5178 2021 2214 373*2^3036746+1 914155 L5178 2021 2215 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2216 801*2^3036045+1 913944 L5348 2021 2217 915*2^3033775+1 913261 L5178 2021 2218 38804*3^1913975+1 913203 L5410 2021 2219 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2220 869*2^3030655+1 912322 L5260 2021 2221 643*2^3030650+1 912320 L5320 2021 2222 99*2^3029959-1 912111 L1862 2020 2223 417*2^3029342+1 911926 L5178 2021 2224 345*2^3027769+1 911452 L5343 2021 2225 26*3^1910099+1 911351 L4799 2020 2226 355*2^3027372+1 911333 L5174 2021 2227 99*2^3026660-1 911118 L1862 2020 2228 417*2^3026492+1 911068 L5197 2021 2229 1065*2^3025527+1 910778 L5208 2021 2230 34202*3^1908800+1 910734 L5410 2021 2231 8343*42^560662+1 910099 L4444 2020 2232 699*2^3023263+1 910096 L5335 2021 2233 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2234 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2235 383731*2^3021377-1 909531 L466 2011 2236 46821*2^3021380-374567 909531 p363 2013 2237 2^3021377-1 909526 G3 1998 Mersenne 37 2238 615*2^3019445+1 908947 L5260 2021 2239 389*2^3019025+1 908820 L5178 2021 2240 875*2^3018175+1 908565 L5334 2021 2241 555*2^3016352+1 908016 L5178 2021 2242 7*2^3015762+1 907836 g279 2008 2243 759*2^3015314+1 907703 L5178 2021 2244 32582*3^1901790+1 907389 L5372 2021 2245 75*2^3012342+1 906808 L3941 2015 2246 459*2^3011814+1 906650 L5178 2021 2247 991*2^3010036+1 906115 L5326 2021 2248 583*2^3009698+1 906013 L5325 2021 2249 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2250 593*2^3006969+1 905191 L5178 2021 2251 367*2^3004536+1 904459 L5178 2021 2252 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2253 1003*2^3003756+1 904224 L5320 2021 2254 573*2^3002662+1 903895 L5319 2021 2255 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2256 329*2^3002295+1 903784 L5318 2021 2257 4*5^1292915-1 903710 L4965 2022 2258 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2259 268514*5^1292240-1 903243 L3562 2013 2260 7*10^902708+1 902709 p342 2013 2261 435*2^2997453+1 902326 L5167 2021 2262 583*2^2996526+1 902047 L5174 2021 2263 1037*2^2995695+1 901798 L5178 2021 2264 717*2^2995326+1 901686 L5178 2021 2265 885*2^2995274+1 901671 L5178 2021 2266 43*2^2994958+1 901574 L3222 2013 2267 1065*2^2994154+1 901334 L5315 2021 2268 561*2^2994132+1 901327 L5314 2021 2269 1095*2^2992587-1 900862 L1828 2011 2270 519*2^2991849+1 900640 L5311 2021 2271 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2272 459*2^2990134+1 900123 L5197 2021 2273 15*2^2988834+1 899730 p286 2012 2274 29*564^326765+1 899024 L4001 2017 2275 971*2^2982525+1 897833 L5197 2021 2276 1033*2^2980962+1 897362 L5305 2021 2277 39*2^2978894+1 896739 L2719 2013 2278 38*977^299737+1 896184 L5410 2021 2279 4348099*2^2976221-1 895939 L466 2008 2280 205833*2^2976222-411665 895938 L4667 2017 2281 18976*2^2976221-18975 895937 p373 2014 2282 2^2976221-1 895932 G2 1997 Mersenne 36 2283 1024*3^1877301+1 895704 p378 2014 2284 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2285 24704*3^1877135+1 895626 L5410 2021 2286 591*2^2975069+1 895588 L5299 2021 2287 249*2^2975002+1 895568 L2322 2015 2288 195*2^2972947+1 894949 L3234 2015 2289 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2290 391*2^2971600+1 894544 L5242 2021 2291 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2292 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2293 493*72^480933+1 893256 L3610 2014 2294 561*2^2964753+1 892483 L5161 2021 2295 1185*2^2964350+1 892362 L5161 2021 2296 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2297 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2298 21*2^2959789-1 890987 L5313 2021 2299 627*2^2959098+1 890781 L5197 2021 2300 45*2^2958002-1 890449 L1862 2017 2301 729*2^2955389+1 889664 L5282 2021 2302 198677*2^2950515+1 888199 L2121 2012 2303 88*985^296644+1 887987 L5410 2020 2304 303*2^2949403-1 887862 L1817 2022 2305 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2306 321*2^2946654-1 887034 L1817 2022 2307 17*2^2946584-1 887012 L3519 2013 2308 489*2^2944673+1 886438 L5167 2021 2309 141*2^2943065+1 885953 L3719 2015 2310 757*2^2942742+1 885857 L5261 2021 2311 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2312 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2313 33*2^2939063-1 884748 L3345 2013 2314 5903*2^2938744-1 884654 L4036 2015 2315 717*2^2937963+1 884418 L5256 2021 2316 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2317 243*2^2937316+1 884223 L4114 2015 2318 973*2^2937046+1 884142 L5253 2021 2319 61*2^2936967-1 884117 L2484 2017 2320 903*2^2934602+1 883407 L5246 2021 2321 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2322 188*228^374503+1 883056 L4786 2020 2323 53*248^368775+1 883016 L5196 2020 2324 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2325 17*326^350899+1 881887 L4786 2019 2326 855*2^2929550+1 881886 L5200 2021 2327 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2328 839*2^2928551+1 881585 L5242 2021 2329 7019*10^881309-1 881313 L3564 2013 2330 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2331 577*2^2925602+1 880697 L5201 2021 2332 97366*5^1259955-1 880676 L3567 2013 2333 973*2^2923062+1 879933 L5228 2021 2334 1126*177^391360+1 879770 L4955 2020 2335 243944*5^1258576-1 879713 L3566 2013 2336 693*2^2921528+1 879471 L5201 2021 2337 6*10^879313+1 879314 L5009 2019 2338 269*2^2918105+1 878440 L2715 2015 2339 331*2^2917844+1 878362 L5210 2021 2340 169*2^2917805-1 878350 L2484 2018 2341 1085*2^2916967+1 878098 L5174 2020 2342 389*2^2916499+1 877957 L5215 2020 2343 431*2^2916429+1 877936 L5214 2020 2344 1189*2^2916406+1 877929 L5174 2020 2345 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2346 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2347 465*2^2914079+1 877228 L5210 2020 2348 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2349 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2350 493*2^2912552+1 876769 L5192 2021 2351 143157*2^2911403+1 876425 L4504 2017 2352 567*2^2910402+1 876122 L5201 2020 2353 683*2^2909217+1 875765 L5199 2020 2354 674*249^365445+1 875682 L5410 2019 2355 475*2^2908802+1 875640 L5192 2021 2356 371*2^2907377+1 875211 L5197 2020 2357 207*2^2903535+1 874054 L3173 2015 2358 851*2^2902731+1 873813 L5177 2020 2359 777*2^2901907+1 873564 L5192 2020 2360 717*2^2900775+1 873224 L5185 2020 2361 99*2^2899303-1 872780 L1862 2017 2362 63*2^2898957+1 872675 L3262 2013 2363 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2364 747*2^2895307+1 871578 L5178 2020 2365 403*2^2894566+1 871354 L5180 2020 2366 629*2^2892961+1 870871 L5173 2020 2367 627*2^2891514+1 870436 L5168 2020 2368 325*2^2890955-1 870267 L5545 2022 2369 363*2^2890208+1 870042 L3261 2020 2370 471*2^2890148+1 870024 L5158 2020 2371 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2372 583*2^2889248+1 869754 L5139 2020 2373 955*2^2887934+1 869358 L4958 2020 2374 303*2^2887603-1 869258 L5184 2022 2375 937*2^2887130+1 869116 L5134 2020 2376 885*2^2886389+1 868893 L3924 2020 2377 763*2^2885928+1 868754 L2125 2020 2378 1071*2^2884844+1 868428 L3593 2020 2379 1181*2^2883981+1 868168 L3593 2020 2380 327*2^2881349-1 867375 L5545 2022 2381 51*2^2881227+1 867338 L3512 2013 2382 933*2^2879973+1 866962 L4951 2020 2383 261*2^2879941+1 866952 L4119 2015 2384 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2385 65*2^2876718-1 865981 L2484 2016 2386 21*948^290747-1 865500 L4985 2019 2387 4013*2^2873250-1 864939 L1959 2014 2388 41*2^2872058-1 864578 L2484 2013 2389 359*2^2870935+1 864241 L1300 2020 2390 165*2^2870868+1 864220 L4119 2015 2391 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2392 665*2^2869847+1 863913 L2885 2020 2393 283*2^2868750+1 863583 L3877 2015 2394 845*2^2868291+1 863445 L5100 2020 2395 3125*2^2867399+1 863177 L1754 2019 2396 701*2^2867141+1 863099 L1422 2020 2397 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2398d 119*954^289255+1 861852 L5410 2022 2399 307*2^2862962+1 861840 L4740 2020 2400 147*2^2862651+1 861746 L1741 2015 2401 1207*2^2861901-1 861522 L1828 2011 2402 231*2^2860725+1 861167 L2873 2015 2403 193*2^2858812+1 860591 L2997 2015 2404 629*2^2857891+1 860314 L3035 2020 2405 493*2^2857856+1 860304 L5087 2020 2406 241*2^2857313-1 860140 L2484 2018 2407 707*2^2856331+1 859845 L5084 2020 2408 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2409 949*2^2854946+1 859428 L2366 2020 2410 222361*2^2854840+1 859398 g403 2006 2411 725*2^2854661+1 859342 L5031 2020 2412 399*2^2851994+1 858539 L4099 2020 2413 225*2^2851959+1 858528 L3941 2015 2414 247*2^2851602+1 858421 L3865 2015 2415 183*2^2850321+1 858035 L2117 2015 2416 1191*2^2849315+1 857733 L1188 2020 2417 717*2^2848598+1 857517 L1204 2020 2418 795*2^2848360+1 857445 L4099 2020 2419 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2420 705*2^2846638+1 856927 L1808 2020 2421 369*2^2846547+1 856899 L4099 2020 2422 233*2^2846392-1 856852 L2484 2021 2423 955*2^2844974+1 856426 L1188 2020 2424 753*2^2844700+1 856343 L1204 2020 2425 11138*745^297992-1 855884 L4189 2019 2426 111*2^2841992+1 855527 L1792 2015 2427 44*744^297912-1 855478 L5410 2021 2428 649*2^2841318+1 855325 L4732 2020 2429 228*912^288954-1 855305 L5410 2022 2430 305*2^2840155+1 854975 L4907 2020 2431 1149*2^2839622+1 854815 L2042 2020 2432 95*2^2837909+1 854298 L3539 2013 2433 199*2^2835667-1 853624 L2484 2019 2434 595*2^2833406+1 852943 L4343 2020 2435 1101*2^2832061+1 852539 L4930 2020 2436 813*2^2831757+1 852447 L4951 2020 2437 435*2^2831709+1 852432 L4951 2020 2438 543*2^2828217+1 851381 L4746 2019 2439 704*249^354745+1 850043 L5410 2019 2440 1001*2^2822037+1 849521 L1209 2019 2441 84466*5^1215373-1 849515 L3562 2013 2442 97*2^2820650+1 849103 L2163 2013 2443 107*2^2819922-1 848884 L2484 2013 2444 84256*3^1778899+1 848756 L4789 2018 2445 45472*3^1778899-1 848756 L4789 2018 2446 14804*3^1778530+1 848579 L4064 2021 2447 497*2^2818787+1 848543 L4842 2019 2448 97*2^2818306+1 848397 L3262 2013 2449 313*2^2817751-1 848231 L802 2021 2450 177*2^2816050+1 847718 L129 2012 2451 553*2^2815596+1 847582 L4980 2019 2452 1071*2^2814469+1 847243 L3035 2019 2453 105*2^2813000+1 846800 L3200 2015 2454 1115*2^2812911+1 846774 L1125 2019 2455 96*10^846519-1 846521 L2425 2011 Near-repdigit 2456 763*2^2811726+1 846417 L3919 2019 2457 1125*2^2811598+1 846379 L4981 2019 2458 891*2^2810100+1 845928 L4981 2019 2459 441*2^2809881+1 845862 L4980 2019 2460 711*2^2808473+1 845438 L1502 2019 2461 1089*2^2808231+1 845365 L4687 2019 2462 63*2^2807130+1 845033 L3262 2013 2463 1083*2^2806536+1 844855 L3035 2019 2464 675*2^2805669+1 844594 L1932 2019 2465 819*2^2805389+1 844510 L3372 2019 2466 1027*2^2805222+1 844459 L3035 2019 2467 437*2^2803775+1 844024 L3168 2019 2468 4431*372^327835-1 842718 L5410 2019 2469 150344*5^1205508-1 842620 L3547 2013 2470 311*2^2798459+1 842423 L4970 2019 2471 81*2^2797443-1 842117 L3887 2021 2472 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2473 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2474 43*2^2795582+1 841556 L2842 2013 2475 1001*2^2794357+1 841189 L1675 2019 2476 117*2^2794014+1 841085 L1741 2015 2477 1057*2^2792700+1 840690 L1675 2019 2478 345*2^2792269+1 840560 L1754 2019 2479 711*2^2792072+1 840501 L4256 2019 2480 315*2^2791414-1 840302 L2235 2021 2481 973*2^2789516+1 839731 L3372 2019 2482 27602*3^1759590+1 839543 L4064 2021 2483 2187*2^2786802+1 838915 L1745 2019 2484 15*2^2785940+1 838653 p286 2012 2485 333*2^2785626-1 838560 L802 2021 2486 1337*2^2785444-1 838506 L4518 2017 2487 711*2^2784213+1 838135 L4687 2019 2488 58582*91^427818+1 838118 L5410 2020 2489 923*2^2783153+1 837816 L1675 2019 2490 1103*2^2783149+1 837815 L3784 2019 2491 485*2^2778151+1 836310 L1745 2019 2492 600921*2^2776014-1 835670 g337 2017 2493 1129*2^2774934+1 835342 L1774 2019 2494 750*1017^277556-1 834703 L4955 2021 2495 8700*241^350384-1 834625 L5410 2019 2496 1023*2^2772512+1 834613 L4724 2019 2497 656*249^348030+1 833953 L5410 2019 2498 92*10^833852-1 833854 L4789 2018 Near-repdigit 2499 437*2^2769299+1 833645 L3760 2019 2500 967*2^2768408+1 833377 L3760 2019 2501 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2502 1171*2^2768112+1 833288 L2676 2019 2503 57*2^2765963+1 832640 L3262 2013 2504 1323*2^2764024+1 832058 L1115 2019 2505 77*2^2762047+1 831461 L3430 2013 2506 745*2^2761514+1 831302 L1204 2019 2507 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2508 7*10^830865+1 830866 p342 2014 2509 893*2^2758841+1 830497 L4826 2019 2510 537*2^2755164+1 829390 L3035 2019 2511 579*2^2754370+1 829151 L1823 2019 2512 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2513 215*2^2751022-1 828143 L2484 2018 2514 337*2^2750860+1 828094 L4854 2019 2515 701*2^2750267+1 827916 L3784 2019 2516 467*2^2749195+1 827593 L1745 2019 2517 245*2^2748663+1 827433 L3173 2015 2518 591*2^2748315+1 827329 L3029 2019 2519 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2520d 1007*2^2747268-1 827014 L4518 2022 2521 1089*2^2746155+1 826679 L2583 2019 2522 707*2^2745815+1 826576 L3760 2019 2523 459*2^2742310+1 825521 L4582 2019 2524 777*2^2742196+1 825487 L3919 2019 2525 609*2^2741078+1 825150 L3091 2019 2526 684*157^375674+1 824946 L5112 2022 2527 639*2^2740186+1 824881 L4958 2019 2528 905*2^2739805+1 824767 L4958 2019 2529d 119*954^276761+1 824625 L5410 2022 2530 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2531 777*2^2737282+1 824007 L1823 2019 2532 765*2^2735232+1 823390 L1823 2019 2533 609*2^2735031+1 823330 L1823 2019 2534 305*2^2733989+1 823016 L1823 2019 2535 165*2^2732983+1 822713 L1741 2015 2536 1133*2^2731993+1 822415 L4687 2019 2537 251*2^2730917+1 822091 L3924 2015 2538 1185*2^2730620+1 822002 L4948 2019 2539 (10^410997+1)^2-2 821995 p405 2022 2540 173*2^2729905+1 821786 L3895 2015 2541 1981*2^2728877-1 821478 L1134 2018 2542 693*2^2728537+1 821375 L3035 2019 2543 501*2^2728224+1 821280 L3035 2019 2544 763*2^2727928+1 821192 L3924 2019 2545 10*743^285478+1 819606 L4955 2019 2546 17*2^2721830-1 819354 p279 2010 2547 1006*639^291952+1 819075 L4444 2021 2548 1101*2^2720091+1 818833 L4935 2019 2549 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2550 165*2^2717378-1 818015 L2055 2012 2551 68633*2^2715609+1 817485 L5105 2020 2552 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2553 9574*5^1169232+1 817263 L5410 2021 2554 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2555 133*2^2713410+1 816820 L3223 2015 2556 45*2^2711732+1 816315 L1349 2012 2557 569*2^2711451+1 816231 L4568 2019 2558 12830*3^1709456+1 815622 L5410 2021 2559 335*2^2708958-1 815481 L2235 2020 2560 93*2^2708718-1 815408 L1862 2016 2561 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2562 837*2^2708160+1 815241 L4314 2019 2563 1005*2^2707268+1 814972 L4687 2019 2564 13*458^306196+1 814748 L3610 2015 2565 253*2^2705844+1 814543 L4083 2015 2566 657*2^2705620+1 814476 L4907 2019 2567 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2568 303*2^2703864+1 813947 L1204 2019 2569 141*2^2702160+1 813434 L1741 2015 2570 753*2^2701925+1 813364 L4314 2019 2571 133*2^2701452+1 813221 L3173 2015 2572 521*2^2700095+1 812813 L4854 2019 2573 393*2^2698956+1 812470 L1823 2019 2574 417*2^2698652+1 812378 L3035 2019 2575 525*2^2698118+1 812218 L1823 2019 2576 3125*2^2697651+1 812078 L3924 2019 2577 153*2^2697173+1 811933 L3865 2015 2578 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2579 26*3^1700041+1 811128 L4799 2020 2580 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2581 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2582 58*536^296735-1 809841 L5410 2021 2583 33016*3^1696980+1 809670 L5366 2021 2584 7335*2^2689080-1 809498 L4036 2015 2585 1049*2^2688749+1 809398 L4869 2018 2586 329*2^2688221+1 809238 L3035 2018 2587 865*2^2687434+1 809002 L4844 2018 2588 989*2^2686591+1 808748 L2805 2018 2589 136*904^273532+1 808609 L5410 2020 2590 243*2^2685873+1 808531 L3865 2015 2591 909*2^2685019+1 808275 L3431 2018 2592 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2593 1455*2^2683953-1 807954 L1134 2020 2594 11210*241^339153-1 807873 L5410 2019 2595 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2596 975*2^2681840+1 807318 L4155 2018 2597 999*2^2681353-1 807171 L4518 2022 2598 295*2^2680932+1 807044 L1741 2015 2599 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2600 575*2^2679711+1 806677 L2125 2018 2601 2386*52^469972+1 806477 L4955 2019 2602 219*2^2676229+1 805628 L1792 2015 2603 637*2^2675976+1 805552 L3035 2018 2604 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2605 951*2^2674564+1 805127 L1885 2018 2606 1372930^131072+1 804474 g236 2003 Generalized Fermat 2607 662*1009^267747-1 804286 L5410 2020 2608 261*2^2671677+1 804258 L3035 2015 2609 895*2^2671520+1 804211 L3035 2018 2610 1361244^131072+1 803988 g236 2004 Generalized Fermat 2611 789*2^2670409+1 803877 L3035 2018 2612 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2613 503*2^2668529+1 803310 L4844 2018 2614 255*2^2668448+1 803286 L1129 2015 2615 4189*2^2666639-1 802742 L1959 2017 2616 539*2^2664603+1 802129 L4717 2018 2617f 3^1681130+3^445781+1 802103 CH9 2022 2618 26036*745^279261-1 802086 L4189 2020 2619 1396*5^1146713-1 801522 L3547 2013 2620 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2621 51*892^271541+1 801147 L5410 2019 2622 297*2^2660048+1 800757 L3865 2015 2623 99*2^2658496-1 800290 L1862 2021 2624 851*2^2656411+1 799663 L4717 2018 2625 487*2^2655008+1 799240 L3760 2018 2626 371*2^2651663+1 798233 L3760 2018 2627 69*2^2649939-1 797713 L3764 2014 2628 207*2^2649810+1 797675 L1204 2015 2629 505*2^2649496+1 797581 L3760 2018 2630 993*2^2649256+1 797509 L3760 2018 2631 517*2^2648698+1 797341 L3760 2018 2632 340*703^280035+1 797250 L4001 2018 2633 441*2^2648307+1 797223 L3760 2018 2634 1129*2^2646590+1 796707 L3760 2018 2635 128*518^293315+1 796156 L4001 2019 2636 211*744^277219-1 796057 L5410 2021 2637 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 2638 1176694^131072+1 795695 g236 2003 Generalized Fermat 2639 13*2^2642943-1 795607 L1862 2012 2640 119*410^304307+1 795091 L4294 2019 2641 501*2^2641052+1 795039 L3035 2018 2642 879*2^2639962+1 794711 L3760 2018 2643 57*2^2639528-1 794579 L2484 2016 2644 342673*2^2639439-1 794556 L53 2007 2645 813*2^2639092+1 794449 L2158 2018 2646 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 2647 197*972^265841-1 794247 L4955 2022 2648 1027*2^2638186+1 794177 L3760 2018 2649 889*2^2637834+1 794071 L3545 2018 2650 92182*5^1135262+1 793520 L3547 2013 2651 5608*70^429979+1 793358 L5390 2021 2652 741*2^2634385+1 793032 L1204 2018 2653 465*2^2630496+1 791861 L1444 2018 2654 189*2^2630487+1 791858 L3035 2015 2655 87*2^2630468+1 791852 L3262 2013 2656 4*5^1132659-1 791696 L4965 2022 2657 1131*2^2629345+1 791515 L4826 2018 2658 967*2^2629344+1 791515 L3760 2018 2659 267*2^2629210+1 791474 L3035 2015 2660 154*883^268602+1 791294 L5410 2020 2661 819*2^2627529+1 790968 L1387 2018 2662 17152*5^1131205-1 790683 L3552 2013 2663 183*2^2626442+1 790641 L3035 2015 2664 813*2^2626224+1 790576 L4830 2018 2665 807*2^2625044+1 790220 L1412 2018 2666 1063730^131072+1 789949 g260 2013 Generalized Fermat 2667 1243*2^2623707-1 789818 L1828 2011 2668 693*2^2623557+1 789773 L3278 2018 2669 981*2^2622032+1 789314 L1448 2018 2670 145*2^2621020+1 789008 L3035 2015 2671 963*792^271959-1 788338 L5410 2021 2672 541*2^2614676+1 787099 L4824 2018 2673 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2674 1061*268^323645-1 785857 L5410 2019 2675 1662*483^292719-1 785646 L5410 2022 2676 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 2677 1071*2^2609316+1 785486 L3760 2018 2678 87*2^2609046+1 785404 L2520 2013 2679 18922*111^383954+1 785315 L4927 2021 2680 543*2^2608129+1 785128 L4822 2018 2681 329584*5^1122935-1 784904 L3553 2013 2682 10*311^314806+1 784737 L3610 2014 2683 1019*2^2606525+1 784646 L1201 2018 2684 977*2^2606211+1 784551 L4746 2018 2685 13*2^2606075-1 784508 L1862 2011 2686 693*2^2605905+1 784459 L4821 2018 2687 147*2^2604275+1 783968 L1741 2015 2688 105*2^2603631+1 783774 L3459 2015 2689 93*2^2602483-1 783428 L1862 2016 2690 155*2^2602213+1 783347 L2719 2015 2691 303*2^2601525+1 783140 L4816 2018 2692 711*2^2600535+1 782842 L4815 2018 2693 1133*2^2599345+1 782484 L4796 2018 2694 397*2^2598796+1 782319 L3877 2018 2695 1536*177^347600+1 781399 L5410 2020 2696 1171*2^2595736+1 781398 L3035 2018 2697 (146^180482+1)^2-2 781254 p405 2022 2698 909548^131072+1 781036 p387 2015 Generalized Fermat 2699 2*218^333925+1 780870 L4683 2017 2700 1149*2^2593359+1 780682 L1125 2018 2701 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 2702 333*2^2591874-1 780235 L2017 2019 2703 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 2704 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 2705 703*2^2586728+1 778686 L4256 2018 2706 2642*372^302825-1 778429 L5410 2019 2707 120*825^266904+1 778416 L4001 2018 2708 337*2^2585660+1 778364 L2873 2018 2709c 31*2^2585311-1 778258 L4521 2022 2710 393*2^2584957+1 778153 L4600 2018 2711 151*2^2584480+1 778009 L4043 2015 2712 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 2713 385*2^2584280+1 777949 L4600 2018 2714 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 2715 65*2^2583720-1 777780 L2484 2015 2716 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 2717 82*920^262409-1 777727 L4064 2015 2718 1041*2^2582112+1 777297 L1456 2018 2719 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2720 229*2^2581111-1 776995 L1862 2017 2721 61*2^2580689-1 776867 L2484 2015 2722 1113*2^2580205+1 776723 L4724 2018 2723 51*2^2578652+1 776254 L3262 2013 2724 173*2^2578197+1 776117 L3035 2015 2725 833*2^2578029+1 776067 L4724 2018 2726 80*394^298731-1 775358 L541 2020 2727 302*423^295123-1 775096 L5413 2021 2728 460*628^276994+1 775021 L5410 2020 2729 459*2^2573899+1 774824 L1204 2018 2730 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 2731 627*2^2567718+1 772963 L3803 2018 2732 933*2^2567598+1 772927 L4724 2018 2733 757*2^2566468+1 772587 L2606 2018 2734 231*2^2565263+1 772224 L3035 2015 2735 4*737^269302+1 772216 L4294 2016 Generalized Fermat 2736 941*2^2564867+1 772105 L4724 2018 2737 923*2^2563709+1 771757 L1823 2018 2738 151*596^278054+1 771671 L4876 2019 2739 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 2740 303*2^2562423-1 771369 L2017 2018 2741 75*2^2562382-1 771356 L2055 2011 2742 147559*2^2562218+1 771310 L764 2012 2743 117*412^294963+1 771300 p268 2021 2744 829*2^2561730+1 771161 L1823 2018 2745 404*12^714558+1 771141 L1471 2011 2746 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 2747 295*80^404886+1 770537 L5410 2021 2748 1193*2^2559453+1 770476 L2030 2018 2749 19*984^257291+1 770072 L5410 2020 2750 116*950^258458-1 769619 L5410 2021 2751 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 2752 65*752^267180-1 768470 L5410 2020 2753 419*2^2552363+1 768341 L4713 2018 2754 34*759^266676-1 768093 L4001 2019 2755 315*2^2550412+1 767754 L4712 2017 2756 415*2^2549590+1 767506 L4710 2017 2757 1152*792^264617-1 767056 L4955 2021 2758 693*2^2547752+1 766953 L4600 2017 2759 673*2^2547226+1 766795 L2873 2017 2760 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2761 196*814^263256+1 766242 L5410 2021 Generalized Fermat 2762 183*2^2545116+1 766159 L3035 2015 2763 311*2^2544778-1 766058 L2017 2018 2764 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2765 67*446^288982+1 765612 L4273 2020 2766 663*2^2542990+1 765520 L4703 2017 2767 705*2^2542464+1 765361 L2873 2017 2768 689186^131072+1 765243 g429 2013 Generalized Fermat 2769 745*2^2540726+1 764838 L4696 2017 2770 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 2771 64*177^340147-1 764644 L3610 2015 2772 421*2^2539336+1 764419 L4148 2017 2773 123287*2^2538167+1 764070 L3054 2012 2774 305716*5^1093095-1 764047 L3547 2013 2775 223*2^2538080+1 764041 L2125 2015 2776 83*2^2537641+1 763908 L1300 2013 2777 543539*2^2536028-1 763427 L4187 2022 2778 645*2^2532811+1 762455 L4600 2017 2779 953*2^2531601+1 762091 L4404 2017 2780 694*567^276568-1 761556 L4444 2021 2781 545*2^2528179+1 761061 L1502 2017 2782 203*2^2526505+1 760557 L3910 2015 2783 967*2^2526276+1 760488 L1204 2017 2784 3317*2^2523366-1 759613 L5399 2021 2785 241*2^2522801-1 759442 L2484 2018 2786 360307*6^975466-1 759066 p255 2017 2787 326*80^398799+1 758953 L4444 2021 2788 749*2^2519457+1 758436 L1823 2017 2789 199*2^2518871-1 758259 L2484 2018 2790 6*10^758068+1 758069 L5009 2019 2791 87*2^2518122-1 758033 L2484 2014 2792 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 2793 711*2^2516187+1 757451 L3035 2017 2794 967*2^2514698+1 757003 L4600 2017 2795 33*2^2513872-1 756753 L3345 2013 2796 973*2^2511920+1 756167 L1823 2017 2797 679*2^2511814+1 756135 L4598 2017 2798 1093*2^2511384+1 756005 L1823 2017 2799 38*875^256892-1 755780 L4001 2019 2800 45*2^2507894+1 754953 L1349 2012 2801 130484*5^1080012-1 754902 L3547 2013 2802 572186^131072+1 754652 g0 2004 Generalized Fermat 2803 242*501^279492-1 754586 L4911 2019 2804 883*2^2506382+1 754500 L1823 2017 2805 847*2^2505540+1 754246 L4600 2017 2806 191*2^2504121+1 753818 L3035 2015 2807 783*2^2500912+1 752853 L1823 2017 2808 165*2^2500130-1 752617 L2055 2011 2809 33*2^2499883-1 752542 L3345 2013 2810 319*2^2498685-1 752182 L2017 2018 2811 321*2^2496594-1 751553 L2235 2018 2812 365*2^2494991+1 751070 L3035 2017 2813 213*2^2493004-1 750472 L1863 2017 2814 777*2^2492560+1 750339 L3035 2017 2815 57*2^2492031+1 750178 L1230 2013 2816 879*2^2491342+1 749972 L4600 2017 2817 14*152^343720-1 749945 L3610 2015 2818 231*2^2489083+1 749292 L3035 2015 2819 255*2^2488562+1 749135 L3035 2015 2820 708*48^445477-1 748958 L5410 2022 2821 221*780^258841-1 748596 L4001 2018 2822 303*2^2486629+1 748553 L3035 2017 2823 6*433^283918-1 748548 L3610 2015 2824 617*2^2485919+1 748339 L1885 2017 2825 515*2^2484885+1 748028 L3035 2017 2826 1095*2^2484828+1 748011 L3035 2017 2827 1113*2^2484125+1 747800 L3035 2017 2828 607*2^2483616+1 747646 L3035 2017 2829 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 2830 723*2^2482064+1 747179 L3035 2017 2831 26*3^1565545+1 746957 L4799 2020 2832 14336*3^1563960+1 746203 L5410 2021 2833 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 2834 1071*2^2477584+1 745831 L3035 2017 2835 22*30^504814-1 745673 p355 2014 2836 2074*483^277812-1 745637 L5410 2022 2837 11*2^2476839+1 745604 L2691 2011 2838 825*2^2474996+1 745051 L1300 2017 2839 1061*2^2474282-1 744837 L1828 2012 2840 435*2^2473905+1 744723 L3035 2017 2841 1005*2^2473724-1 744669 L4518 2021 2842 1121*2^2473401+1 744571 L3924 2017 2843 325*2^2473267-1 744531 L2017 2018 2844c 400*639^265307-1 744322 L5410 2022 2845 11996*3^1559395+1 744025 L5410 2021 2846 889*2^2471082+1 743873 L1300 2017 2847 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 2848 883*2^2469268+1 743327 L4593 2017 2849 5754*313^297824-1 743237 L5089 2020 2850 81*2^2468789+1 743182 g418 2009 2851 55154*5^1063213+1 743159 L3543 2013 2852 119*2^2468556-1 743112 L2484 2018 2853 2136*396^285974+1 742877 L5410 2021 2854 525*2^2467658+1 742842 L3035 2017 2855 715*2^2465640+1 742235 L3035 2017 2856 26773*2^2465343-1 742147 L197 2006 2857 581*550^270707-1 741839 L5410 2020 2858 993*2^2464082+1 741766 L3035 2017 2859 1179*2^2463746+1 741665 L3035 2017 2860 857*2^2463411+1 741564 L3662 2017 2861 103*2^2462567-1 741309 L2484 2014 2862 12587*2^2462524-1 741298 L2012 2017 2863 5*2^2460482-1 740680 L503 2008 2864 763*2^2458592+1 740113 L1823 2017 2865 453*2^2458461+1 740074 L3035 2017 2866 519*2^2458058+1 739952 L3803 2017 2867b 373*2^2457859-1 739892 L2257 2023 2868 137*2^2457639+1 739826 L4021 2014 2869 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 2870 2688*991^246849+1 739582 L5410 2021 2871 133*2^2455666+1 739232 L2322 2014 2872 99*2^2455541-1 739194 L1862 2015 2873 377*2^2452639+1 738321 L3035 2017 2874 2189*138^345010+1 738284 L5410 2020 2875 1129*2^2452294+1 738218 L3035 2017 2876 1103*2^2451133+1 737868 L4531 2017 2877 65*2^2450614-1 737711 L2074 2014 2878 549*2^2450523+1 737684 L3035 2017 2879 4*789^254595+1 737582 L4955 2019 2880 3942*55^423771-1 737519 L4955 2019 2881 2166*483^274670-1 737204 L5410 2022 2882 765*2^2448660+1 737123 L4412 2017 2883 607*2^2447836+1 736875 L4523 2017 2884 1261*988^246031+1 736807 L5342 2021 2885 1005*2^2446722+1 736540 L4522 2017 2886 703*2^2446472+1 736465 L2805 2017 2887 75*2^2446050+1 736337 L3035 2013 2888 115*26^520277-1 736181 L1471 2014 2889 114986*5^1052966-1 735997 L3528 2013 2890 1029*2^2444707+1 735934 L3035 2017 2891 1035*2^2443369+1 735531 L3173 2017 2892 1017*2^2442723+1 735336 L4417 2017 2893 962*3^1540432+1 734976 L5410 2021 2894 1065*2^2441132+1 734857 L1823 2017 2895b 369*2^2436949-1 733598 L2257 2023 2896 393*2^2436849+1 733568 L3035 2016 2897 1425*2^2435607-1 733194 L1134 2020 2898 386892^131072+1 732377 p259 2009 Generalized Fermat 2899 465*2^2431455+1 731944 L3035 2016 2900 905*2^2430509+1 731660 L4408 2016 2901 223*2^2430490+1 731653 L4016 2014 2902 8*410^279991+1 731557 L4700 2019 2903 69*2^2428251-1 730979 L384 2014 2904 6070*466^273937+1 730974 L5410 2021 2905 233*2^2426512-1 730456 L2484 2020 2906 645*2^2426494+1 730451 L3035 2016 2907 665*2^2425789+1 730239 L3173 2016 2908 23*2^2425641+1 730193 L2675 2011 2909 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 2910 753*2^2422914+1 729373 L3035 2016 2911 5619*52^424922+1 729172 L5410 2019 2912 105*2^2422105+1 729129 L2520 2014 2913 62*962^244403+1 729099 L5409 2021 2914 3338*396^280633+1 729003 L5410 2021 2915 201*2^2421514-1 728951 L1862 2016 2916 1084*7^862557+1 728949 L5211 2021 2917 239*2^2421404-1 728918 L2484 2018 2918 577*2^2420868+1 728757 L4489 2016 2919 929*2^2417767+1 727824 L3924 2016 2920 4075*2^2417579-1 727768 L1959 2017 2921 303*2^2417452-1 727729 L2235 2018 2922 895*2^2417396+1 727712 L3035 2016 2923 1764*327^289322+1 727518 L5410 2020 Generalized Fermat 2924 3317*2^2415998-1 727292 L5399 2021 2925 5724*313^291243-1 726814 L4444 2020 2926 1081*2^2412780+1 726323 L1203 2016 2927 333*2^2412735-1 726309 L2017 2018 2928 6891*52^423132+1 726100 L5410 2019 2929 83*2^2411962-1 726075 L1959 2018 2930 69*2^2410035-1 725495 L2074 2013 2931 12362*1027^240890-1 725462 L4444 2018 2932 143157*2^2409056+1 725204 L4504 2016 2933 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 2934 339*2^2408337+1 724985 L3029 2016 2935 811*2^2408096+1 724913 L2526 2016 2936 157*2^2407958+1 724870 L1741 2014 2937 243686*5^1036954-1 724806 L3549 2013 2938 3660*163^327506+1 724509 L4955 2019 2939 303*2^2406433+1 724411 L4425 2016 2940 345*2^2405701+1 724191 L3035 2016 2941 921*2^2405056+1 723997 L2805 2016 2942 673*2^2403606+1 723561 L3035 2016 2943 475*2^2403220+1 723444 L4445 2016 2944 837*2^2402798+1 723318 L3372 2016 2945 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 2946 231*2^2402748+1 723302 L3995 2014 2947 375*2^2401881+1 723041 L2805 2016 2948 107*2^2401731+1 722996 L3998 2014 2949 1023*2^2398601+1 722054 L4414 2016 2950 539*2^2398227+1 721941 L4061 2016 2951 659*2^2397567+1 721743 L4441 2016 2952 40*844^246524+1 721416 L4001 2017 2953 465*2^2395133+1 721010 L4088 2016 2954 56*318^288096+1 720941 L1471 2019 2955 667*2^2394430+1 720799 L4408 2016 2956 15*2^2393365+1 720476 L1349 2010 2957 1642*273^295670+1 720304 L5410 2019 2958 8*908^243439+1 720115 L5410 2021 2959 633*2^2391222+1 719833 L3743 2016 2960 273*2^2388104+1 718894 L3668 2014 2961 118*558^261698+1 718791 L4877 2019 2962 1485*2^2386037-1 718272 L1134 2017 2963 399*2^2384115+1 717693 L4412 2016 2964 99*2^2383846+1 717612 L1780 2013 2965 737*2^2382804-1 717299 L191 2007 2966 111*2^2382772+1 717288 L3810 2014 2967 61*2^2381887-1 717022 L2432 2012 2968 202*249^299162+1 716855 L5410 2019 2969 321*2^2378535-1 716013 L2017 2018 2970 435*2^2378522+1 716010 L1218 2016 2971 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 2972 147*2^2375995+1 715248 L1130 2014 2973 915*2^2375923+1 715228 L1741 2016 2974 1981*2^2375591-1 715128 L1134 2017 2975 81*2^2375447-1 715083 L3887 2021 2976 1129*2^2374562+1 714818 L3035 2016 2977 97*2^2374485-1 714794 L2484 2018 2978 1117*2^2373977-1 714642 L1828 2012 2979 949*2^2372902+1 714318 L4408 2016 2980 1005*2^2372754-1 714274 L4518 2021 2981 659*2^2372657+1 714244 L3035 2016 2982 1365*2^2372586+1 714223 L1134 2016 2983 509*2^2370721+1 713661 L1792 2016 2984 99*2^2370390+1 713561 L1204 2013 2985 959*2^2370077+1 713468 L1502 2016 2986 1135*2^2369808+1 713387 L2520 2016 2987 125*2^2369461+1 713281 L3035 2014 2988 1183953*2^2367907-1 712818 L447 2007 Woodall 2989 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 2990 119878*5^1019645-1 712707 L3528 2013 2991 453*2^2367388+1 712658 L3035 2016 2992 150209!+1 712355 p3 2011 Factorial 2993 281*2^2363327+1 711435 L1741 2014 2994 2683*2^2360743-1 710658 L1959 2012 2995 409*2^2360166+1 710484 L1199 2016 2996 305*2^2358854-1 710089 L2017 2018 2997 1706*123^339764+1 710078 L5410 2021 2998 403*2^2357572+1 709703 L3029 2016 2999 155*2^2357111+1 709564 L3975 2014 3000 365*2^2355607+1 709111 L2117 2016 3001 33706*6^910462+1 708482 L587 2014 3002 1087*2^2352830+1 708276 L1492 2016 3003 152*1002^235971+1 708120 L5410 2019 3004 179*2^2352291+1 708113 L1741 2014 3005 559*2^2351894+1 707994 L3924 2016 3006 24573*2^2350824+1 707673 p168 2018 3007 1035*2^2350388+1 707541 L2526 2016 3008 433*2^2348252+1 706897 L2322 2016 3009 329*2^2348105+1 706853 L3029 2016 3010 45*2^2347187+1 706576 L1349 2012 3011 7675*46^424840+1 706410 L5410 2019 3012 127*2^2346377-1 706332 L282 2009 3013 933*2^2345893+1 706188 L3035 2016 3014 903*2^2345013+1 705923 L2006 2016 3015 33*2^2345001+1 705918 L2322 2013 3016 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 3017 627*2^2343140+1 705359 L3125 2016 3018 83*2^2342345+1 705119 L2626 2013 3019 61*380^273136+1 704634 L5410 2019 3020 277*2^2340182+1 704468 L1158 2014 3021 159*2^2339566+1 704282 L3035 2014 3022 335*2^2338972-1 704104 L2235 2017 3023 22*422^268038+1 703685 L4955 2019 3024 9602*241^295318-1 703457 L5410 2019 3025 1149*2^2336638+1 703402 L4388 2016 3026 339*2^2336421-1 703336 L2519 2017 3027 231*2^2335281-1 702992 L1862 2019 3028 275293*2^2335007-1 702913 L193 2006 3029 105*2^2334755-1 702834 L1959 2018 3030 228188^131072+1 702323 g124 2010 Generalized Fermat 3031 809*2^2333017+1 702312 L2675 2016 3032 795*2^2332488+1 702152 L3029 2016 3033 3^1471170-3^529291+1 701927 p269 2019 3034b 351*2^2331311-1 701798 L2257 2023 3035 229*2^2331017-1 701709 L1862 2021 3036 118*761^243458+1 701499 L5410 2019 3037 435*2^2329948+1 701387 L2322 2016 3038 585*2^2329350+1 701207 L2707 2016 3039 213*2^2328530-1 700960 L1863 2017 3040 1482*327^278686+1 700773 L5410 2020 3041 26472*91^357645+1 700646 L5410 2020 3042 1107*2^2327472+1 700642 L3601 2016 3043 435*2^2327152+1 700546 L2337 2016 3044 4161*2^2326875-1 700463 L1959 2016 3045 427*2^2326288+1 700286 L2719 2016 3046 438*19^547574-1 700215 L5410 2020 3047 147855!-1 700177 p362 2013 Factorial 3048 5872*3^1467401+1 700132 L4444 2021 3049 451*2^2323952+1 699582 L3173 2016 3050 431*2^2323633+1 699486 L3260 2016 3051 228*912^236298-1 699444 L5366 2022 3052 1085*2^2323291+1 699384 L1209 2016 3053 15*2^2323205-1 699356 L2484 2011 3054 7566*46^420563+1 699299 L5410 2019 3055 1131*2^2322167+1 699045 L1823 2016 3056 385*2^2321502+1 698845 L1129 2016 3057 8348*3^1464571+1 698782 L5367 2021 3058 645*2^2320231+1 698462 L3377 2016 3059 1942*877^237267+1 698280 L5410 2022 3060 165*2^2319575+1 698264 L2627 2014 3061 809*2^2319373+1 698204 L3924 2016 3062 125098*6^896696+1 697771 L587 2014 3063 65536*5^997872+1 697488 L3802 2014 Generalized Fermat 3064 381*2^2314743+1 696810 L4358 2016 3065 120*825^238890+1 696714 L4837 2018 3066 3375*2^2314297+1 696677 L1745 2019 3067 4063*2^2313843-1 696540 L1959 2016 3068 345*2^2313720-1 696502 L2017 2017 3069 74*830^238594-1 696477 L5410 2020 3070c 926*639^248221-1 696388 L4444 2022 3071 361*2^2312832+1 696235 L3415 2016 Generalized Fermat 3072 1983*366^271591-1 696222 L2054 2012 3073 3*2^2312734-1 696203 L158 2005 3074 2643996*7^823543-1 695981 p396 2021 3075 53653*2^2311848+1 695941 L2012 2017 3076 873*2^2311086+1 695710 L2526 2016 3077 1033*2^2310976+1 695677 L4352 2016 3078 4063*2^2310187-1 695440 L1959 2016 3079 4063*2^2309263-1 695162 L1959 2016 3080 565*2^2308984+1 695077 L2322 2016 3081 450457*2^2307905-1 694755 L172 2006 3082 1018*3^1455600+1 694501 L5410 2021 3083 1185*2^2306324+1 694276 L4347 2016 3084 3267*2^2305266+1 693958 L1204 2019 3085 107*770^240408-1 693938 L4955 2020 3086 537*2^2304115+1 693611 L3267 2016 3087 842*1017^230634-1 693594 L4001 2017 3088 729*2^2303162+1 693324 L1204 2016 Generalized Fermat 3089 641*2^2302879+1 693239 L2051 2016 3090 729*2^2300290+1 692460 L1204 2016 Generalized Fermat 3091 189*2^2299959+1 692359 L2627 2014 3092 2582*111^338032-1 691389 L4786 2021 3093 659*2^2294393+1 690684 L3378 2016 3094 1087*2^2293345-1 690369 L1828 2011 3095 97768*5^987383-1 690157 L1016 2013 3096 4761657101009*2^2292504-1 690126 L257 2019 3097 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3098 319*2^2290722+1 689579 L1792 2015 3099 779*2^2290273+1 689444 L3034 2016 3100 1001*2^2289438-1 689193 L4518 2020 3101 971*2^2289135+1 689102 L4198 2016 3102 399*2^2288691+1 688968 L1990 2015 3103 1425*2^2288483-1 688906 L1134 2021 3104 Phi(3,-180139^65536) 688864 p379 2015 Generalized unique 3105 74270*151^315734-1 687982 L4001 2018 3106 23902*52^400831+1 687832 L5410 2019 3107 417*2^2284402+1 687677 L2322 2015 3108 130*686^242244+1 687085 L4064 2018 3109 427*2^2282080+1 686978 L3260 2015 3110 109*2^2280194+1 686409 L2520 2014 3111 105*2^2280078-1 686374 L2444 2014 3112 1019*2^2278467+1 685890 L4323 2016 3113 213*2^2277870-1 685710 L1863 2017 3114 904*957^229937-1 685425 L5410 2022 3115 547*2^2276648+1 685343 L3260 2015 3116 26*3^1435875+1 685088 L4799 2020 3117 7913*2^2275664-1 685048 L4036 2015 3118 651*2^2275040+1 684859 L4082 2016 3119 155877*2^2273465-1 684387 L541 2014 3120 16*710^240014+1 684344 L5410 2019 Generalized Fermat 3121 739*2^2272938+1 684226 L1209 2016 3122 279*798^235749-1 684147 L541 2021 3123 4821*396^263301+1 683980 L5410 2021 3124 (362^133647+1)^2-2 683928 p403 2019 3125 943*2^2269594+1 683219 L1823 2016 3126a 493*2^2269427-1 683169 L5516 2023 3127 182*792^235539+1 682766 L4837 2019 3128 1286*603^245567+1 682758 L4444 2019 3129 50*893^231310-1 682564 L4975 2019 3130 329*2^2266631+1 682327 L4109 2015 3131 739*2^2266602+1 682319 L2520 2016 3132 19683*2^2265896+1 682107 L2914 2019 3133 1151*2^2265761+1 682066 L1823 2016 3134 851*2^2265691+1 682044 L3173 2016 3135 977*2^2265655+1 682034 L2413 2016 3136 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3137 185*2^2264906-1 681807 L2484 2022 3138 31924*3^1428855+1 681742 L5410 2021 3139 217*2^2264546+1 681699 L3179 2014 3140d 178*821^233901-1 681671 L5410 2022 3141 841*2^2264184+1 681591 L1823 2016 Generalized Fermat 3142 93*2^2263894+1 681502 L2826 2013 3143 34*912^230098+1 681091 L5410 2022 3144b 377*2^2262094-1 680961 L2257 2023 3145 74*932^229308-1 680913 L4444 2021 3146 217499*28^470508-1 680905 p366 2013 3147 963*2^2261357+1 680740 L1300 2016 3148 2138*3^1426626+1 680677 L5410 2021 3149 1065*2^2260193+1 680389 L1204 2016 3150 837*2^2259470+1 680172 L1823 2016 3151 927*2^2258112+1 679763 L4287 2016 3152 265*2^2258071-1 679750 L2484 2018 3153 561*2^2256600+1 679308 L3877 2015 3154 495*2^2255944+1 679110 L4119 2015 3155b 489*2^2255331-1 678925 L5516 2023 3156 129*2^2255199+1 678885 L3049 2014 3157 735*2^2254660+1 678724 L4283 2016 3158 162*814^233173+1 678682 L5410 2021 3159b 403*2^2254355-1 678632 L5516 2023 3160 973*2^2254320+1 678621 L1204 2016 3161 275102*151^311399-1 678537 L4001 2018 3162 603*2^2252402+1 678044 L1803 2016 3163 1029*2^2252198+1 677983 L3125 2016 3164 39*2^2251104-1 677652 L177 2015 3165 575*2^2250751+1 677547 L1741 2015 3166 2838*88^348438+1 677536 L5410 2020 3167 725*2^2250697+1 677531 L2859 2016 3168 65*2^2250637+1 677512 L3487 2013 3169 14641*2^2250096+1 677351 L181 2017 Generalized Fermat 3170 187*2^2249974+1 677312 L2322 2014 3171 141*2^2249967+1 677310 L3877 2014 3172 459*2^2249183+1 677075 L3877 2015 3173 904*957^227111-1 677001 L5410 2022 3174 319*2^2248914+1 676994 L2322 2015 3175 569*2^2248709+1 676932 L4133 2015 3176b 571*2^2248701-1 676930 L5516 2023 3177 221*2^2248363+1 676828 L1130 2014 3178 144912*151^310514-1 676609 L4001 2018 3179 649*2^2247490+1 676565 L1204 2016 3180 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 3181 721*2^2246420+1 676243 L3037 2016 3182 875*2^2246363+1 676226 L2859 2016 3183 3888*931^227714-1 676075 L4001 2018 3184 347*2^2245598-1 675995 L2519 2017 3185 1199*2^2244631+1 675705 L3593 2016 3186 137*2^2244398-1 675634 L2484 2022 3187 197*2^2244347+1 675619 L1129 2014 3188 6510*565^245490+1 675605 L5410 2022 3189b 507*2^2244237-1 675586 L5516 2023 3190 5055*2^2242777-1 675147 L4036 2015 3191 651*2^2241783+1 674847 L3260 2016 3192 35*2^2241049+1 674625 L2742 2013 3193 4161*2^2240358-1 674419 L1959 2016 3194 164978*151^309413-1 674210 L4001 2018 3195b 493*2^2238775-1 673942 L5516 2023 3196 2354*138^314727+1 673482 L5410 2020 3197 20*698^236810-1 673455 L5410 2020 3198 146*447^254042-1 673292 L4001 2018 3199 675*2^2236244+1 673180 L4191 2016 3200 615*2^2235833+1 673056 L1823 2016 3201 53069*28^465060-1 673021 p257 2016 3202 831*2^2235253+1 672882 L3432 2013 3203 185*2^2235003+1 672806 L2322 2014 3204 103*2^2234536+1 672665 L3865 2014 3205 885*2^2234318+1 672600 L3125 2016 3206 963*2^2234249+1 672579 L1823 2016 3207 305*2^2233655+1 672400 L4118 2015 3208 267*2^2233376+1 672316 L1792 2014 3209 221*994^224221-1 672080 L5410 2020 3210 103*2^2232551-1 672067 L2484 2013 3211 889*2^2231034+1 671612 L2526 2016 3212 1779*88^345359+1 671548 L5410 2020 3213 907*2^2230776+1 671534 L4269 2016 3214 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3215 1425*2^2229009+1 671002 L1134 2016 3216 747*2^2228814+1 670943 L2526 2016 3217 9760*3^1406070+1 670870 L4444 2021 3218 969*2^2228379+1 670812 L4262 2016 3219 887*2^2228179+1 670752 L2840 2015 3220 130816^131072+1 670651 g308 2003 Generalized Fermat 3221 1123*2^2227338+1 670499 L3924 2015 3222 3478*378^260076+1 670348 L4955 2021 3223 213*2^2226329+1 670195 L2125 2014 3224 505*2^2225296+1 669884 L4111 2015 3225 11*878^227481+1 669591 L5410 2019 3226 271*2^2223601-1 669374 L2484 2018 3227 325*2^2223243-1 669266 L2235 2016 3228 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3229 84363*2^2222321+1 668991 L541 2014 3230 2516745*2^2222222+1 668962 p396 2017 3231 7043*48^397817-1 668831 p255 2016 3232 1137*2^2221062+1 668610 L4040 2015 3233b 471*2^2220478-1 668434 L5516 2023 3234 152*806^229984-1 668413 L4001 2018 3235 1425*2^2219664-1 668189 L1134 2021 3236 1031*2^2218785+1 667924 L1204 2015 3237 911*2^2218151+1 667733 L3260 2015 3238 27*2^2218064+1 667706 L690 2009 3239 587*2^2217355+1 667494 L4109 2015 3240 547*2^2216110+1 667119 L2322 2015 3241 67*2^2215581-1 666959 L268 2010 3242 33*2^2215291-1 666871 L3345 2013 3243 157533*2^2214598-1 666666 L3494 2013 3244 1105*2^2213846+1 666438 L2321 2015 3245 33*2^2212971-1 666173 L3345 2013 3246 101*2^2212769+1 666112 L1741 2014 3247 3*10^665829+1 665830 p300 2012 3248 4207801666259*2^2211084-1 665616 L257 2019 3249 298*912^224846+1 665546 L5410 2022 3250 631*2^2210260+1 665358 L2322 2015 3251 479*2^2209541+1 665141 L4106 2015 3252 165*2^2207550-1 664541 L2055 2011 3253 819*2^2206370+1 664187 L2526 2015 3254 19*2^2206266+1 664154 p189 2006 3255 45*2^2205977-1 664067 L1862 2015 3256 1323*2^2205832+1 664025 L4893 2019 3257 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3258 73*416^253392+1 663660 L3610 2015 3259c 531*2^2203439-1 663304 L5516 2022 3260d 790*821^227461-1 662903 L5410 2022 3261 Phi(3,-16159^78732) 662674 p294 2014 Generalized unique 3262 1041*2^2201196+1 662630 L3719 2015 3263 481*2^2201148+1 662615 L1741 2015 3264 1344*73^355570+1 662545 L3610 2014 3265c 551*2^2200462-1 662408 L5516 2022 3266 783*2^2200256+1 662346 L3924 2015 3267 969*2^2200223+1 662337 L1209 2015 3268 173*2^2199301+1 662058 L1204 2014 3269 5077*2^2198565-1 661838 L251 2008 3270 114487*2^2198389-1 661787 L179 2006 3271 1035*2^2197489+1 661514 L2517 2014 3272 903*2^2197294+1 661455 L2322 2014 3273 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3274 638*520^243506-1 661366 L4877 2019 3275c 537*2^2196693-1 661274 L5516 2022 3276 12192710656^65536+1 661003 L5218 2021 Generalized Fermat 3277 256*3^1384608+1 660629 L3802 2014 Generalized Fermat 3278 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3279 10880*151^302997-1 660228 L4001 2018 3280 1073*2^2193069+1 660183 L2487 2014 3281 169*2^2193049-1 660176 L2484 2018 3282 26040*421^251428+1 659823 L5410 2021 3283 202064*151^302700-1 659582 L4001 2018 3284 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3285 819*2^2190853+1 659516 L3234 2014 3286c 591*2^2190433-1 659389 L5516 2022 3287 1179*2^2189870+1 659220 L2517 2014 3288d 385*2^2189441-1 659091 L2235 2022 3289 269*2^2189235+1 659028 L1204 2014 3290 39*2^2188855+1 658913 p286 2013 3291 433*2^2188076+1 658680 L3855 2014 3292 1323*2^2186806+1 658298 L4974 2019 3293 815*2^2185439+1 657886 L3035 2014 3294 249*2^2185003+1 657754 L1300 2014 3295 585*2^2184510+1 657606 L3838 2014 3296 1033*2^2183858+1 657410 L3865 2014 3297 1035*2^2183770+1 657384 L3514 2014 3298 193020*151^301686-1 657373 L4001 2018 3299 353938*7^777777+1 657304 L4789 2020 3300 1179*2^2182691+1 657059 L2163 2014 3301 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3302 23902*52^382687+1 656697 L4876 2019 3303 525*2^2180848+1 656504 L3797 2014 3304 135*2^2180256-1 656325 L1959 2019 3305 1107*2^2180142+1 656292 L1741 2014 3306 447*2^2180102+1 656279 L3760 2014 3307 315*2^2179612-1 656132 L2235 2015 3308 1423*2^2179023-1 655955 L3887 2015 3309 995*2^2178819+1 655893 L1741 2014 3310 219*2^2178673-1 655849 L5313 2021 3311 1423*2^2178363-1 655756 L3887 2015 3312 196597*2^2178109-1 655682 L175 2006 3313 6*10^655642+1 655643 L5009 2019 3314 879*2^2177186+1 655402 L2981 2014 3315d 573*2^2176326-1 655143 L5516 2022 3316 67*410^250678+1 654970 L4444 2019 3317d 587*2^2175602-1 654925 L5516 2022 3318 70082*5^936972-1 654921 L3523 2013 3319 699*2^2175031+1 654753 L3865 2014 3320 1260*991^218477+1 654577 L5410 2021 3321 69*2^2174213-1 654506 L2055 2012 3322 1069*2^2174122+1 654479 L3865 2014 3323 793*2^2173720+1 654358 L2322 2014 3324 3267*2^2173170+1 654193 L1204 2019 3325 651*2^2173159+1 654189 L3864 2014 3326 187*2^2172693-1 654049 L1959 2019 3327 10001*2^2172615+1 654027 L4405 2018 3328 1011*2^2172063+1 653860 L2826 2014 3329 1105*2^2171956+1 653827 L3035 2014 3330 4165*2^2171145-1 653584 L1959 2017 3331 Phi(3,-96873^65536) 653552 L4026 2014 Generalized unique 3332 739*2^2170786+1 653475 L2121 2014 3333 134*937^219783-1 653140 L5410 2021 3334 701*2^2169041+1 652950 L3863 2014 3335 1779*88^335783+1 652928 L5410 2020 3336 295*2^2168448+1 652771 L1935 2014 3337 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3338 359*2^2165551+1 651899 L3838 2014 3339d 453*2^2165267-1 651813 L5516 2022 3340 1059*2^2164149+1 651477 L2322 2014 3341 329*2^2163717+1 651347 L2117 2014 3342 559*2^2163382+1 651246 L1741 2014 3343 235*2^2163273-1 651213 L5313 2021 3344 775*2^2162344+1 650934 L3588 2014 3345 21*2^2160479-1 650371 L2074 2012 3346f 399*2^2160379-1 650342 L5545 2022 3347 102976*5^929801-1 649909 L3313 2013 3348 1007*2^2158720-1 649843 L4518 2021 3349 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3350 617*2^2156699+1 649234 L1675 2014 3351 65536*3^1360576+1 649165 L3802 2014 Generalized Fermat 3352 57*572^235362+1 648989 L4444 2021 3353 2*3^1360104-1 648935 p390 2015 3354 483*2^2155456+1 648860 L3760 2014 3355 105*2^2155392+1 648840 L3580 2014 3356 40*1017^215605+1 648396 L4927 2018 3357 1005*2^2153712-1 648335 L4518 2021 3358 31340*6^833096+1 648280 p271 2013 3359d 537*2^2153392-1 648239 L5516 2022 3360d 415*2^2153341-1 648223 L5516 2022 3361 427*2^2153306+1 648213 L3838 2014 3362 834*709^227380-1 648183 L5410 2021 3363f 395*2^2152816-1 648065 L5598 2022 3364 261*2^2152805+1 648062 L1125 2014 3365d 405*2^2152377-1 647933 L1862 2022 3366 371*2^2150871+1 647480 L2545 2014 3367 111*2^2150802-1 647458 L2484 2013 3368 357*2^2148518+1 646771 L1741 2014 3369 993*2^2148205+1 646678 L1741 2014 3370 67*2^2148060+1 646633 L3276 2013 3371 243*2^2147387-1 646431 L2444 2014 3372 693*2^2147024+1 646322 L3862 2014 3373d 567*2^2146332-1 646114 L5516 2022 3374 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3375 143157*2^2144728+1 645633 L4504 2016 3376 509*2^2144181+1 645466 L3035 2014 3377 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3378 161*2^2142431+1 644939 L3105 2014 3379d 587*2^2142136-1 644850 L5516 2022 3380 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3381d 571*2^2141727-1 644727 L5516 2022 3382 23*2^2141626-1 644696 L545 2008 3383 519*2^2140311+1 644301 L2659 2014 3384 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3385 315*2^2139665+1 644106 L3838 2014 3386 193*2^2139400+1 644026 L3538 2014 3387 1113*2^2139060+1 643925 L3914 2014 3388 292402*159^292402+1 643699 g407 2012 Generalized Cullen 3389 307*2^2137553-1 643471 L2235 2015 3390 1051*2^2137440+1 643437 L3865 2014 3391 1185*2^2137344+1 643408 L3877 2014 3392 405*2^2137280-1 643388 L1862 2016 3393d 483*2^2136414-1 643128 L5516 2022 3394 513*2^2135642+1 642896 L3843 2014 3395 241*2^2135279-1 642786 L2484 2018 3396 915*2^2135151+1 642748 L2322 2014 3397 61*2^2134577-1 642574 L2055 2011 3398 2*3^1346542+1 642465 L5043 2020 3399 93*10^642225-1 642227 L4789 2020 Near-repdigit 3400 26362*421^244658+1 642057 L5388 2021 3401 5428*378^249058+1 641949 L5410 2021 3402 711*2^2132477+1 641943 L2125 2014 3403 81*984^214452+1 641856 L5410 2020 Generalized Fermat 3404 215*2^2131988-1 641795 L2484 2018 3405d 473*2^2130944-1 641481 L5516 2022 3406 319*2^2130729-1 641416 L1817 2015 3407 78792*151^294324-1 641331 L4001 2018 3408 75*2^2130432-1 641326 L2055 2011 3409 1145*2^2130307+1 641290 L3909 2014 3410 110488*5^917100+1 641031 L3354 2013 3411 37*2^2128328+1 640693 L3422 2013 3412 103*2^2128242+1 640667 L3787 2014 3413 185*2^2127966-1 640584 L1959 2019 3414 3762*70^347127+1 640487 L4876 2019 3415 253*2^2126968+1 640284 L1935 2014 3416 583*2^2126166+1 640043 L1741 2014 3417 999*2^2125575+1 639865 L1741 2014 3418 7*848^218439-1 639677 L5410 2020 3419 587*2^2124947+1 639676 L3838 2014 3420 451*2^2124636+1 639582 L1741 2014 3421 887*2^2124027+1 639399 L3865 2014 3422 721751*2^2123838-1 639345 L4001 2022 3423e 545*2^2122250-1 638864 L5516 2022 3424 693*2^2121393+1 638606 L3278 2014 3425 118*107^314663-1 638575 L5227 2021 3426 8331405*2^2120345-1 638295 L2055 2013 3427 975*2^2119209+1 637949 L1158 2014 3428 33*2^2118570-1 637755 L3345 2013 3429 117*2^2117600-1 637464 L1959 2019 3430 254*5^911506-1 637118 p292 2010 3431e 579*2^2116044-1 636996 L5516 2022 3432 1139*2^2115949+1 636968 L3865 2014 3433 771*2^2115741+1 636905 L1675 2014 3434 411*2^2115559+1 636850 L2840 2014 3435 34*3^1334729+1 636830 L4799 2021 3436 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3437 929*2^2114679+1 636585 L3035 2014 3438e 571*2^2113491-1 636227 L5516 2022 3439 1065*2^2113463+1 636219 L2826 2014 3440 609179*2^2111132-1 635520 L5410 2022 3441 591*2^2111001+1 635478 L1360 2014 3442 357*2^2109585-1 635051 L5546 2022 3443 1051*2^2109344+1 634979 L3035 2014 3444 433*2^2109146+1 634919 L1935 2014 3445 519*2^2108910+1 634848 L1356 2014 3446 1047*2^2108751+1 634801 L3824 2014 3447 257*2^2108554-1 634741 L5313 2021 3448 3261*46^381439+1 634245 L5000 2019 3449 765*2^2106027+1 633981 L3838 2014 3450 503*2^2106013+1 633976 L1741 2014 3451 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 3452 113*2^2104825+1 633618 L3785 2014 3453 381*2^2103999+1 633370 L2322 2014 3454 1246461300659*2^2103424-1 633206 L2484 2015 3455 57*2^2103370-1 633180 L2055 2011 3456 539*2^2102167+1 632819 L3125 2014 3457 1425*2^2101260-1 632546 L1134 2020 3458 1001*2^2101062-1 632486 L4518 2020 3459 179*894^214290-1 632445 L5209 2020 3460 687*2^2100243+1 632239 L3867 2014 3461 329*2^2099771+1 632097 L2507 2014 3462 35*2^2099769+1 632095 L3432 2013 3463 405*2^2099716+1 632081 L3154 2014 3464 575*2^2098483+1 631710 L3168 2014 3465e 523*2^2098043-1 631577 L5516 2022 3466 1005*2^2097683-1 631469 L4518 2021 3467e 2509589*2^2097152-1 631313 L466 2022 3468 522335*2^2097154-1 631312 L466 2022 3469 695265*2^2097153-1 631312 L466 2020 3470 208703*2^2097153+1 631312 L466 2018 3471 28401*2^2097152+1 631311 L4547 2017 3472 399*2^2096857-1 631220 L5546 2022 3473 907*2^2095896+1 630931 L1129 2014 3474 815730721*2^2095440+1 630800 L466 2019 Generalized Fermat 3475 2503*2^2094587-1 630537 L4113 2017 3476 14641*2^2093384+1 630176 L181 2017 Generalized Fermat 3477 103*2^2093350+1 630164 L3432 2013 3478 4001*2^2093286-1 630146 L1959 2014 3479 14172*1027^209226-1 630103 L4001 2018 3480 369*2^2093022+1 630065 L3514 2014 3481 217*2^2092673-1 629960 L2484 2018 3482 2188*253^262084+1 629823 L5410 2020 3483 68*920^212407+1 629532 L4001 2017 3484 165*2^2090645+1 629350 L1209 2014 3485 1119*2^2090509+1 629309 L2520 2014 3486 941*2^2090243+1 629229 L1356 2014 3487e 435*2^2089948-1 629140 L5516 2022 3488 62722^131072+1 628808 g308 2003 Generalized Fermat 3489 401*2^2088713+1 628768 L3035 2014 3490 1702*1021^208948+1 628734 L5410 2021 3491 819*2^2088423+1 628681 L3890 2014 3492 363*2^2088182-1 628608 L5545 2022 3493e 423*2^2088102-1 628584 L5516 2022 3494 1009*2^2087690+1 628461 L3728 2014 3495 85*2^2087651-1 628448 L2338 2013 3496 467*2^2085835+1 627902 L3625 2014 3497 563528*13^563528-1 627745 p262 2009 Generalized Woodall 3498 55*2^2084305-1 627441 L3887 2021 3499 (146^144882-1)^2-2 627152 p405 2022 3500 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 3501 18*984^209436-1 626843 L5410 2019 3502 247*2^2082202+1 626808 L3294 2014 3503 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 3504 159*2^2081069-1 626467 L1959 2019 3505 27*634^223550+1 626409 L4001 2018 3506 399*2^2080579-1 626320 L5546 2022 3507 655*2^2080562+1 626315 L3859 2014 3508 201*2^2080464+1 626285 L1741 2014 3509 269328*211^269328+1 626000 p354 2012 Generalized Cullen 3510 153*2^2079401+1 625965 L3601 2014 3511 279*2^2079167+1 625895 L2413 2014 3512 692*95^316400-1 625755 L4444 2019 3513 643*2^2078306+1 625636 L3035 2014 3514 79*2^2078162+1 625591 L2117 2013 3515 1485*2^2077172+1 625295 L1134 2015 3516f 405*2^2076673-1 625144 L5516 2022 3517 239*2^2076663+1 625141 L2413 2014 3518 1003*2^2076535-1 625103 L51 2008 3519 2186*7^739474-1 624932 p258 2011 3520 73*2^2075936+1 624921 L3464 2013 3521 807*2^2075519+1 624797 L3555 2014 3522f 585*2^2075384-1 624756 L5516 2022 3523 1425*2^2075382+1 624756 L1134 2015 3524 65*2^2073229+1 624106 L1480 2013 3525 693*2^2072564+1 623907 L3290 2014 3526 55*552^227540-1 623903 L4786 2019 3527 375*2^2071598+1 623616 L2413 2014 3528 73*2^2071592+1 623614 L1480 2013 3529 125*2^2071555+1 623603 L3432 2013 3530 1107*2^2071480+1 623581 L2520 2014 3531 6207*28^430803-1 623444 L1471 2014 3532 299*2^2070979+1 623430 L1741 2014 3533 99*2^2070908-1 623408 L1862 2015 3534 19062*1027^206877-1 623029 L4444 2018 3535 891*2^2069024+1 622842 L2520 2014 3536 943*2^2068944+1 622818 L1741 2014 3537 579*2^2068647+1 622728 L2967 2014 3538 911*2^2068497+1 622683 L1741 2014 3539f 501*2^2067915-1 622508 L5551 2022 3540 1005*2^2067272+1 622314 L3895 2014 3541f 441*2^2067233-1 622302 L5516 2022 3542 3474*5^890253+1 622264 L5410 2021 3543 393*2^2066540+1 622094 L3700 2014 3544 44*950^208860-1 621929 L4187 2021 3545 951*2^2065180+1 621685 L1403 2014 3546 915*2^2064663+1 621529 L3035 2014 3547 213*2^2064426-1 621457 L1863 2017 3548 29*468^232718+1 621416 L4832 2018 3549 1455*2^2064103-1 621361 L1134 2016 3550 824*423^236540-1 621238 L5410 2021 3551f 447*2^2063218-1 621094 L5551 2022 3552c 9756404*15^527590-1 620501 L5630 2022 3553 9*2^2060941-1 620407 L503 2008 3554 1455*2^2059553+1 619991 L1134 2015 3555 659*2^2058623+1 619711 L3860 2014 3556 128448*151^284308-1 619506 L4001 2018 3557f 477*2^2057225-1 619290 L5516 2022 3558 575*2^2056081+1 618945 L1935 2014 3559 1095*2^2055975+1 618914 L3518 2014 3560f 589*2^2055877-1 618884 L5516 2022 3561 3*10^618853+1 618854 p300 2012 3562 225*2^2055433-1 618750 L2484 2022 3563 819*2^2054470+1 618461 L2826 2014 3564 969*2^2054054+1 618335 L3668 2014 3565 3394*28^427262+1 618320 p385 2015 3566 318564*151^283711-1 618206 L4444 2018 3567 675*2^2053578+1 618192 L1792 2014 3568 178998*151^283702-1 618186 L4001 2018 3569f 551*2^2051922-1 617693 L5516 2022 3570 281*2^2051865+1 617676 L5519 2022 3571 5916*277^252878-1 617654 L5410 2020 3572 739*2^2051658+1 617614 L3838 2014 3573 71*2^2051313+1 617509 L1480 2013 3574 265*2^2051155-1 617462 L2484 2018 3575 779*2^2050881+1 617380 L3453 2014 3576 75*2^2050637-1 617306 L2055 2011 3577 377*2^2050148-1 617159 L2235 2022 3578 935*2^2050113+1 617149 L3696 2014 3579 847*2^2049400+1 616934 L2322 2014 3580 4998*235^260170-1 616885 L5410 2019 3581f 541*2^2049193-1 616872 L5516 2022 3582 73*2^2048754+1 616739 L3432 2013 3583 30*712^215913+1 615889 L4444 2022 3584 527*2^2045751+1 615836 L4123 2014 3585 785*2^2045419+1 615736 L3861 2014 3586 195*2^2044789+1 615546 L3744 2014 3587 537*2^2044162+1 615357 L1741 2014 3588 413*2^2043829+1 615257 L1300 2014 3589 1682*655^218457-1 615231 L4925 2022 3590f 431*2^2043666-1 615208 L5516 2022 3591 1334*567^223344-1 615000 L5410 2021 3592 345*2^2042295+1 614795 L2562 2014 3593 216848*151^282017-1 614514 L4700 2018 3594 104*579^222402-1 614428 L4001 2018 3595 57257*2^2040062-1 614125 L4812 2019 3596 1069*2^2039562+1 613973 L1741 2014 3597 625*2^2039416+1 613929 L1741 2014 Generalized Fermat 3598 7188*313^245886-1 613624 L5410 2020 3599 1085*2^2038005+1 613504 L2520 2014 3600 125*2^2037752-1 613427 L2444 2014 3601 1069*2^2036902+1 613172 L3876 2014 3602 10020*171^274566+1 613109 L5410 2019 3603 417*2^2036482+1 613045 L1847 2014 3604 701*2^2035955+1 612887 L2823 2014 3605 1025*2^2034405+1 612420 L1741 2014 3606 651*2^2034352+1 612404 L3459 2014 3607 121*2^2033941-1 612280 L162 2006 3608 19683*2^2033900+1 612270 L1823 2019 3609 57*2^2033643+1 612190 L3432 2013 3610 4175*2^2032552-1 611863 L1959 2017 3611 249*2^2031803+1 611637 L2327 2014 3612 783*2^2031629+1 611585 L2126 2014 3613f 10005*2^2031284+1 611482 p168 2022 3614 (290^124116-1)^2-2 611246 p403 2019 3615 872*268^251714-1 611199 L5410 2019 3616 4157*2^2029894-1 611063 L1959 2017 3617 293028*151^280273-1 610714 L4001 2018 3618 285*2^2028495+1 610641 L2594 2014 3619 775*2^2027562+1 610360 L1204 2014 3620 199*686^215171-1 610297 L4001 2018 3621 4190*235^257371-1 610248 L5410 2019 3622 621*2^2026864+1 610150 L3446 2014 3623 357*2^2026846+1 610144 L2163 2014 3624 425*2^2026610-1 610074 L5516 2022 3625 122112*151^279966-1 610045 L4001 2018 3626 879*2^2026501+1 610041 L1139 2014 3627 4185*2^2026400-1 610011 L1959 2017 3628 787*2^2026242+1 609963 L2122 2014 3629 2*3^1277862+1 609696 L5043 2020 3630 273*2^2024810-1 609531 L5118 2020 3631 919*2^2024094+1 609316 L1741 2014 3632 325*2^2024035-1 609298 L4076 2015 3633 235*2^2023486+1 609133 L2594 2014 3634 559*2^2023437-1 609118 L5516 2022 3635 195*2^2023030+1 608996 L4122 2014 3636 8*10^608989-1 608990 p297 2011 Near-repdigit 3637 1485*2^2022873+1 608949 L1134 2015 3638 233*2^2022801+1 608927 L3767 2014 3639 521*2^2022059+1 608704 L3760 2014 3640 569*2^2021884-1 608651 L5516 2022 3641 5678*1027^202018-1 608396 L4001 2018 3642 94*790^209857+1 608090 L4001 2018 3643 19650619*2^2019807-1 608030 L3432 2022 3644 431*2^2019693+1 607991 L2100 2014 3645 1155*2^2019244+1 607857 L3873 2014 3646 195*2^2018866+1 607742 L2413 2014 3647 59506*6^780877+1 607646 p254 2013 3648 4101*2^2018133-1 607523 L1959 2017 3649 2152*177^270059+1 607089 L5410 2020 3650 5844*693^213666+1 606972 L5410 2022 3651 4081*2^2015959-1 606868 L1959 2017 3652 4191*2^2015150-1 606625 L1959 2017 3653 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3654 251749*2^2013995-1 606279 L436 2007 Woodall 3655 126*523^222906-1 605973 L4001 2017 3656 1023*2^2012570+1 605847 L1741 2014 3657 403*2^2012412+1 605799 L3538 2014 3658 1173*2^2012185+1 605732 L1413 2014 3659 85*730^211537+1 605701 L4001 2018 3660 Phi(3,-1449889^49152) 605684 L4142 2017 Generalized unique 3661 751*2^2010924+1 605352 L3859 2014 3662 101*2^2009735+1 604993 L3432 2013 3663 1069*2^2008558+1 604640 L1595 2014 3664 881*2^2008309+1 604565 L3260 2014 3665 959*2^2008035+1 604482 L1422 2014 3666 633*2^2007897+1 604441 L3857 2014 3667 143*2^2007888-1 604437 L384 2016 3668 4*5^864751-1 604436 L4881 2019 3669 223*2^2007748+1 604395 L1741 2014 3670 461*2^2007631+1 604360 L1300 2014 3671 1731*352^237258-1 604191 L5410 2022 3672 477*2^2006719+1 604086 L3803 2014 3673 428551*2^2006520+1 604029 g411 2011 3674 6844*565^219383+1 603757 L5580 2022 3675 1097*2^2005203+1 603630 L3868 2014 3676 Phi(3,-1373894^49152) 603386 L4142 2016 Generalized unique 3677 6*5^862923+1 603159 L4965 2020 3678 493*2^2002964+1 602955 L3800 2014 3679 315*2^2002904+1 602937 L3790 2014 3680 77*2^2002742-1 602888 L2074 2013 3681 585*2^2002589+1 602843 L3035 2014 3682 1059*2^2001821+1 602612 L2103 2014 3683 249*2^2001627-1 602553 L1862 2015 3684 47*158^273942-1 602307 L541 2020 3685 1115*2^2000291+1 602151 L3588 2014 3686 891*2^2000268+1 602144 L3440 2014 3687 1067*792^207705-1 602083 L5410 2021 3688b 841*2^1999951-1 602049 L2257 2023 3689 17872*430^228564+1 601921 L4955 2020 3690 343388*151^276191-1 601820 L4700 2018 3691 537*2^1999105-1 601794 L5516 2022 3692 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3693 Phi(3,-1316236^49152) 601555 L4142 2016 Generalized unique 3694 573*2^1998232+1 601531 L1300 2013 3695 1323*2^1998103-1 601493 L1828 2016 3696 Phi(3,-1310544^49152) 601370 L4142 2016 Generalized unique 3697 1274*3^1260173+1 601259 L5410 2021 3698 561*2^1996865-1 601120 L5516 2022 3699 669*2^1995918+1 600835 L2659 2013 3700 19861029*2^1995311-1 600656 L895 2013 3701 261*2^1995105+1 600589 L3378 2013 3702 68398*1027^199397+1 600503 L4001 2018 3703 1031*2^1994741+1 600480 L2626 2014 3704 577*2^1994634+1 600448 L3035 2013 3705 497*2^1994051+1 600272 L2413 2013 3706 8331405*2^1993674-1 600163 L260 2011 3707b 655*2^1993685-1 600162 L5598 2023 3708 1965*2^1993666-1 600157 L4113 2022 3709 467917*2^1993429-1 600088 L160 2005 3710 137137*2^1993201-1 600019 L321 2007 3711b 781*2^1993173-1 600008 L2257 2023 3712 589*2^1992774+1 599888 L2322 2013 3713 209*2^1992071+1 599676 L3422 2013 3714 2955*2^1991780-1 599589 L1862 2019 3715 317*2^1991592-1 599532 L1809 2014 3716 Phi(3,-1249158^49152) 599322 L4142 2016 Generalized unique 3717 547*2^1990606+1 599235 L3173 2013 3718 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 3719 508*1017^199220-1 599122 L4700 2017 3720b 885*2^1990215-1 599118 L5184 2023 3721 1606*877^203564+1 599092 L5410 2022 3722 105*2^1989208-1 598814 L1959 2014 3723 1925975*2^1989191+1 598813 L5327 2022 3724 1019*2^1988959+1 598740 L3514 2013 3725 1455*2^1988795-1 598691 L1134 2015 3726 629*2^1988579+1 598625 L2117 2013 3727 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3728 733*2^1988086+1 598477 L3502 2013 3729 135*2^1987735+1 598370 L1300 2013 3730 162434*5^856004-1 598327 L3410 2013 3731 749*2^1986977+1 598143 L1492 2013 3732 4141*2^1986959-1 598138 L1959 2016 3733 34*3^1253399+1 598025 L4799 2020 3734 3792*217^255934-1 597984 L5410 2020 3735 32*236^251993+1 597959 L4786 2019 3736 174344*5^855138-1 597722 L3354 2013 3737 6292*1027^198459+1 597678 L4001 2018 3738 4125*2^1984855-1 597505 L1959 2017 3739 8331405*2^1984565-1 597421 L260 2011 3740 1133*2^1984488-1 597394 L1828 2016 3741 195*2^1983875-1 597209 L1828 2014 3742 2631730144*10^597115+1 597125 L4789 2022 3743b 675*2^1982779-1 596879 L2257 2023 3744 1071855*2^1981910-1 596621 L5340 2021 3745 523895*2^1981910-1 596621 L5340 2021 3746 496177*2^1981910+1 596621 L5340 2021 3747 445*2^1980900+1 596313 L3577 2013 3748 731*2^1980503+1 596194 L3035 2013 3749 1147*2^1978390+1 595558 L1741 2013 3750 5758*211^256223+1 595539 L5410 2020 3751 25*2^1977369-1 595249 L426 2008 3752 245478*151^273168-1 595233 L4001 2018 3753 1197*2^1977152-1 595186 L1828 2016 3754 43*780^205685+1 594863 L5410 2019 3755 1234*95^300749-1 594802 L4444 2019 3756 866*183^262883+1 594763 L3610 2015 3757 386*117^287544+1 594698 L5410 2020 3758 1149*2^1975451-1 594674 L1828 2016 3759b 651*2^1974918-1 594513 L2257 2023 3760 381*2^1974841-1 594489 L1809 2014 3761 19920911*2^1974666-1 594441 L806 2017 3762 Phi(3,-1109580^49152) 594264 L4142 2016 Generalized unique 3763 148323*2^1973319-1 594034 L587 2011 3764 705*2^1972428+1 593763 L3043 2013 3765 549*2^1971947-1 593618 L5516 2022 3766 74*894^201093+1 593496 L5410 2022 3767 549*2^1971183+1 593388 L2840 2013 3768 4197*2^1970430-1 593163 L1959 2016 3769 1387*2^1970033-1 593043 L1828 2016 3770e 92163*2^1969778+1 592968 L5115 2022 3771 1616*277^242731-1 592869 L5410 2020 3772e 84969*2^1969323+1 592831 L5115 2022 3773 1693*396^228140+1 592642 L5410 2021 3774 441*2^1968431+1 592560 L3035 2013 3775 1485*2^1968400-1 592551 L1134 2014 3776 1159*2^1968190+1 592488 L3035 2013 3777 731*2^1968039+1 592442 L3682 2013 3778 833*2^1967841+1 592383 L3744 2013 3779 989*2^1967819+1 592376 L3738 2013 3780 1035*2^1967708+1 592343 L3739 2013 3781 148*789^204455+1 592325 L5410 2019 3782 1309*2^1967613-1 592314 L1828 2016 3783 449*2^1967140-1 592171 L5516 2022 3784b 611*2^1966866-1 592089 L2257 2023 3785 4025*2^1966732-1 592049 L1959 2016 3786 203*2^1966689+1 592035 L1408 2013 3787 101594*151^271697-1 592027 L4001 2018 3788b 921*2^1966634-1 592019 L2257 2023 3789 273*2^1966630+1 592018 L2532 2013 3790 93*2^1965880+1 591791 L1210 2011 3791 465*2^1965363-1 591636 L5516 2022 3792 253*2^1965215-1 591592 L3345 2012 3793 1089*2^1964781+1 591462 L3737 2013 3794b 657*2^1964578-1 591400 L2257 2023 3795 10*173^264234+1 591369 L1471 2015 3796 1089*2^1964474+1 591369 L3736 2013 Generalized Fermat 3797 125*2^1963964-1 591215 L1959 2014 3798 Phi(3,-1020993^49152) 590711 L4142 2016 Generalized unique 3799 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 3800 102088*6^759012-1 590632 L4521 2019 3801 4065*2^1961907-1 590597 L1959 2016 3802b 609*2^1961889-1 590591 L2257 2023 3803 113*2^1960341+1 590124 L3091 2013 3804 57406*5^844253-1 590113 L3313 2012 3805 1010036096^65536+1 590109 L4704 2022 Generalized Fermat 3806 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 3807 1111*2^1959625-1 589909 L1828 2016 3808 24838*421^224768+1 589860 L5410 2021 3809 803*2^1959445+1 589855 L2724 2013 3810 552*360^230680+1 589691 L5410 2021 3811b 915*2^1958653-1 589617 L2257 2023 3812 6166*3^1235741+1 589603 L5365 2021 3813b 727*2^1958505-1 589572 L2257 2023 3814 45*2^1957377-1 589231 L1862 2014 3815 1065*2^1957291-1 589207 L1828 2016 3816 1149*2^1957223+1 589186 L1935 2013 3817 6326*333^233552+1 589126 L4001 2017 3818 129*2^1956915+1 589093 L2826 2013 3819 229*2^1956294+1 588906 L3548 2013 3820 74*500^218184-1 588874 p355 2013 3821 27*342^232379+1 588856 L5410 2021 3822b 801*2^1956058-1 588836 L2257 2023 3823 525*2^1955409-1 588640 L5516 2022 3824 1045*2^1955356+1 588624 L1186 2013 3825 112*113^286643-1 588503 L426 2012 3826 1137*2^1954730+1 588436 L3733 2013 3827 673*2^1954456+1 588353 L3666 2013 3828 Phi(3,-965206^49152) 588313 L4142 2017 Generalized unique 3829 121*2^1954243-1 588288 L162 2006 3830 351*2^1954003+1 588217 L2413 2013 3831b 829*2^1953661-1 588114 L2257 2023 3832 539*2^1953060-1 587933 L5516 2022 3833 641*2^1952941+1 587897 L3487 2013 3834 188378*151^269725-1 587730 L4001 2018 3835 4027*2^1951909-1 587587 L1959 2016 3836 1019*138^274533+1 587471 L5410 2020 3837 Phi(3,94259^59049) 587458 p269 2014 Generalized unique 3838 1173*2^1951169+1 587364 L3171 2013 3839 1101*2^1950812+1 587256 L2719 2013 3840 P587124 587124 p414 2020 3841 3317*2^1949958-1 587000 L5399 2021 3842 4007*2^1949916-1 586987 L1959 2016 3843 313*2^1949544+1 586874 L2520 2013 3844 391*2^1949159-1 586758 L2519 2014 3845 539*2^1949135+1 586751 L1130 2013 3846 1167*2^1949013-1 586715 L1828 2016 3847b 675*2^1949015-1 586715 L2257 2023 3848 351*2^1947281-1 586193 L1809 2014 3849 3068*5^838561+1 586133 L5410 2021 3850 4892*693^206286+1 586008 L5410 2022 3851 21290*745^203998-1 585919 L4189 2017 3852 111*2^1946322-1 585904 L2484 2012 3853 1209*2^1946260-1 585886 L1828 2016 3854 1339*2^1945965-1 585797 L1828 2016 3855 149*2^1945668-1 585707 L3967 2015 3856 4011*2^1945630-1 585697 L1959 2016 3857 639*2^1945473+1 585649 L2649 2013 3858 675*2^1945232+1 585577 L3688 2013 3859b 949*2^1944741-1 585429 L2257 2023 3860b 603*2^1944086-1 585231 L2257 2023 3861 30364*1027^194319+1 585210 L4001 2018 3862 417*2^1943755+1 585132 L3173 2013 3863 89*2^1943337+1 585005 L2413 2011 3864 Phi(3,-889529^49152) 584827 L4142 2016 Generalized unique 3865b 607*2^1942565-1 584774 L2257 2023 3866 269*2^1942389+1 584720 L3548 2013 3867 549*2^1942139-1 584645 L5545 2022 3868 4173*2^1941820-1 584550 L1959 2016 3869 1093*2^1941672+1 584505 L2322 2013 3870 144*471^218627-1 584397 L4064 2021 3871 193*2^1940804+1 584243 L3418 2013 3872 827*2^1940747+1 584226 L3206 2013 3873 221*2^1940211+1 584065 L2327 2013 3874 421*138^272919-1 584017 L5410 2020 3875 Phi(3,-872232^49152) 583988 L4142 2017 Generalized unique 3876c 9105446*15^496499-1 583936 L5629 2022 3877 9*10^583696+1 583697 L4789 2020 Generalized Fermat 3878 575*2^1938673+1 583602 L2019 2013 3879 1179*2^1938570+1 583571 L1300 2013 3880b 743*2^1938344-1 583503 L2257 2023 3881 865*2^1938180+1 583454 L3233 2013 3882 17702*1027^193732-1 583442 L4700 2018 3883 1091*2^1937857+1 583357 L3731 2013 3884 555*2^1937595+1 583277 L2826 2013 3885b 765*2^1937364-1 583208 L2257 2023 3886 9299*2^1937309+1 583193 L3886 2014 3887 30*386^225439+1 583120 L3610 2015 3888 34910*430^221380-1 583002 L4001 2015 3889 56064*1027^193573+1 582964 L4700 2018 3890 239*2^1936025+1 582804 L1741 2013 3891 1191*2^1935613-1 582681 L1828 2016 3892b 859*2^1935299-1 582586 L2257 2023 3893 4047*2^1934881-1 582461 L1959 2016 3894 357*2^1934704-1 582407 L1809 2014 3895 182627*2^1934664-1 582398 L3336 2012 3896 64*497^215875-1 582078 L4925 2019 3897b 771*2^1933543-1 582058 L2257 2023 3898 14172*1027^193213-1 581879 L4001 2018 3899 363*2^1932724+1 581811 L3171 2013 3900 1265*2^1932660-1 581792 L1828 2016 3901 134*383^225187+1 581705 L2012 2019 3902 143*2^1932112-1 581626 L1828 2012 3903 48764*5^831946-1 581510 L3313 2012 3904 1095*2^1931213-1 581357 L1828 2016 3905 1365*2^1931200+1 581353 L1134 2016 3906 1789*138^271671+1 581347 L5211 2020 3907 387*2^1930200+1 581051 L1129 2013 3908 2135489665061*2^1929362-1 580809 L2484 2015 3909 1101*2^1929297-1 580780 L1828 2016 3910 735*2^1929225+1 580758 L3378 2013 3911 214519*2^1929114+1 580727 g346 2006 3912 481*2^1928773-1 580622 L5516 2022 3913 1071*2^1928515-1 580544 L1828 2016 3914b 877*2^1927713-1 580303 L2257 2023 3915 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 3916 3871*2^1925976+1 579781 L5327 2022 3917 633*2^1925684+1 579692 L1408 2013 3918 3580*408^222030+1 579649 L5410 2021 3919 5724*313^232269-1 579642 L5410 2020 3920 1965*2^1925248-1 579561 L4113 2022 3921 968*288^235591+1 579414 L5410 2020 3922 1283*2^1924402-1 579306 L1828 2016 3923 1005*2^1923658+1 579082 L3514 2013 3924 243*2^1923567-1 579054 L2055 2011 3925 4005*2^1923385-1 579001 L1959 2016 3926 319*2^1923378+1 578997 L3548 2013 3927 1620198*7^684923-1 578834 L4786 2021 3928b 815*2^1922594-1 578762 L2257 2023 3929 280992*151^265553-1 578640 L4001 2018 3930 851*2^1922179+1 578637 L3180 2013 3931b 685*2^1921923-1 578560 L2257 2023 3932 625*2^1921056+1 578299 L3378 2013 Generalized Fermat 3933 314159*2^1920875+1 578247 L4994 2019 3934 157*2^1920152+1 578026 L2494 2013 3935 14066*60^324990+1 577886 L4444 2018 3936b 689*2^1919392-1 577798 L2257 2023 3937 143171*2^1918679+1 577586 L4504 2017 3938 1187*2^1918188-1 577436 L1828 2015 3939 Phi(3,-747624^49152) 577407 L4142 2016 Generalized unique 3940 75492*151^264966-1 577360 L4444 2018 3941 459*2^1917881-1 577343 L5551 2022 3942 1071*2^1917749-1 577304 L1828 2015 3943 335*2^1917610-1 577261 L1809 2014 3944 51*712^202369-1 577256 L4001 2018 3945 133631*28^398790-1 577118 p255 2013 3946b 783*2^1916988-1 577074 L2257 2023 3947 191*2^1916611+1 576960 L1792 2013 3948 1087*2^1916212+1 576841 L2719 2013 3949 1065*2^1916200-1 576837 L1828 2015 3950 1682*161^261371+1 576804 L5410 2020 3951b 861*2^1915741-1 576699 L2257 2023 3952 1125*2^1915695+1 576685 L3719 2013 3953 Phi(3,-731896^49152) 576499 L4142 2016 Generalized unique 3954 63348*1027^191392+1 576396 L4001 2018 3955 93788*151^264402-1 576131 L4001 2018 3956 461*2^1913118-1 575909 L5551 2022 3957 207*2^1913067+1 575893 L1741 2013 3958 80618*151^264291-1 575889 L4001 2018 3959 849*2^1913021+1 575880 L2413 2013 3960 72844*1027^191206+1 575836 L4001 2018 3961 859*430^218562+1 575580 L5410 2020 3962 535*2^1911715-1 575487 L5545 2022 3963 280*53^333574+1 575177 L4294 2021 3964 85*2^1910520+1 575126 L2703 2011 3965 267*2^1909876-1 574933 L1828 2013 3966 4103*2^1909766-1 574901 L1959 2016 3967 621*2^1909716+1 574885 L2117 2013 3968 611*2^1909525+1 574828 L2413 2013 3969 379*2^1909097-1 574699 L1809 2014 3970 435*2^1908579+1 574543 L3385 2013 3971 4035*2^1907685-1 574275 L1959 2016 3972 291*2^1907541-1 574230 L2484 2013 3973 573*2^1907450+1 574203 L2520 2013 3974 10005*2^1906876-1 574031 L4405 2019 3975 14*814^197138-1 573796 L4001 2018 3976c 751*2^1905889-1 573733 L2257 2022 3977 19061965*2^1905351-1 573576 p286 2022 3978 263*2^1904406-1 573286 L2484 2015 3979 969*2^1904357+1 573272 L2719 2013 3980 17*962^192155+1 573234 L4786 2020 3981c 699*2^1903573-1 573036 L2257 2022 3982 27*2^1902689-1 572768 L1153 2009 3983 553*2^1902102+1 572593 L2520 2013 3984 1112*423^218014-1 572583 L5410 2021 3985 4171*2^1901433-1 572392 L1959 2016 3986 86*394^220461-1 572208 L541 2020 3987 20707410481*2^1900579-1 572142 L5327 2021 3988c 825*2^1899868-1 571921 L2257 2022 3989 271562*151^262431-1 571837 L4001 2018 3990 1323*2^1899548-1 571825 L1828 2014 3991 10005*2^1898938-1 571642 L4405 2019 3992 4806*37^364466-1 571560 L4001 2015 3993 314159*2^1898333+1 571461 L4994 2019 3994 2707*352^224386+1 571412 L5410 2021 3995 633*2^1897632+1 571247 L1741 2013 3996 451*2^1897621-1 571244 L5516 2022 3997 1131*2^1897379-1 571172 L1828 2014 3998 7092*313^228770-1 570910 L5410 2020 3999 707*2^1895035+1 570466 L3035 2013 4000 429*2^1894947-1 570439 L5516 2022 4001c 781*2^1894473-1 570297 L2257 2022 4002 3945*2^1894329-1 570254 L4036 2015 4003b 5732*29^389934-1 570243 L5660 2023 4004 Phi(3,-628716^49152) 570012 L4142 2016 Generalized unique 4005 4157*2^1892772-1 569785 L1959 2015 4006 154*730^198988+1 569770 L4001 2018 4007 10005*2^1892466-1 569694 L4405 2019 4008 1053*2^1891799-1 569492 L1828 2014 4009 687*2^1891730+1 569471 L3221 2013 4010 5758*211^244970+1 569384 L5410 2020 4011 87*2^1891391+1 569368 L2673 2011 4012c 929*2^1890324-1 569048 L2257 2022 4013 85287*2^1890011+1 568955 p254 2011 4014 221*2^1889983+1 568944 L1741 2013 4015 597*2^1889088-1 568675 L5516 2022 4016c 607*2^1888525-1 568506 L2257 2022 4017 585*2^1887819+1 568293 L3171 2013 4018 347*2^1887507+1 568199 L3548 2013 4019 391*2^1886863-1 568005 L1809 2014 4020c 759*2^1886119-1 567782 L2257 2022 4021 791*2^1885961+1 567734 L3075 2013 4022 975*2^1885724+1 567663 L1129 2013 4023 22*615^203539-1 567647 L4001 2018 4024 987*2^1885160+1 567493 L2070 2013 4025 Phi(3,-590826^49152) 567358 L4142 2017 Generalized unique 4026 744716047603963*2^1884575-1 567329 L257 2013 4027 485*2^1884579+1 567318 L3548 2013 4028 14296*421^216090+1 567086 L5410 2021 4029 879*2^1883385+1 566959 L3223 2013 4030 815730721*2^1882432+1 566678 L466 2018 Generalized Fermat 4031 693*2^1881882+1 566506 L2322 2013 4032 30*7^670289+1 566462 L3610 2014 4033 639*2^1880451+1 566075 L3141 2013 4034c 927*2^1880136-1 565981 L2257 2022 4035 277*2^1880022+1 565946 L3418 2013 4036 46498*1027^187913+1 565918 L4001 2018 4037c 747*2^1879749-1 565864 L2257 2022 4038 2655*2^1879275-1 565722 L2484 2018 4039 89*2^1879132-1 565678 L1828 2013 4040 441*2^1879067+1 565659 L2840 2013 4041 283*2^1879051-1 565654 L2484 2015 4042 214*378^219424-1 565566 L5410 2020 4043 729*2^1877995+1 565336 L1792 2013 4044 645*2^1877756+1 565264 L2981 2013 4045 Phi(3,-561180^49152) 565160 L4142 2017 Generalized unique 4046 613*2^1876758+1 564964 L2413 2013 4047 10005*2^1876648-1 564932 L4405 2019 4048 267*2^1876604+1 564917 L1792 2013 4049 345067*2^1876573-1 564911 g59 2005 4050 1063*2^1876427-1 564864 L1828 2014 4051 1389*2^1876376-1 564849 L1828 2014 4052 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 4053 4015*2^1875453-1 564572 L1959 2014 4054 1043*2^1875213+1 564499 L2413 2013 4055 1209*2^1874804-1 564376 L1828 2014 4056 4125*2^1874718-1 564350 L1959 2015 4057 1199*2^1874495+1 564283 L2827 2013 4058 495*2^1874077+1 564157 L1344 2013 4059 505*2^1873631-1 564022 L5516 2022 4060 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 4061 Phi(3,-544951^49152) 563907 L4142 2017 Generalized unique 4062b 1958*687^198762-1 563883 L4955 2023 4063 21*2^1872923-1 563808 L2074 2012 4064 4039*2^1872875-1 563796 L1959 2015 4065c 789*2^1872863-1 563791 L2257 2022 4066 439*2^1872789-1 563769 L5516 2022 4067 399878576^65536+1 563736 L4964 2019 Generalized Fermat 4068 357*2^1871600-1 563411 L2519 2014 4069 1309*2^1871045-1 563244 L1828 2014 4070c 901*2^1870997-1 563230 L2257 2022 4071c 859*2^1870639-1 563122 L2519 2022 4072 Phi(3,-533612^49152) 563010 L4142 2017 Generalized unique 4073 735*2^1870118+1 562965 L3075 2013 4074 575*2^1869989+1 562926 L3650 2013 4075 315*2^1869119-1 562664 L2235 2012 4076 19683*2^1868828+1 562578 L3784 2019 4077 400*315^225179-1 562570 L4444 2021 4078 933*2^1868602+1 562509 L3709 2013 4079 503*2^1868417+1 562453 L3378 2013 4080 1073*2^1867944-1 562311 L1828 2014 4081 2*1595^175532-1 562188 L4961 2019 4082 13162*3^1177896+1 562004 L5410 2021 4083 1115*2^1866094-1 561754 L1828 2014 4084c 955*2^1865553-1 561591 L2257 2022 4085c 621*2^1865542-1 561587 L2257 2022 4086 70*905^189879-1 561408 L541 2017 4087 407*2^1864735+1 561344 L2520 2013 4088 10005*2^1864432-1 561254 L4405 2019 4089 489*2^1864339+1 561225 L2520 2013 4090 427*2^1863702+1 561033 L3586 2013 4091 1161*2^1863637+1 561014 L3213 2013 4092c 653*2^1862782-1 560757 L2257 2022 4093 2*3^1175232+1 560729 p199 2010 4094 347*2^1861974-1 560513 L2519 2014 4095 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 4096 411*2^1861627+1 560409 L1741 2013 4097 281*2^1860862-1 560178 L2484 2015 4098 1165*2^1860749-1 560145 L1828 2014 4099 231*2^1860743-1 560142 L1862 2015 4100 103*2^1860103-1 559949 L2484 2012 4101 350006744^65536+1 559945 L4964 2019 Generalized Fermat 4102 11726*1027^185913-1 559895 L4001 2018 4103 2655*2^1859692-1 559827 L1862 2018 4104 161*2^1859586-1 559794 L177 2013 4105c 813*2^1859419-1 559744 L2519 2022 4106c 981*2^1859266-1 559698 L2257 2022 4107 51*2^1859193+1 559675 L1204 2011 4108 1177*2^1859144+1 559662 L3625 2013 4109 1818*378^217098+1 559572 L5410 2021 4110 1455*2^1858634-1 559508 L1134 2015 4111 8331405*2^1858587-1 559498 L260 2011 4112 8*3^1172480+1 559417 L4799 2020 4113c 663*2^1858195-1 559376 L1817 2022 4114c 671*2^1857950-1 559302 L1817 2022 4115 145*590^201814+1 559199 L5410 2022 4116 435*2^1857332-1 559116 L5551 2022 4117 669*2^1857223+1 559083 L2413 2013 4118 296990*151^256535-1 558990 L4700 2018 4119 525*2^1856834-1 558966 L5516 2022 4120 1125*2^1856703-1 558927 L1828 2014 4121 429*2^1856373-1 558827 L5516 2022 4122 52600*91^285235+1 558792 L5410 2020 4123 1155*2^1855389-1 558531 L1828 2014 4124 4031*2^1855338-1 558516 L1959 2014 4125 229*372^217261-1 558482 L4876 2019 4126 Phi(3,-478421^49152) 558349 L4142 2017 Generalized unique 4127c 917*2^1854642-1 558306 L1817 2022 4128 126072*31^374323-1 558257 L2054 2012 4129 3^1170000+3^364398+1 558232 x44 2017 4130 4918*3^1169850+1 558164 L5410 2021 4131 19*932^187910+1 557985 L5410 2022 4132 435*2^1853363-1 557921 L4036 2015 4133 1229*2^1853192-1 557870 L1828 2014 4134 3161*618^199877+1 557858 L4714 2018 4135 333*2^1853115-1 557846 L1830 2012 4136 87*2^1852590-1 557688 L2055 2011 4137 765*2^1849609+1 556791 L1792 2013 4138 137*2^1849238-1 556679 L321 2007 4139 639*2^1848903+1 556579 L3439 2013 4140 1061*268^229202-1 556537 L5410 2019 4141 261*2^1848217+1 556372 L1983 2013 4142 Phi(3,-456551^49152) 556351 L4142 2017 Generalized unique 4143d 917*2^1847872-1 556268 L2519 2022 4144 465*2^1847589-1 556183 L5516 2022 4145d 663*2^1847319-1 556102 L1817 2022 4146d 775*2^1846945-1 555989 L1817 2022 4147 88*107^273915-1 555881 L4444 2021 4148 275*2^1846390-1 555822 L2444 2014 4149 1011*2^1846173+1 555757 L3221 2013 4150 575*2^1845718-1 555620 L5516 2022 4151 1029*2^1844975+1 555396 L2626 2013 4152 133*2^1843619-1 554987 L1959 2014 4153 261*2^1843555-1 554968 L1828 2013 4154d 655*2^1843379-1 554916 L1817 2022 4155 2^120*611953#*611957^50000+1 554832 p383 2015 4156 73246*1027^184192+1 554713 L4001 2018 4157 503*2^1842034-1 554511 L5516 2022 4158 953*2^1841461+1 554338 L3612 2013 4159d 713*2^1841166-1 554250 L1817 2022 4160 4171*2^1841157-1 554248 L1959 2016 4161 19061965*2^1840922+1 554181 p286 2022 4162 1089*2^1840695-1 554108 L1828 2014 4163d 705*2^1840379-1 554013 L1817 2022 4164 105*2^1840262-1 553977 L1959 2014 4165 1009*2^1840225-1 553966 L1828 2014 4166 1323*2^1839623-1 553785 L1828 2014 4167 681*2^1839269+1 553678 L3141 2013 4168d 667*2^1839205-1 553659 L1817 2022 4169 399*2^1839019-1 553603 L1809 2014 4170 779*2^1838955+1 553584 L3640 2013 4171 503*2^1838444-1 553430 L5545 2022 4172 135*2^1838124+1 553333 L3472 2013 4173 15*2^1837873-1 553257 L632 2008 4174 28*392^213295-1 553137 L4001 2017 4175 1111*792^190801-1 553083 L5426 2021 4176 379*2^1837291-1 553083 L1809 2014 4177 333*2^1837105+1 553027 L3470 2013 4178d 825*2^1837054-1 553012 L1817 2022 4179 4167*2^1836466-1 552835 L1959 2015 4180 523061!5+1 552801 x46 2022 Multifactorial 4181 309*2^1836139+1 552736 L3460 2013 4182 271018852^65536+1 552666 L4704 2019 Generalized Fermat 4183 4061*2^1835582-1 552569 L1959 2014 4184 423*2^1835585+1 552569 L2873 2013 4185d 621*2^1835567-1 552564 L1817 2022 4186 1181*2^1834802-1 552334 L1828 2014 4187 73*2^1834526+1 552250 L1513 2011 4188 309*2^1834379+1 552206 L3471 2013 4189 3748*333^218908+1 552187 L4575 2017 4190 87*2^1834098+1 552121 L1513 2011 4191 26*578^199886-1 552073 L5415 2021 4192 1021*2^1833459-1 551930 L1828 2014 4193 34*813^189659-1 551927 L4001 2018 4194 489*2^1833431-1 551921 L5545 2022 4195 121458*151^253264-1 551862 L4001 2018 4196 1485*2^1832651-1 551687 L1134 2014 4197 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 4198 549*2^1832457+1 551628 L3641 2013 4199 295*2^1832129-1 551529 L2444 2014 4200 761*2^1831569+1 551361 L2117 2013 4201 519*2^1831415+1 551314 L3277 2013 4202 517*2^1831257-1 551267 L5516 2022 4203 21*2^1830919+1 551163 g279 2004 4204 489*2^1830584-1 551064 L5516 2022 4205 197*2^1830255+1 550964 L1360 2013 4206 4*3^1154598+1 550884 L4962 2019 Generalized Fermat 4207 63708*151^252785-1 550818 L4001 2018 4208e 793*2^1829335-1 550688 L1817 2022 4209 10*3^1153674+1 550444 L4965 2020 4210 6297*46^330940-1 550277 L4001 2019 4211 220*848^187868+1 550155 L5436 2021 4212 1021*2^1827279-1 550069 L1828 2013 4213 573*2^1827066-1 550005 L5184 2022 4214e 983*2^1826160-1 549732 L1817 2022 4215b 1262*161^249078-1 549675 L5645 2023 4216 825*2^1825439+1 549515 L3289 2013 4217 679*2^1824918+1 549358 L2100 2013 4218 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 4219 439*2^1824841-1 549335 L5184 2022 4220 4029*2^1824569-1 549254 L1959 2015 4221 235*2^1824515-1 549237 L2444 2014 4222 162668*5^785748-1 549220 L3190 2012 4223 389*2^1824385+1 549198 L1487 2013 4224 1135*2^1824103-1 549113 L1828 2013 4225e 687*2^1823833-1 549032 L2519 2022 4226 4005*2^1823819-1 549028 L1959 2015 4227 91179*2^1823580-1 548958 L2777 2016 4228 3874*253^228394+1 548862 L5410 2020 4229 991*2^1822216+1 548545 L1312 2013 4230 13984*24^397259+1 548306 L4806 2019 4231 1089*2^1821417+1 548305 L1741 2013 4232 552*1006^182599-1 548275 L4064 2021 4233 993*2^1821088+1 548206 L2131 2013 4234 513*2^1820982+1 548173 L2826 2013 4235e 979*2^1820167-1 547928 L1817 2022 4236 591*2^1820118-1 547913 L5516 2022 4237 933*2^1820068+1 547899 L2895 2013 4238 921*2^1819560+1 547746 L1741 2013 4239e 677*2^1819216-1 547642 L1817 2022 4240 557*2^1819191+1 547634 L2526 2013 4241 20*317^218953+1 547616 L541 2020 4242 593*2^1818825+1 547524 L3630 2013 4243 1161*2^1818637+1 547468 L2399 2013 4244 1387*2^1818593-1 547455 L1828 2012 4245 875*2^1818427+1 547405 L3035 2013 4246 229*2^1818078+1 547299 L3456 2013 4247 323473!3+1 547270 x46 2022 Multifactorial 4248 454483*2^1817935-1 547259 p77 2014 4249 127*2^1817862+1 547234 L3452 2013 4250 4065*2^1817502-1 547127 L1959 2015 4251 35*2^1817486-1 547120 L2074 2011 4252 1155*2^1816779-1 546909 L1828 2012 4253 69*2^1816739+1 546895 L1204 2011 4254 4101*2^1816007-1 546677 L1959 2015 4255 875*2^1814911+1 546346 L3691 2013 4256 18092*565^198465-1 546190 L4001 2017 4257 1029*2^1813839+1 546023 L3378 2013 4258 555*2^1813556+1 545938 L3233 2013 4259 138*273^224093-1 545930 L4444 2022 4260 33*2^1813526-1 545928 L621 2008 4261 1347*2^1813433-1 545901 L1828 2012 4262 1143*2^1813125+1 545809 L3514 2013 4263 1197*2^1811852+1 545425 L3035 2013 4264 10007*2^1811598-1 545350 L1751 2018 4265 693*2^1811517+1 545324 L2967 2013 4266 1099*2^1810686+1 545074 L3458 2013 4267 92*10^544905-1 544907 L3735 2015 Near-repdigit 4268 1305*2^1809766-1 544797 L1828 2011 4269 1185*2^1809466-1 544707 L1828 2011 4270 659*2^1808691+1 544474 L3625 2013 4271 145*2^1807767-1 544195 L840 2013 4272 9*2^1807574+1 544135 L2419 2011 Generalized Fermat 4273 4117*2^1807085-1 543991 L1959 2014 4274 375*2^1806591+1 543841 L3233 2013 4275 889*2^1806470+1 543805 L2967 2013 4276 1033*2^1805844+1 543617 L1502 2013 4277 561*2^1805767-1 543593 L5516 2022 4278 4039*2^1805627-1 543552 L1959 2015 4279 981*2^1805368+1 543473 L2413 2013 4280 915*2^1805031+1 543372 L1741 2013 4281 691*2^1804332+1 543161 L3625 2013 4282f 741*2^1803805-1 543003 L1817 2022 4283a 192522542^65536+1 542932 L5637 2023 4284 4089*2^1803463-1 542901 L1959 2016 4285a 192312632^65536+1 542901 L5548 2023 4286a 192122824^65536+1 542873 L5041 2023 4287 1965*2^1803256-1 542838 L4113 2017 4288a 191771812^65536+1 542821 L5665 2023 4289a 191605274^65536+1 542796 L4201 2023 4290a 191281818^65536+1 542748 L5459 2023 4291a 191247064^65536+1 542743 L5491 2023 4292a 190878266^65536+1 542688 L5070 2023 4293a 190704356^65536+1 542662 L5548 2023 4294a 190656960^65536+1 542655 L4692 2023 4295a 190576290^65536+1 542643 L4309 2023 4296a 190207800^65536+1 542588 L5030 2023 4297 385*2^1802362+1 542568 L3279 2013 4298a 190048848^65536+1 542564 L5599 2023 4299a 190000438^65536+1 542557 L5030 2023 4300f 707*2^1802270-1 542541 L2519 2022 4301a 189854142^65536+1 542535 L5664 2023 4302f 603*2^1802231-1 542529 L1817 2022 4303a 189689540^65536+1 542510 L5273 2023 4304a 189628068^65536+1 542501 L5548 2023 4305a 189603464^65536+1 542497 L4861 2023 4306a 189559318^65536+1 542491 L5548 2023 4307a 189430382^65536+1 542471 L4201 2023 4308 661*2^1802024+1 542467 L2967 2013 4309a 189254520^65536+1 542445 L4544 2023 4310a 189135830^65536+1 542427 L5251 2023 4311a 188945030^65536+1 542398 L4201 2023 4312a 188838578^65536+1 542382 L4201 2023 4313a 188810590^65536+1 542378 L4765 2023 4314a 188755476^65536+1 542370 L4905 2023 4315a 188706328^65536+1 542362 L4968 2023 4316 96*439^205245-1 542355 L5410 2021 4317 2415*2^1801615-1 542344 L2484 2018 4318 985*2^1801582+1 542334 L3035 2013 4319a 188447756^65536+1 542323 L5047 2023 4320a 188351260^65536+1 542309 L4210 2023 4321a 188209194^65536+1 542287 L5005 2023 4322 285*2^1801236-1 542229 L5313 2021 4323a 187821906^65536+1 542229 L4387 2023 4324 301*2^1801207-1 542220 p281 2010 4325 1193*2^1801112-1 542192 L1828 2011 4326a 187467080^65536+1 542175 L4861 2023 4327 513755!5-1 542165 x46 2019 Multifactorial 4328b 187248482^65536+1 542142 L4201 2023 4329b 187145738^65536+1 542126 L4999 2023 4330a 187060766^65536+1 542113 L4526 2023 4331 417643*2^1800787-1 542097 L134 2005 4332b 186940442^65536+1 542095 L4704 2023 4333 1045*2^1800784+1 542094 L3141 2013 4334b 186898318^65536+1 542088 L5041 2023 4335b 186844740^65536+1 542080 L4201 2023 4336 4017*2^1800617-1 542044 L1959 2014 4337b 186554172^65536+1 542036 L5470 2023 4338b 186451508^65536+1 542020 L5047 2023 4339a 186397586^65536+1 542012 L5495 2023 4340f 977*2^1800512-1 542012 L1817 2022 4341 33910*1027^179973+1 542006 L4700 2018 4342b 186290582^65536+1 541996 L5251 2023 4343 320607*2^1800434-1 541991 g337 2019 4344b 186256242^65536+1 541990 L4309 2023 4345b 186245628^65536+1 541989 L5047 2023 4346b 186245462^65536+1 541989 L4387 2023 4347b 186233074^65536+1 541987 L5077 2023 4348b 186156760^65536+1 541975 L4201 2023 4349b 186073474^65536+1 541963 L4387 2023 4350b 186079072^65536+1 541963 L5460 2023 4351b 185957016^65536+1 541945 L4309 2023 4352b 185810808^65536+1 541922 L5661 2023 4353b 185784452^65536+1 541918 L5460 2023 4354b 185514140^65536+1 541877 L4201 2023 4355b 185466914^65536+1 541870 L4968 2023 4356 1045*2^1800025-1 541865 L1828 2011 4357b 185425268^65536+1 541863 L4870 2023 4358b 185280974^65536+1 541841 L5654 2023 4359b 185186304^65536+1 541827 L5637 2023 4360b 185171896^65536+1 541824 L5520 2023 4361b 185055224^65536+1 541806 L5637 2023 4362b 184980314^65536+1 541795 L5070 2023 4363b 184902378^65536+1 541783 L5070 2023 4364b 184839498^65536+1 541773 L5659 2023 4365a 184830740^65536+1 541772 L4526 2023 4366b 184698372^65536+1 541751 L5467 2023 4367b 184674964^65536+1 541748 L5526 2023 4368b 184666742^65536+1 541747 L5025 2023 4369b 184518036^65536+1 541724 L5347 2023 4370b 184331432^65536+1 541695 L5520 2023 4371b 184283672^65536+1 541687 L5637 2023 4372b 183937902^65536+1 541634 L4387 2023 4373b 183939030^65536+1 541634 L4387 2023 4374b 183907048^65536+1 541629 L4839 2023 4375b 183834156^65536+1 541618 L4249 2023 4376b 183742964^65536+1 541604 L5403 2023 4377 4009*2^1799073-1 541579 L1959 2015 4378 43*2^1799016+1 541560 L2562 2011 4379b 183378098^65536+1 541547 L4905 2023 4380b 183292932^65536+1 541534 L5644 2023 4381b 183280168^65536+1 541532 L5643 2023 4382 437*2^1798830-1 541505 L5516 2022 4383b 183072100^65536+1 541500 L5642 2023 4384b 182974248^65536+1 541484 L5526 2023 4385b 182942876^65536+1 541480 L5628 2023 4386b 182522090^65536+1 541414 L5641 2023 4387b 182487896^65536+1 541409 L4865 2023 4388b 182450246^65536+1 541403 L5637 2023 4389b 182234526^65536+1 541369 L4733 2023 4390b 182079042^65536+1 541345 L5347 2023 4391b 182043738^65536+1 541339 L4939 2023 4392 4079*2^1798192-1 541314 L1959 2014 4393b 181799558^65536+1 541301 L4629 2023 4394 2096*352^212554-1 541282 L5410 2022 4395b 181673232^65536+1 541281 L5520 2023 4396b 181649914^65536+1 541278 L5637 2023 4397b 181649988^65536+1 541278 L5088 2023 4398 3271*372^210566-1 541273 L5410 2019 4399 19683*2^1797997+1 541256 L4970 2019 4400b 181428448^65536+1 541243 L5077 2023 4401 220502!2+1 541239 p394 2017 Multifactorial 4402b 181346036^65536+1 541230 L4920 2023 4403b 181340148^65536+1 541229 L4920 2023 4404 1047*2^1797890+1 541222 L3473 2013 4405 1965*2^1797877-1 541219 L4113 2017 4406b 181275554^65536+1 541219 L4939 2023 4407b 181230844^65536+1 541212 L5347 2023 4408b 181220014^65536+1 541210 L4737 2023 4409c 181128596^65536+1 541196 L5637 2022 4410c 181036294^65536+1 541181 L5049 2022 4411c 180928472^65536+1 541164 L5159 2022 4412c 180877660^65536+1 541156 L4853 2022 4413c 180623618^65536+1 541116 L5634 2022 4414 423*2^1797511-1 541108 L5516 2022 4415c 180309408^65536+1 541067 L5459 2022 4416 3^1134000+3^360654+1 541056 x44 2017 4417c 180179076^65536+1 541046 L5634 2022 4418 319*2^1797261-1 541032 L1819 2013 4419 1712*333^214484+1 541028 L4575 2017 4420c 179971550^65536+1 541014 L5512 2022 4421c 179962050^65536+1 541012 L5556 2022 4422c 179788874^65536+1 540985 L5633 2022 4423c 179779726^65536+1 540983 L4905 2022 4424c 179756520^65536+1 540980 L5459 2022 4425c 179665622^65536+1 540965 L5635 2022 4426c 179656056^65536+1 540964 L5332 2022 4427c 179587166^65536+1 540953 L4905 2022 4428 1103*2^1796969+1 540945 L2826 2013 4429c 179512328^65536+1 540941 L5155 2022 4430c 179477264^65536+1 540935 L5526 2022 4431c 179316044^65536+1 540910 L4905 2022 4432c 179213034^65536+1 540893 L5155 2022 4433c 178693746^65536+1 540811 L4341 2022 4434c 178675218^65536+1 540808 L5155 2022 4435c 178577172^65536+1 540792 L4249 2022 4436c 178572132^65536+1 540791 L5627 2022 4437c 178313162^65536+1 540750 L5628 2022 4438 197*2^1796284-1 540738 L1862 2015 4439 4137*2^1796226-1 540722 L1959 2015 4440 537*2^1796196-1 540712 L5516 2022 4441 174*643^192540-1 540696 L4001 2018 4442 10041*2^1795990-1 540651 p168 2017 4443c 177356966^65536+1 540597 L5623 2022 4444c 177322984^65536+1 540592 L5416 2022 4445c 177317546^65536+1 540591 L4387 2022 4446c 177287930^65536+1 540586 L5416 2022 4447c 177021414^65536+1 540543 L4865 2022 4448 43*2^1795628+1 540540 L1129 2011 4449c 176774876^65536+1 540503 L5533 2022 4450c 176564460^65536+1 540470 L5121 2022 4451c 176483902^65536+1 540457 L4341 2022 4452c 176349078^65536+1 540435 L5526 2022 4453c 176255060^65536+1 540420 L5623 2022 4454c 176249556^65536+1 540419 L4210 2022 4455c 176190802^65536+1 540409 L5622 2022 4456c 176135796^65536+1 540400 L5155 2022 4457d 175656830^65536+1 540323 L5620 2022 4458d 175615320^65536+1 540316 L5606 2022 4459 11682*1027^179399+1 540277 L4001 2018 4460d 175358582^65536+1 540275 L5155 2022 4461d 175315182^65536+1 540267 L4387 2022 4462d 175288508^65536+1 540263 L5526 2022 4463d 175277144^65536+1 540261 L5155 2022 4464 383*2^1794636-1 540242 L1809 2014 4465d 175106736^65536+1 540234 L4950 2022 4466d 175087942^65536+1 540231 L5520 2022 Generalized Fermat 4467d 175054006^65536+1 540225 L5155 2022 Generalized Fermat 4468d 175047622^65536+1 540224 L5155 2022 Generalized Fermat 4469 14172*1027^179381-1 540223 L4001 2018 4470d 175039148^65536+1 540223 L5155 2022 Generalized Fermat 4471 4119*2^1794544-1 540216 L1959 2015 4472 423*2^1794546+1 540215 L3131 2013 4473d 174919732^65536+1 540203 L5155 2022 Generalized Fermat 4474d 174894258^65536+1 540199 L5332 2022 Generalized Fermat 4475d 174854046^65536+1 540192 L5617 2022 Generalized Fermat 4476d 174794310^65536+1 540183 L5361 2022 Generalized Fermat 4477 736663*2^1794419-1 540180 L541 2021 4478 1101*2^1794417-1 540177 L1828 2014 4479d 174729682^65536+1 540172 L5599 2022 Generalized Fermat 4480d 174696676^65536+1 540167 L4672 2022 Generalized Fermat 4481d 174550290^65536+1 540143 L5155 2022 Generalized Fermat 4482d 174540660^65536+1 540141 L5155 2022 Generalized Fermat 4483d 174273670^65536+1 540098 L4737 2022 Generalized Fermat 4484d 174250908^65536+1 540094 L4905 2022 Generalized Fermat 4485d 174032782^65536+1 540058 L4726 2022 Generalized Fermat 4486d 174026564^65536+1 540057 L5155 2022 Generalized Fermat 4487d 174010748^65536+1 540055 L5332 2022 Generalized Fermat 4488d 173978768^65536+1 540050 L5155 2022 Generalized Fermat 4489d 173968010^65536+1 540048 L4726 2022 Generalized Fermat 4490 387*2^1793857-1 540008 L2519 2014 4491d 173678538^65536+1 540001 L4249 2022 Generalized Fermat 4492d 173556616^65536+1 539981 L5155 2022 Generalized Fermat 4493 Phi(3,-311095^49152) 539974 L4142 2016 Generalized unique 4494e 173462730^65536+1 539965 L5606 2022 Generalized Fermat 4495e 173241794^65536+1 539929 L5143 2022 Generalized Fermat 4496e 173186736^65536+1 539920 L5155 2022 Generalized Fermat 4497e 173162448^65536+1 539916 L5155 2022 Generalized Fermat 4498 105*2^1793519-1 539906 L1959 2014 4499e 173096140^65536+1 539905 L5155 2022 Generalized Fermat 4500e 173087734^65536+1 539904 L4905 2022 Generalized Fermat 4501e 173056950^65536+1 539898 L5403 2022 Generalized Fermat 4502e 172941290^65536+1 539879 L5155 2022 Generalized Fermat 4503 1223*618^193431+1 539867 L4001 2018 4504e 172722514^65536+1 539843 L4249 2022 Generalized Fermat 4505e 172711120^65536+1 539842 L5101 2022 Generalized Fermat 4506e 172702694^65536+1 539840 L4387 2022 Generalized Fermat 4507e 172674204^65536+1 539835 L4939 2022 Generalized Fermat 4508e 172656710^65536+1 539833 L4387 2022 Generalized Fermat 4509e 171908444^65536+1 539709 L4387 2022 Generalized Fermat 4510 653*2^1792810-1 539693 L5545 2022 4511e 171736988^65536+1 539681 L5606 2022 Generalized Fermat 4512e 171722120^65536+1 539678 L5605 2022 Generalized Fermat 4513e 171665424^65536+1 539669 L5101 2022 Generalized Fermat 4514e 171538424^65536+1 539648 L4853 2022 Generalized Fermat 4515e 171516682^65536+1 539644 L5604 2022 Generalized Fermat 4516e 171422110^65536+1 539628 L5603 2022 Generalized Fermat 4517 33*20^414757+1 539613 L4789 2021 4518e 171312534^65536+1 539610 L5602 2022 Generalized Fermat 4519 1103*2^1792513+1 539604 L3262 2013 4520e 171267078^65536+1 539603 L4387 2022 Generalized Fermat 4521e 171206776^65536+1 539593 L4387 2022 Generalized Fermat 4522 773*2^1792454-1 539586 L1817 2022 4523f 171101678^65536+1 539575 L4387 2022 Generalized Fermat 4524f 170856176^65536+1 539534 L5599 2022 Generalized Fermat 4525f 170826210^65536+1 539529 L4387 2022 Generalized Fermat 4526f 170762742^65536+1 539519 L4677 2022 Generalized Fermat 4527f 170752522^65536+1 539517 L5101 2022 Generalized Fermat 4528f 170751752^65536+1 539517 L4387 2022 Generalized Fermat 4529f 170573784^65536+1 539487 L5070 2022 Generalized Fermat 4530f 170485780^65536+1 539472 L5597 2022 Generalized Fermat 4531f 170480348^65536+1 539472 L4677 2022 Generalized Fermat 4532f 170458468^65536+1 539468 L5595 2022 Generalized Fermat 4533f 170453992^65536+1 539467 L5347 2022 Generalized Fermat 4534f 170404522^65536+1 539459 L5101 2022 Generalized Fermat 4535f 170378114^65536+1 539454 L5593 2022 Generalized Fermat 4536f 170372754^65536+1 539454 L4853 2022 Generalized Fermat 4537f 170327188^65536+1 539446 L4387 2022 Generalized Fermat 4538f 170312504^65536+1 539443 L5526 2022 Generalized Fermat 4539f 170290454^65536+1 539440 L4747 2022 Generalized Fermat 4540f 170214064^65536+1 539427 L4387 2022 Generalized Fermat 4541f 170192994^65536+1 539423 L4905 2022 Generalized Fermat 4542f 170102850^65536+1 539408 L5591 2022 Generalized Fermat 4543f 169934432^65536+1 539380 L4862 2022 Generalized Fermat 4544f 169896218^65536+1 539374 L4249 2022 Generalized Fermat 4545f 169865462^65536+1 539369 L5347 2022 Generalized Fermat 4546 169759134^65536+1 539351 L5347 2022 Generalized Fermat 4547 169647304^65536+1 539332 L5588 2022 Generalized Fermat 4548 431*2^1791441+1 539281 L3453 2013 4549 1185*2^1791429-1 539277 L1828 2014 4550 169277952^65536+1 539270 L4387 2022 Generalized Fermat 4551 169256018^65536+1 539266 L4387 2022 Generalized Fermat 4552 805*2^1791273-1 539230 L1817 2022 4553 429*2^1791163-1 539197 L5516 2022 4554 168789060^65536+1 539188 L4387 2022 Generalized Fermat 4555 168736614^65536+1 539179 L4387 2022 Generalized Fermat 4556f 168640932^65536+1 539163 L5586 2022 Generalized Fermat 4557 13460*171^241448+1 539157 L5410 2019 4558 168441316^65536+1 539129 L4387 2022 Generalized Fermat 4559 168392570^65536+1 539121 L4387 2022 Generalized Fermat 4560 168272988^65536+1 539101 L4387 2022 Generalized Fermat 4561 168158620^65536+1 539081 L4729 2022 Generalized Fermat 4562 168085014^65536+1 539069 L4835 2022 Generalized Fermat 4563 168070968^65536+1 539066 L4359 2022 Generalized Fermat 4564 16*140^251178+1 539062 L4940 2019 Generalized Fermat 4565 167989240^65536+1 539053 L5586 2022 Generalized Fermat 4566 167952588^65536+1 539046 L4387 2022 Generalized Fermat 4567 167811262^65536+1 539022 L5357 2022 Generalized Fermat 4568 167786168^65536+1 539018 L5101 2022 Generalized Fermat 4569 167692050^65536+1 539002 L5549 2022 Generalized Fermat 4570 167555208^65536+1 538979 L5526 2022 Generalized Fermat 4571 167552298^65536+1 538978 L5101 2022 Generalized Fermat 4572 167392398^65536+1 538951 L5544 2022 Generalized Fermat 4573 167367704^65536+1 538947 L5544 2022 Generalized Fermat 4574 167333098^65536+1 538941 L5357 2022 Generalized Fermat 4575 167217958^65536+1 538922 L5101 2022 Generalized Fermat 4576 607*2^1790196+1 538906 L4123 2013 4577 167061856^65536+1 538895 L5548 2022 Generalized Fermat 4578 1293991*2^1790128+1 538889 L4789 2019 4579 166987494^65536+1 538882 L5544 2022 Generalized Fermat 4580 166787224^65536+1 538848 L5101 2022 Generalized Fermat 4581 166707658^65536+1 538835 L4245 2022 Generalized Fermat 4582 166695390^65536+1 538832 L5101 2022 Generalized Fermat 4583 166579910^65536+1 538813 L5552 2022 Generalized Fermat 4584 166444082^65536+1 538790 L5322 2022 Generalized Fermat 4585 143157*2^1789798+1 538789 L4504 2016 4586 166245178^65536+1 538756 L5544 2022 Generalized Fermat 4587 166199362^65536+1 538748 L5526 2022 Generalized Fermat 4588 166133392^65536+1 538736 L5101 2022 Generalized Fermat 4589 165758598^65536+1 538672 L5355 2022 Generalized Fermat 4590 165693636^65536+1 538661 L5543 2022 Generalized Fermat 4591 1059*2^1789353+1 538652 L1130 2013 4592 975*2^1789341+1 538649 L2085 2013 4593 165300848^65536+1 538593 L4201 2022 Generalized Fermat 4594 165182046^65536+1 538573 L5539 2022 Generalized Fermat 4595 165119758^65536+1 538562 L5542 2022 Generalized Fermat 4596 165107060^65536+1 538560 L4201 2022 Generalized Fermat 4597 165071282^65536+1 538554 L4861 2022 Generalized Fermat 4598 165042714^65536+1 538549 L4299 2022 Generalized Fermat 4599 165035994^65536+1 538548 L4861 2022 Generalized Fermat 4600 165006098^65536+1 538543 L5539 2022 Generalized Fermat 4601 164975524^65536+1 538537 L5538 2022 Generalized Fermat 4602 164961074^65536+1 538535 L5347 2022 Generalized Fermat 4603 164947166^65536+1 538532 L4201 2022 Generalized Fermat 4604 273*2^1788926-1 538523 L1828 2013 4605 164688674^65536+1 538488 L5526 2022 Generalized Fermat 4606 164664420^65536+1 538484 L4201 2022 Generalized Fermat 4607 164634446^65536+1 538478 L5512 2022 Generalized Fermat 4608 164607472^65536+1 538474 L5512 2022 Generalized Fermat 4609 164585942^65536+1 538470 L5386 2022 Generalized Fermat 4610 164541530^65536+1 538462 L5128 2022 Generalized Fermat 4611 4125*2^1788660-1 538444 L1959 2015 4612 164410268^65536+1 538440 L5533 2022 Generalized Fermat 4613 164331980^65536+1 538426 L5101 2022 Generalized Fermat 4614 163984990^65536+1 538366 L4753 2022 Generalized Fermat 4615 163837248^65536+1 538340 L5347 2022 Generalized Fermat 4616 163714676^65536+1 538319 L5101 2022 Generalized Fermat 4617 163667476^65536+1 538311 L5025 2022 Generalized Fermat 4618 289184*5^770116-1 538294 p353 2012 4619 163415294^65536+1 538267 L5416 2022 Generalized Fermat 4620 163384952^65536+1 538262 L5332 2022 Generalized Fermat 4621 163335900^65536+1 538253 L4584 2022 Generalized Fermat 4622 1065*2^1787993-1 538243 L1828 2014 4623 163241232^65536+1 538237 L5528 2022 Generalized Fermat 4624 163148472^65536+1 538220 L5025 2022 Generalized Fermat 4625 163096432^65536+1 538211 L5526 2022 Generalized Fermat 4626 162990842^65536+1 538193 L5370 2022 Generalized Fermat 4627 162936076^65536+1 538183 L5525 2022 Generalized Fermat 4628 441*2^1787789+1 538181 L1209 2013 4629 162841028^65536+1 538167 L5522 2022 Generalized Fermat 4630 162722282^65536+1 538146 L5521 2022 Generalized Fermat 4631 162521980^65536+1 538111 L5070 2022 Generalized Fermat 4632 162512058^65536+1 538109 L5070 2022 Generalized Fermat 4633 623*2^1787546-1 538108 L1817 2022 4634 162494828^65536+1 538106 L5070 2022 Generalized Fermat 4635 162423200^65536+1 538094 L4737 2022 Generalized Fermat 4636 162341418^65536+1 538079 L4747 2022 Generalized Fermat 4637 162244902^65536+1 538062 L5520 2022 Generalized Fermat 4638 161961620^65536+1 538013 L5577 2022 Generalized Fermat 4639 161892534^65536+1 538000 L4853 2022 Generalized Fermat 4640 161812882^65536+1 537986 L4672 2022 Generalized Fermat 4641 565*2^1787136+1 537985 L1512 2013 4642 161729494^65536+1 537972 L4729 2022 Generalized Fermat 4643 161652768^65536+1 537958 L5347 2022 Generalized Fermat 4644 161552358^65536+1 537941 L4729 2022 Generalized Fermat 4645 161533952^65536+1 537937 L4729 2022 Generalized Fermat 4646 247*2^1786968+1 537934 L2533 2013 4647 161390048^65536+1 537912 L4729 2022 Generalized Fermat 4648 161373520^65536+1 537909 L4729 2022 Generalized Fermat 4649 161336572^65536+1 537902 L4387 2022 Generalized Fermat 4650 161336170^65536+1 537902 L4387 2022 Generalized Fermat 4651 161284686^65536+1 537893 L5347 2022 Generalized Fermat 4652 227*2^1786779+1 537877 L2058 2013 4653 161155178^65536+1 537870 L4249 2022 Generalized Fermat 4654 161040604^65536+1 537850 L5222 2022 Generalized Fermat 4655 161019960^65536+1 537847 L5222 2022 Generalized Fermat 4656 160896206^65536+1 537825 L4729 2022 Generalized Fermat 4657 160652984^65536+1 537782 L4853 2022 Generalized Fermat 4658 11812*5^769343-1 537752 p341 2012 4659 160477270^65536+1 537750 L4387 2022 Generalized Fermat 4660 160459326^65536+1 537747 L5101 2022 Generalized Fermat 4661 933*2^1786320+1 537739 L1505 2013 4662 160300770^65536+1 537719 L5561 2022 Generalized Fermat 4663 160280252^65536+1 537716 L5526 2022 Generalized Fermat 4664 160278312^65536+1 537715 L5452 2022 Generalized Fermat 4665 507*2^1786194+1 537701 L3422 2013 4666 160186476^65536+1 537699 L5101 2022 Generalized Fermat 4667 160144132^65536+1 537691 L5101 2022 Generalized Fermat 4668 159680478^65536+1 537609 L5499 2022 Generalized Fermat 4669 159679014^65536+1 537609 L5349 2022 Generalized Fermat 4670 159660244^65536+1 537605 L5101 2022 Generalized Fermat 4671 159548422^65536+1 537585 L5101 2022 Generalized Fermat 4672 921*2^1785808+1 537585 L3262 2013 4673 179114*151^246711-1 537583 L4700 2018 4674 159424086^65536+1 537563 L5556 2022 Generalized Fermat 4675 1187*2^1785707+1 537555 L1753 2013 4676 55555*2^1785446+1 537478 L4828 2018 4677 158595406^65536+1 537415 L4861 2022 Generalized Fermat 4678 158534146^65536+1 537404 L5374 2022 Generalized Fermat 4679 825*2^1785134-1 537382 L1817 2022 4680 158375834^65536+1 537375 L4726 2022 Generalized Fermat 4681 158345700^65536+1 537370 L5416 2022 Generalized Fermat 4682 158184126^65536+1 537341 L4894 2022 Generalized Fermat 4683 158097404^65536+1 537325 L4694 2022 Generalized Fermat 4684 256*14^468784+1 537289 L3802 2014 Generalized Fermat 4685 157878038^65536+1 537286 L5030 2022 Generalized Fermat 4686 157792502^65536+1 537270 L5515 2022 Generalized Fermat 4687 157778292^65536+1 537268 L5483 2022 Generalized Fermat 4688 157696604^65536+1 537253 L5024 2022 Generalized Fermat 4689 157640030^65536+1 537243 L5030 2022 Generalized Fermat 4690 157582320^65536+1 537232 L4774 2022 Generalized Fermat 4691 157568692^65536+1 537230 L4737 2022 Generalized Fermat 4692 157479388^65536+1 537214 L4904 2022 Generalized Fermat 4693 157372184^65536+1 537194 L5512 2022 Generalized Fermat 4694 63*2^1784498+1 537190 L1415 2011 4695 158*911^181509+1 537182 L5410 2019 4696 157254464^65536+1 537173 L4410 2022 Generalized Fermat 4697 157080152^65536+1 537142 L4763 2022 Generalized Fermat 4698 117134*151^246492-1 537106 L4001 2018 4699 156882252^65536+1 537106 L5273 2022 Generalized Fermat 4700 156830996^65536+1 537096 L4733 2022 Generalized Fermat 4701 156828668^65536+1 537096 L5069 2022 Generalized Fermat 4702 1333*2^1784103-1 537072 L1828 2014 4703 156614630^65536+1 537057 L4726 2022 Generalized Fermat 4704 156606194^65536+1 537055 L4544 2022 Generalized Fermat 4705 156566756^65536+1 537048 L4774 2022 Generalized Fermat 4706 156491914^65536+1 537035 L5057 2022 Generalized Fermat 4707 156414678^65536+1 537021 L4726 2022 Generalized Fermat 4708 156413292^65536+1 537020 L4942 2022 Generalized Fermat 4709 156400210^65536+1 537018 L4726 2022 Generalized Fermat 4710 156384608^65536+1 537015 L5022 2022 Generalized Fermat 4711 2060*135^252066-1 536989 L5410 2019 4712 231*2^1783821+1 536986 L3262 2013 4713 155990522^65536+1 536943 L5204 2022 Generalized Fermat 4714 155883376^65536+1 536924 L5483 2022 Generalized Fermat 4715 155788986^65536+1 536907 L4656 2022 Generalized Fermat 4716 155750578^65536+1 536900 L4726 2022 Generalized Fermat 4717 155257984^65536+1 536809 L4904 2022 Generalized Fermat 4718 155253336^65536+1 536809 L4245 2022 Generalized Fermat 4719 3098*565^195049-1 536788 L4001 2017 4720 4416*217^229737-1 536775 L5410 2020 4721 216*558^195427-1 536769 L5196 2021 4722 563*2^1782872-1 536701 L2519 2022 4723 154546726^65536+1 536679 L4755 2022 Generalized Fermat 4724 154210752^65536+1 536617 L4308 2022 Generalized Fermat 4725 154011386^65536+1 536580 L5500 2022 Generalized Fermat 4726 153760922^65536+1 536534 L5005 2022 Generalized Fermat 4727 153583464^65536+1 536501 L5500 2022 Generalized Fermat 4728 153431116^65536+1 536473 L5500 2022 Generalized Fermat 4729 968*837^183539-1 536438 L5410 2021 4730 153012732^65536+1 536395 L5453 2022 Generalized Fermat 4731 152967836^65536+1 536386 L4201 2022 Generalized Fermat 4732 152899418^65536+1 536374 L5251 2022 Generalized Fermat 4733 152866426^65536+1 536368 L5251 2022 Generalized Fermat 4734 4069*2^1781691-1 536347 L1959 2014 4735 152702128^65536+1 536337 L5275 2022 Generalized Fermat 4736 152482638^65536+1 536296 L4245 2022 Generalized Fermat 4737 152329200^65536+1 536267 L4905 2022 Generalized Fermat 4738 152257544^65536+1 536254 L4245 2022 Generalized Fermat 4739 152246980^65536+1 536252 L4245 2022 Generalized Fermat 4740 152143536^65536+1 536233 L4745 2022 Generalized Fermat 4741 575*2^1781313+1 536232 L3262 2013 4742 152024526^65536+1 536210 L4544 2022 Generalized Fermat 4743 151770050^65536+1 536163 L5467 2022 Generalized Fermat 4744 151648712^65536+1 536140 L4201 2022 Generalized Fermat 4745 151556938^65536+1 536123 L4745 2022 Generalized Fermat 4746 151514532^65536+1 536115 L5498 2022 Generalized Fermat 4747 151336498^65536+1 536081 L4245 2022 Generalized Fermat 4748 151009320^65536+1 536020 L5495 2022 Generalized Fermat 4749 150994194^65536+1 536017 L4760 2022 Generalized Fermat 4750 150809098^65536+1 535982 L4734 2022 Generalized Fermat 4751 150722260^65536+1 535966 L4245 2022 Generalized Fermat 4752 150644616^65536+1 535951 L4201 2022 Generalized Fermat 4753 150591018^65536+1 535941 L4201 2022 Generalized Fermat 4754 883*2^1780324+1 535934 L2963 2013 4755 150482286^65536+1 535920 L5019 2022 Generalized Fermat 4756 391*2^1780155-1 535883 L1809 2014 4757 479*2^1780112-1 535870 L5516 2022 4758 150142948^65536+1 535856 L5491 2022 Generalized Fermat 4759 150132248^65536+1 535854 L4914 2022 Generalized Fermat 4760 150098876^65536+1 535848 L5469 2022 Generalized Fermat 4761 150078542^65536+1 535844 L5490 2022 Generalized Fermat 4762 150061008^65536+1 535840 L5470 2022 Generalized Fermat 4763 150034754^65536+1 535835 L4550 2022 Generalized Fermat 4764 915*2^1779982-1 535831 L1817 2022 4765 149996492^65536+1 535828 L4544 2022 Generalized Fermat 4766 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 4767 149957710^65536+1 535821 L4905 2022 Generalized Fermat 4768 149814764^65536+1 535794 L4201 2022 Generalized Fermat 4769 357659*2^1779748-1 535764 L47 2005 4770 149621682^65536+1 535757 L5297 2022 Generalized Fermat 4771 123*2^1779728-1 535754 L3967 2014 4772 149579792^65536+1 535749 L5265 2022 Generalized Fermat 4773 149578510^65536+1 535749 L4692 2022 Generalized Fermat 4774 149495200^65536+1 535733 L5030 2022 Generalized Fermat 4775 149491768^65536+1 535732 L4550 2022 Generalized Fermat 4776 149465356^65536+1 535727 L4245 2022 Generalized Fermat 4777 1061*2^1779595+1 535715 L3445 2013 4778 149265044^65536+1 535689 L5275 2022 Generalized Fermat 4779 455*2^1779315+1 535630 L2121 2013 4780 148896558^65536+1 535619 L5485 2022 Generalized Fermat 4781 71899*1234547#+1 535609 p195 2022 4782 26864*1234547#+1 535609 p195 2022 4783 148806450^65536+1 535601 L5391 2022 Generalized Fermat 4784 45*20^411657+1 535580 L4789 2021 4785 148402470^65536+1 535524 L4245 2022 Generalized Fermat 4786 148366966^65536+1 535517 L4245 2022 Generalized Fermat 4787 663251*2^1778899+1 535508 L4789 2018 4788 31521*2^1778899-1 535507 L3519 2015 4789 148302820^65536+1 535505 L4760 2022 Generalized Fermat 4790 148275334^65536+1 535500 L4760 2022 Generalized Fermat 4791 148221832^65536+1 535489 L4773 2022 Generalized Fermat 4792 863*2^1778737+1 535457 L1505 2013 4793 316594*5^766005-1 535421 L3157 2012 4794 147834014^65536+1 535415 L4245 2022 Generalized Fermat 4795 147796196^65536+1 535408 L5460 2022 Generalized Fermat 4796 147761138^65536+1 535401 L4245 2022 Generalized Fermat 4797 1468*3^1122083+1 535373 L5410 2021 4798 147570204^65536+1 535364 L4245 2022 Generalized Fermat 4799 147512094^65536+1 535353 L4544 2022 Generalized Fermat 4800 147382164^65536+1 535328 L4898 2022 Generalized Fermat 4801 147208122^65536+1 535294 L5030 2022 Generalized Fermat 4802 147202056^65536+1 535293 L5460 2022 Generalized Fermat 4803 147170456^65536+1 535287 L5483 2022 Generalized Fermat 4804 2016*991^178654+1 535264 L5410 2021 4805 146933674^65536+1 535241 L4245 2022 Generalized Fermat 4806 146925950^65536+1 535239 L4956 2022 Generalized Fermat 4807 146924772^65536+1 535239 L4245 2022 Generalized Fermat 4808 146826798^65536+1 535220 L4245 2022 Generalized Fermat 4809 146780644^65536+1 535211 L4245 2022 Generalized Fermat 4810 146680212^65536+1 535192 L4956 2022 Generalized Fermat 4811 146653986^65536+1 535187 L4245 2022 Generalized Fermat 4812 146504914^65536+1 535158 L4905 2022 Generalized Fermat 4813 146425914^65536+1 535142 L5265 2022 Generalized Fermat 4814 99*2^1777688-1 535140 L1862 2011 4815 1806*213^229825+1 535124 L5410 2020 4816 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 4817 511*2^1777488+1 535080 L2873 2013 4818 243*2^1777467-1 535074 L2055 2011 4819 145932888^65536+1 535046 L5469 2022 Generalized Fermat 4820 145585776^65536+1 534979 L4774 2022 Generalized Fermat 4821 66*163^241811+1 534934 L5410 2019 4822 145072510^65536+1 534878 L5425 2022 Generalized Fermat 4823 145066756^65536+1 534877 L5460 2022 Generalized Fermat 4824 112*281^218429-1 534871 L4001 2018 4825 145016656^65536+1 534867 L5078 2022 Generalized Fermat 4826 144973634^65536+1 534859 L5460 2022 Generalized Fermat 4827 144973524^65536+1 534859 L5072 2022 Generalized Fermat 4828 144882226^65536+1 534841 L5460 2022 Generalized Fermat 4829 144756106^65536+1 534816 L5470 2022 Generalized Fermat 4830 144716102^65536+1 534808 L5460 2022 Generalized Fermat 4831 144684440^65536+1 534802 L5474 2022 Generalized Fermat 4832 144675274^65536+1 534800 L5474 2022 Generalized Fermat 4833 144585734^65536+1 534782 L5277 2022 Generalized Fermat 4834 144568054^65536+1 534779 L5460 2022 Generalized Fermat 4835 144485588^65536+1 534763 L5016 2022 Generalized Fermat 4836 144470894^65536+1 534760 L5025 2022 Generalized Fermat 4837 144386092^65536+1 534743 L5473 2022 Generalized Fermat 4838 144248374^65536+1 534716 L4892 2022 Generalized Fermat 4839 144128416^65536+1 534692 L5234 2022 Generalized Fermat 4840 144086288^65536+1 534684 L4905 2022 Generalized Fermat 4841 144084846^65536+1 534684 L4977 2022 Generalized Fermat 4842 143986848^65536+1 534664 L5255 2022 Generalized Fermat 4843 143963966^65536+1 534660 L4899 2022 Generalized Fermat 4844 143877852^65536+1 534643 L5460 2022 Generalized Fermat 4845 143862854^65536+1 534640 L5254 2022 Generalized Fermat 4846 143735714^65536+1 534615 L5265 2022 Generalized Fermat 4847 143676278^65536+1 534603 L4387 2022 Generalized Fermat 4848 143620534^65536+1 534592 L5297 2022 Generalized Fermat 4849 143476918^65536+1 534563 L5460 2022 Generalized Fermat 4850 177*2^1775674-1 534534 L2101 2012 4851 143258560^65536+1 534520 L4742 2022 Generalized Fermat 4852 143228594^65536+1 534514 L5460 2022 Generalized Fermat 4853 143155562^65536+1 534500 L4905 2022 Generalized Fermat 4854 293*2^1775450-1 534467 L2074 2014 4855 142911028^65536+1 534451 L4550 2022 Generalized Fermat 4856 142840816^65536+1 534437 L5470 2022 Generalized Fermat 4857 142701560^65536+1 534409 L4737 2022 Generalized Fermat 4858 593*2^1775256-1 534409 L5516 2022 4859 1005*2^1775235-1 534402 L1828 2014 4860 773*138^249730-1 534395 L5092 2020 4861 142563056^65536+1 534382 L5036 2022 Generalized Fermat 4862 5468*693^188110+1 534375 L5410 2022 4863 142505312^65536+1 534370 L4899 2022 Generalized Fermat 4864 142306284^65536+1 534330 L4726 2022 Generalized Fermat 4865 142293110^65536+1 534328 L5297 2022 Generalized Fermat 4866 897*2^1774913-1 534306 L2519 2022 4867 142036092^65536+1 534276 L5254 2022 Generalized Fermat 4868 142015204^65536+1 534272 L4737 2022 Generalized Fermat 4869 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 4870 141868280^65536+1 534242 L5025 2022 Generalized Fermat 4871 141821432^65536+1 534233 L5297 2022 Generalized Fermat 4872 957*2^1774672-1 534233 L1817 2022 4873 141477572^65536+1 534164 L5051 2022 Generalized Fermat 4874 141368280^65536+1 534142 L4249 2022 Generalized Fermat 4875 141176792^65536+1 534103 L5297 2022 Generalized Fermat 4876 141159612^65536+1 534100 L5467 2022 Generalized Fermat 4877 141127960^65536+1 534094 L5297 2022 Generalized Fermat 4878 140825230^65536+1 534032 L4726 2022 Generalized Fermat 4879 140596486^65536+1 533986 L5101 2022 Generalized Fermat 4880 140563252^65536+1 533979 L5005 2022 Generalized Fermat 4881 140561102^65536+1 533979 L4950 2022 Generalized Fermat 4882 140278338^65536+1 533922 L5432 2022 Generalized Fermat 4883 140182506^65536+1 533902 L5005 2022 Generalized Fermat 4884 140173342^65536+1 533900 L4249 2022 Generalized Fermat 4885 140069668^65536+1 533879 L5374 2022 Generalized Fermat 4886 139976206^65536+1 533860 L5457 2022 Generalized Fermat 4887 139948998^65536+1 533855 L4747 2022 Generalized Fermat 4888 139878242^65536+1 533840 L5453 2022 Generalized Fermat 4889 139530936^65536+1 533770 L5005 2022 Generalized Fermat 4890 139462208^65536+1 533756 L4245 2022 Generalized Fermat 4891 4053*2^1773028-1 533739 L1959 2015 4892 139295348^65536+1 533722 L4371 2021 Generalized Fermat 4893 139275160^65536+1 533717 L4249 2021 Generalized Fermat 4894 139241582^65536+1 533711 L5205 2021 Generalized Fermat 4895 139168954^65536+1 533696 L4245 2021 Generalized Fermat 4896 723*2^1772872-1 533691 L1817 2022 4897 139145838^65536+1 533691 L4245 2021 Generalized Fermat 4898 139138610^65536+1 533689 L4249 2021 Generalized Fermat 4899 139082038^65536+1 533678 L4249 2021 Generalized Fermat 4900 139065554^65536+1 533675 L5312 2021 Generalized Fermat 4901 139061582^65536+1 533674 L5455 2021 Generalized Fermat 4902 1471*2^1772755-1 533656 L1830 2020 4903 138973204^65536+1 533656 L5101 2021 Generalized Fermat 4904 138793926^65536+1 533619 L4747 2021 Generalized Fermat 4905 138710732^65536+1 533602 L4774 2021 Generalized Fermat 4906 138688732^65536+1 533597 L5157 2021 Generalized Fermat 4907 138628730^65536+1 533585 L5101 2021 Generalized Fermat 4908 138554746^65536+1 533570 L4774 2021 Generalized Fermat 4909 24328*52^310932+1 533565 L5410 2019 4910 138484612^65536+1 533555 L4249 2021 Generalized Fermat 4911 137963452^65536+1 533448 L5441 2021 Generalized Fermat 4912 137907846^65536+1 533437 L4774 2021 Generalized Fermat 4913 137877692^65536+1 533430 L4774 2021 Generalized Fermat 4914 137817880^65536+1 533418 L4774 2021 Generalized Fermat 4915 833*2^1771960-1 533417 L1817 2022 4916 137781496^65536+1 533411 L4774 2021 Generalized Fermat 4917 137657614^65536+1 533385 L5332 2021 Generalized Fermat 4918 137591622^65536+1 533371 L5347 2021 Generalized Fermat 4919 137461508^65536+1 533344 L4249 2021 Generalized Fermat 4920 163*2^1771524+1 533285 L1741 2013 4921 137162364^65536+1 533282 L5441 2021 Generalized Fermat 4922 137160034^65536+1 533282 L4249 2021 Generalized Fermat 4923 381*2^1771493+1 533276 L3444 2013 4924 137017216^65536+1 533252 L4249 2021 Generalized Fermat 4925 136992032^65536+1 533247 L4747 2021 Generalized Fermat 4926 136884136^65536+1 533225 L5441 2021 Generalized Fermat 4927 136787614^65536+1 533204 L4267 2021 Generalized Fermat 4928 136637696^65536+1 533173 L5416 2021 Generalized Fermat 4929 136632020^65536+1 533172 L5157 2021 Generalized Fermat 4930 603*2^1771079-1 533151 L1817 2022 4931 136440590^65536+1 533132 L4584 2021 Generalized Fermat 4932 136342206^65536+1 533112 L5416 2021 Generalized Fermat 4933 923*2^1770932-1 533107 L1817 2022 4934 136292214^65536+1 533101 L4905 2021 Generalized Fermat 4935 136268486^65536+1 533096 L4905 2021 Generalized Fermat 4936 795*2^1770840+1 533079 L1505 2013 4937 136030188^65536+1 533046 L5157 2021 Generalized Fermat 4938 135915704^65536+1 533022 L5332 2021 Generalized Fermat 4939 135811052^65536+1 533001 L5157 2021 Generalized Fermat 4940 135805928^65536+1 532999 L4249 2021 Generalized Fermat 4941 135731100^65536+1 532984 L4249 2021 Generalized Fermat 4942 Phi(3,-264017^49152) 532969 L4142 2016 Generalized unique 4943 135579990^65536+1 532952 L4249 2021 Generalized Fermat 4944 135367280^65536+1 532907 L5374 2021 Generalized Fermat 4945 135237122^65536+1 532880 L5432 2021 Generalized Fermat 4946 135052616^65536+1 532841 L5332 2021 Generalized Fermat 4947 134819600^65536+1 532792 L5430 2021 Generalized Fermat 4948 134719104^65536+1 532771 L5430 2021 Generalized Fermat 4949 134695448^65536+1 532766 L4249 2021 Generalized Fermat 4950 134624202^65536+1 532751 L4249 2021 Generalized Fermat 4951 134584144^65536+1 532742 L4249 2021 Generalized Fermat 4952 134346884^65536+1 532692 L5374 2021 Generalized Fermat 4953 134343600^65536+1 532691 L5416 2021 Generalized Fermat 4954 134117398^65536+1 532643 L4249 2021 Generalized Fermat 4955 134014306^65536+1 532621 L5428 2021 Generalized Fermat 4956 665*2^1769303+1 532617 L3441 2013 4957 133971864^65536+1 532612 L4773 2021 Generalized Fermat 4958 133931782^65536+1 532604 L5425 2021 Generalized Fermat 4959 133853526^65536+1 532587 L4942 2021 Generalized Fermat 4960 133718586^65536+1 532559 L5157 2021 Generalized Fermat 4961 473*2^1769101+1 532556 L3459 2013 4962 133629454^65536+1 532540 L5420 2021 Generalized Fermat 4963 133593704^65536+1 532532 L4584 2021 Generalized Fermat 4964 133555442^65536+1 532524 L5419 2021 Generalized Fermat 4965 133476288^65536+1 532507 L5101 2021 Generalized Fermat 4966 133433854^65536+1 532498 L5321 2021 Generalized Fermat 4967 133400670^65536+1 532491 L5347 2021 Generalized Fermat 4968 133350482^65536+1 532480 L5416 2021 Generalized Fermat 4969 133334188^65536+1 532477 L5101 2021 Generalized Fermat 4970 133271846^65536+1 532463 L4788 2021 Generalized Fermat 4971 133215546^65536+1 532451 L5157 2021 Generalized Fermat 4972 133140712^65536+1 532435 L4737 2021 Generalized Fermat 4973 133065238^65536+1 532419 L4299 2021 Generalized Fermat 4974 855*2^1768644+1 532418 L1675 2013 4975 133048112^65536+1 532416 L5101 2021 Generalized Fermat 4976 132987318^65536+1 532403 L4865 2021 Generalized Fermat 4977 132970814^65536+1 532399 L5157 2021 Generalized Fermat 4978 132488280^65536+1 532296 L5101 2021 Generalized Fermat 4979 132429416^65536+1 532283 L4672 2021 Generalized Fermat 4980 99*2^1768187+1 532280 L2517 2011 4981 132385596^65536+1 532273 L5157 2021 Generalized Fermat 4982 132372878^65536+1 532271 L5412 2021 Generalized Fermat 4983 132358424^65536+1 532268 L4672 2021 Generalized Fermat 4984 132285402^65536+1 532252 L5403 2021 Generalized Fermat 4985 132266908^65536+1 532248 L5333 2021 Generalized Fermat 4986 132186042^65536+1 532231 L4672 2021 Generalized Fermat 4987 132120644^65536+1 532216 L5333 2021 Generalized Fermat 4988 132003152^65536+1 532191 L5403 2021 Generalized Fermat 4989 131814642^65536+1 532150 L5101 2021 Generalized Fermat 4990 131796386^65536+1 532146 L4672 2021 Generalized Fermat 4991 131775982^65536+1 532142 L4865 2021 Generalized Fermat 4992 131728816^65536+1 532132 L5254 2021 Generalized Fermat 4993 131714718^65536+1 532129 L4672 2021 Generalized Fermat 4994 131691588^65536+1 532124 L5254 2021 Generalized Fermat 4995 131450430^65536+1 532072 L5101 2021 Generalized Fermat 4996 131419368^65536+1 532065 L5398 2021 Generalized Fermat 4997 131255146^65536+1 532029 L5157 2021 Generalized Fermat 4998 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 4999 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 5000 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 5001 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 5002 110059!+1 507082 p312 2011 Factorial 5003 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 5004 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 5005 30981*14^433735-1 497121 p77 2015 Generalized Woodall 5006 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 5007 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 5008 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 5009 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 5010 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 5011 1098133#-1 476311 p346 2012 Primorial 5012 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 5013 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 5014 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 5015 103040!-1 471794 p301 2010 Factorial 5016 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 5017 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 5018 341351*22^341351-1 458243 p260 2017 Generalized Woodall 5019 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 5020 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 5021 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 5022 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 5023 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 5024 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 5025 176660*18^353320-1 443519 p325 2011 Generalized Woodall 5026 1467763*2^1467763-1 441847 L381 2007 Woodall 5027 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 5028 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5029 94550!-1 429390 p290 2010 Factorial 5030 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 5031 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 5032 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 5033 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 5034 2^1398269-1 420921 G1 1996 Mersenne 35 5035 182402*14^364804-1 418118 p325 2011 Generalized Woodall 5036 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 5037 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 5038 338707*2^1354830+1 407850 L124 2005 Cullen 5039 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 5040 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 5041 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 5042 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 5043 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 5044 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 5045 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 5046 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 5047 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 5048 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 5049 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 5050 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 5051 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 5052 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 5053 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 5054 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 5055 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 5056 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 5057 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 5058 1268979*2^1268979-1 382007 L201 2007 Woodall 5059 2^1257787-1 378632 SG 1996 Mersenne 34 5060 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 5061 843301#-1 365851 p302 2010 Primorial 5062 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 5063 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 5064 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 5065 1195203*2^1195203-1 359799 L124 2005 Woodall 5066 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 5067 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 5068 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 5069 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 5070 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 5071 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 5072 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 5073 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 5074 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 5075 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 5076 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 5077 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 5078 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 5079 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 5080 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 5081 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 5082 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 5083 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 5084 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 5085 2^859433-1 258716 SG 1994 Mersenne 33 5086 2^756839-1 227832 SG 1992 Mersenne 32 5087 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 5088 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 5089 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 5090 667071*2^667071-1 200815 g55 2000 Woodall 5091 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 5092 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 5093 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 5094 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 5095 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 5096 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 5097 392113#+1 169966 p16 2001 Primorial 5098 366439#+1 158936 p16 2001 Primorial 5099 481899*2^481899+1 145072 gm 1998 Cullen 5100 34790!-1 142891 p85 2002 Factorial 5101 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 5102 361275*2^361275+1 108761 DS 1998 Cullen 5103 26951!+1 107707 p65 2002 Factorial 5104 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 5105 65516468355*2^333333-1 100355 L923 2009 Twin (p) 5106 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 5107 21480!-1 83727 p65 2001 Factorial 5108 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 5109 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 5110 262419*2^262419+1 79002 DS 1998 Cullen 5111 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 5112 160204065*2^262148-1 78923 L5115 2021 Twin (p) 5113 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 5114 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 5115 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5116 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 5117 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 5118 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 5119 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 5120 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 5121 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 5122 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 5123 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 5124 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 5125 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 5126 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 5127 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 5128 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 5129 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 5130 12770275971*2^222225-1 66907 L527 2017 Twin (p) 5131 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 5132 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 5133 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 5134 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 5135 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 5136 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 5137 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 5138 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 5139 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 5140 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 5141 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 5142 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 5143 145823#+1 63142 p21 2000 Primorial 5144 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 5145 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 5146 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 5147 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 5148 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 5149 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 5150 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 5151 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 5152 70965694293*2^200006-1 60219 L95 2016 Twin (p) 5153 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 5154 66444866235*2^200003-1 60218 L95 2016 Twin (p) 5155 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 5156 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 5157 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 5158 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 5159 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 5160 2003663613*2^195000-1 58711 L202 2007 Twin (p) 5161 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 5162f Ramanujan tau function at 199^4518 ECPP 57125 E3 2022 ECPP 5163 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 5164 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 5165 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5166 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 5167 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 5168 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5169 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 5170 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 5171 17976255129*2^183241-1 55172 p415 2021 Twin (p) 5172 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 5173 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 5174 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 5175 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 5176 191547657*2^173372-1 52199 L5116 2020 Twin (p) 5177 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 5178 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 5179 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 5180 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 5181 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 5182 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 5183 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 5184 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 5185 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 5186 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 5187 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 5188 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 5189 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 5190 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 5191 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 5192 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 5193 33218925*2^169690-1 51090 g259 2002 Twin (p) 5194 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 5195 10^50000+65859 50001 E3 2022 ECPP 5196 R(49081) 49081 c70 2022 Repunit, unique, ECPP 5197 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 5198 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 5199 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 5200 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 5201 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 5202 110427610*3^100003-1 47722 p415 2021 Twin (p) 5203 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 5204 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 5205 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 5206 3706785456*13^42069-1 46873 p412 2020 Twin (p) 5207 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5208 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 5209 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5210 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 5211 151023*2^151023-1 45468 g25 1998 Woodall 5212 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 5213 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 5214 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 5215 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 5216 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 5217 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 5218 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 5219 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 5220 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 5221 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 5222 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 5223 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 5224 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 5225 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 5226 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 5227 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 5228 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 5229 10^40000+14253 40001 E3 2022 ECPP 5230 p(1289844341) 40000 c84 2020 Partitions, ECPP 5231 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 5232 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 5233 tau(47^4176) 38404 E3 2022 ECPP 5234 3^78296+479975120078336 37357 E4 2022 ECPP 5235 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 5236 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 5237 p(1000007396) 35219 E4 2022 Partitions, ECPP 5238 2^116224-15905 34987 c87 2017 ECPP 5239 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 5240 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 5241 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 5242 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 5243 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 5244 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 5245 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 5246 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 5247 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 5248 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 5249 (18^25667-1)/17 32218 E5 2022 Generalized repunit, ECPP 5250 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 5251 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 5252 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 5253 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 5254 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 5255 V(148091) 30950 c81 2015 Lucas number, ECPP 5256 U(148091) 30949 x49 2021 Fibonacci number, ECPP 5257e Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 5258 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 5259f 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 5260 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 5261 2^99069+9814666761 29823 E4 2022 ECPP 5262 49363*2^98727-1 29725 Y 1997 Woodall 5263 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 5264 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 5265 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 5266 V(140057) 29271 c76 2014 Lucas number,ECPP 5267 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 5268 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 5269 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 5270 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 5271 primV(205011) 28552 x39 2009 Lucas primitive part 5272 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 5273 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 5274 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 5275 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 5276 90825*2^90825+1 27347 Y 1997 Cullen 5277 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 5278 U(130021) 27173 x48 2021 Fibonacci number, ECPP 5279 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 5280 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 5281 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 5282 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 5283 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 5284e (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 5285 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 5286 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 5287 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 5288 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 5289 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 5290 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 5291 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 5292 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 5293 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 5294 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 5295 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 5296 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 5297 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 5298 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 5299 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 5300 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 5301 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 5302 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 5303 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 5304 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 5305 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 5306 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 5307 6917!-1 23560 g1 1998 Factorial 5308 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 5309 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 5310 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 5311 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 5312 p(398256632) 22223 E1 2022 Partitions, ECPP 5313 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 5314 U(104911) 21925 c82 2015 Fibonacci number, ECPP 5315 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 5316 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 5317 6380!+1 21507 g1 1998 Factorial 5318 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 5319 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 5320 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 5321 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 5322 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 5323 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 5324 p(355646102) 21000 E1 2022 Partitions, ECPP 5325 p(350199893) 20838 E7 2022 Partitions, ECPP 5326 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 5327f primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 5328f primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 5329 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 5330 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 5331 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 5332 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 5333 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 5334 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 5335 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 5336 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 5337 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 5338 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 5339 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 5340 p(322610098) 20000 E1 2022 Partitions, ECPP 5341 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 5342 V(94823) 19817 c73 2014 Lucas number, ECPP 5343 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 5344 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 5345 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 5346 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 5347 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 5348 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 5349 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 5350 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 5351 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 5352 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 5353 V(89849) 18778 c70 2014 Lucas number, ECPP 5354 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 5355 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 5356 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 5357 Phi(18827,10) 18480 c47 2014 Unique, ECPP 5358 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5359 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 5360 42209#+1 18241 p8 1999 Primorial 5361 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 5362 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 5363 7457*2^59659+1 17964 Y 1997 Cullen 5364 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5365 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 5366 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 5367 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 5368 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 5369 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 5370 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 5371 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 5372 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 5373 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 5374 U(81839) 17103 p54 2001 Fibonacci number 5375 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 5376 V(81671) 17069 c66 2013 Lucas number, ECPP 5377 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 5378 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 5379 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 5380 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 5381 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 5382 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 5383 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 5384 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 5385 p(221444161) 16569 c77 2017 Partitions, ECPP 5386 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 5387 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5388 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 5389 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 5390 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 5391 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 5392 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 5393 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 5394 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 5395 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 5396 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 5397 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 5398 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 5399 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 5400 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 5401 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 5402 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 5403 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5404 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 5405 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5406 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 5407 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 5408 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 5409 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 5410 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 5411 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5412 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 5413 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 5414 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 5415 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 5416 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 5417 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 5418 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 5419 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 5420 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5421 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 5422 p(158375386) 14011 E1 2022 Partitions, ECPP 5423 p(158295265) 14007 E1 2022 Partitions, ECPP 5424 p(158221457) 14004 E1 2022 Partitions, ECPP 5425 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 5426 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 5427 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 5428 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 5429 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 5430 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 5431 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5432 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 5433 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 5434 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 5435 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 5436 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 5437 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 5438 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 5439 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 5440 p(141528106) 13244 E6 2022 Partitions, ECPP 5441 p(141513546) 13244 E6 2022 Partitions, ECPP 5442 p(141512238) 13244 E6 2022 Partitions, ECPP 5443 p(141255053) 13232 E6 2022 Partitions, ECPP 5444 p(141150528) 13227 E6 2022 Partitions, ECPP 5445 p(141112026) 13225 E6 2022 Partitions, ECPP 5446 p(141111278) 13225 E6 2022 Partitions, ECPP 5447 p(140859260) 13213 E6 2022 Partitions, ECPP 5448 p(140807155) 13211 E6 2022 Partitions, ECPP 5449 p(140791396) 13210 E6 2022 Partitions, ECPP 5450 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 5451 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5452 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 5453 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 5454 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 5455 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5456 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 5457 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 5458 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 5459 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 5460 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 5461 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 5462 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 5463 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 5464 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 5465 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 5466 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 5467 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 5468 V(56003) 11704 p193 2006 Lucas number 5469 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 5470 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 5471 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 5472 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 5473 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 5474 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 5475 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 5476 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 5477 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 5478 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 5479 primU(67825) 11336 x23 2007 Fibonacci primitive part 5480 3610!-1 11277 C 1993 Factorial 5481 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 5482 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 5483 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 5484 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 5485 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 5486 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 5487 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 5488 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 5489 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 5490 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 5491 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 5492 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 5493 3507!-1 10912 C 1992 Factorial 5494 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 5495 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 5496 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 5497 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 5498 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 5499 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 5500 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 5501 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 5502 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 5503 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 5504 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 5505 V(51169) 10694 p54 2001 Lucas number 5506 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 5507 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 5508 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 5509 U(50833) 10624 CH4 2005 Fibonacci number 5510 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 5511 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 5512 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 5513 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 5514 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 5515 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 5516 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 5517 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 5518 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5519 24029#+1 10387 C 1993 Primorial 5520 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 5521 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 5522 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 5523 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 5524 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 5525 23801#+1 10273 C 1993 Primorial 5526 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 5527 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 5528 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 5529 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 5530 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 5531 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 5532 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 5533 32469*2^32469+1 9779 MM 1997 Cullen 5534 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 5535 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 5536 8073*2^32294+1 9726 MM 1997 Cullen 5537 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 5538 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 5539 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 5540 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 5541 V(44507) 9302 CH3 2005 Lucas number 5542 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 5543 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 5544 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 5545 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 5546 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 5547 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5548 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 5549 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 5550 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 5551 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 5552 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 5553 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 5554 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 5555 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 5556 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5557 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 5558 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 5559 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 5560 18523#+1 8002 D 1989 Primorial 5561 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 5562 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 5563 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 5564 U(37511) 7839 x13 2005 Fibonacci number 5565 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 5566 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 5567 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 5568 V(36779) 7687 CH3 2005 Lucas number 5569 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 5570 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 5571 V(35449) 7409 p12 2001 Lucas number 5572 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 5573 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 5574 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 5575 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 5576 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 5577 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 5578 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 5579 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 5580 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 5581 23005*2^23005-1 6930 Y 1997 Woodall 5582 22971*2^22971-1 6920 Y 1997 Woodall 5583 15877#-1 6845 CD 1992 Primorial 5584 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 5585 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 5586 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 5587 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 5588 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 5589 13649#+1 5862 D 1987 Primorial 5590 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 5591 18885*2^18885-1 5690 K 1987 Woodall 5592 1963!-1 5614 CD 1992 Factorial 5593 13033#-1 5610 CD 1992 Primorial 5594 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 5595 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 5596 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 5597 U(25561) 5342 p54 2001 Fibonacci number 5598 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 5599 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 5600 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 5601 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 5602 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 5603 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 5604 11549#+1 4951 D 1986 Primorial 5605 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 5606 7911*2^15823-1 4768 K 1987 Woodall 5607 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 5608 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 5609 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5610 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5611 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 5612 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 5613 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 5614 1477!+1 4042 D 1984 Factorial 5615 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 5616 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 5617 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 5618 12379*2^12379-1 3731 K 1984 Woodall 5619 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 5620 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 5621 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 5622 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 5623 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 5624 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 5625 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 5626 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 5627 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 5628 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 5629 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 5630 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 5631 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 5632 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 5633 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 5634 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 5635 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 5636 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 5637 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5638 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 5639 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 5640 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 5641 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 5642 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 5643 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 5644 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 5645 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 5646 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 5647 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 5648 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 5649 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 5650 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 5651 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5652 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 5653 V(14449) 3020 DK 1995 Lucas number 5654 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 5655 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 5656 U(14431) 3016 p54 2001 Fibonacci number 5657 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 5658 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5659 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5660 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 5661 V(13963) 2919 c11 2002 Lucas number, ECPP 5662 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 5663 9531*2^9531-1 2874 K 1984 Woodall 5664 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 5665 6569#-1 2811 D 1992 Primorial 5666 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 5667 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 5668 V(12251) 2561 p54 2001 Lucas number 5669 974!-1 2490 CD 1992 Factorial 5670 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 5671 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 5672 7755*2^7755-1 2339 K 1984 Woodall 5673 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 5674 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 5675 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 5676 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 5677 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 5678 V(10691) 2235 DK 1995 Lucas number 5679 872!+1 2188 D 1983 Factorial 5680 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 5681 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 5682 4787#+1 2038 D 1984 Primorial 5683 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 5684 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 5685 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 5686 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 5687 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 5688 U(9677) 2023 c2 2000 Fibonacci number, ECPP 5689 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 5690 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 5691 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 5692 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 5693 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 5694 6611*2^6611+1 1994 K 1984 Cullen 5695 4583#-1 1953 D 1992 Primorial 5696 U(9311) 1946 DK 1995 Fibonacci number 5697 4547#+1 1939 D 1984 Primorial 5698 4297#-1 1844 D 1992 Primorial 5699 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 5700 V(8467) 1770 c2 2000 Lucas number, ECPP 5701 4093#-1 1750 CD 1992 Primorial 5702 5795*2^5795+1 1749 K 1984 Cullen 5703 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 5704 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 5705 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 5706 V(7741) 1618 DK 1995 Lucas number 5707 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 5708 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 5709 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 5710 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 5711 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 5712 83*2^5318-1 1603 K 1984 Woodall 5713 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 5714 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 5715 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 5716 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 5717 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 5718 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5719 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 5720 4713*2^4713+1 1423 K 1984 Cullen 5721 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5722 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 5723 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 5724 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 5725 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 5726 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 5727 V(5851) 1223 DK 1995 Lucas number 5728 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 5729 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 5730 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 5731 U(5387) 1126 WM 1990 Fibonacci number 5732 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 5733 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 5734 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 5735 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 5736 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 5737 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 5738 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 5739 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 5740 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 5741 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 5742 R(1031) 1031 WD 1985 Repunit 5743 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 5744 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 5745 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 5746 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 5747 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 5748 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 5749 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 5750 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 5751 V(4793) 1002 DK 1995 Lucas number 5752 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 5753 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 5754 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 5755 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 5756 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 5757 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g59 Linton, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g308 Angel, GFN17Sieve, GFNSearch, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g346 Dausch, ProthSieve, PrimeSierpinski, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g411 Brittenham, NewPGen, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L47 Bishop_D, ProthSieve, RieselSieve, LLR L51 Hedges, NewPGen, PRP, LLR L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L134 Childers, ProthSieve, RieselSieve, LLR L137 Jaworski, Rieselprime, LLR L158 Underwood, NewPGen, 321search, LLR L160 Wong, ProthSieve, RieselSieve, LLR L162 Banka, NewPGen, 12121search, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L172 Smith, ProthSieve, RieselSieve, LLR L175 Duggan, ProthSieve, RieselSieve, LLR L177 Kwok, Rieselprime, LLR L179 White, ProthSieve, RieselSieve, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L251 Burt, NewPGen, Rieselprime, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L257 Ritschel, Srsieve, Rieselprime, LLR L260 Soule, Srsieve, Rieselprime, LLR L268 Metcalfe, Srsieve, Rieselprime, LLR L282 Curtis, Srsieve, Rieselprime, LLR L321 Broadhurst, NewPGen, OpenPFGW, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L545 AndersonM, NewPGen, Rieselprime, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L621 Sutton1, Srsieve, Rieselprime, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L632 Stokkedalen, Rieselprime, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L806 Stevens, Srsieve, LLR L840 Vogel, Srsieve, Rieselprime, LLR L895 Dinkel, Srsieve, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1016 Hartel, Srsieve, PrimeGrid, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1139 Harvey1, PSieve, Srsieve, PrimeGrid, LLR L1141 Ogawa, NewPGen, LLR L1153 Kaiser1, Srsieve, PrimeGrid, 12121search, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1186 Richard1, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1210 Rhodes, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1312 Nye, PSieve, Srsieve, PrimeGrid, LLR L1344 Kobara, PSieve, Srsieve, PrimeGrid, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1356 Gockel, PSieve, Srsieve, PrimeGrid, LLR L1360 Tatterson, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1403 Andrews1, PSieve, Srsieve, PrimeGrid, LLR L1408 Emery, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1413 Morton, PSieve, Srsieve, PrimeGrid, LLR L1415 Englund, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1480 Goudie, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1487 Krompolc, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1505 Watanabe, PSieve, Srsieve, PrimeGrid, LLR L1512 Obara, PSieve, Srsieve, PrimeGrid, LLR L1513 Miller1, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1595 Cilliers, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1753 Iwasaki, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1803 Puppi, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1809 Vogel, PSieve, Srsieve, NPLB, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1819 Gunn, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1830 Bonath, PSieve, Srsieve, NPLB, LLR L1847 Liu1, PSieve, Srsieve, PrimeGrid, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L1983 Safford, PSieve, Srsieve, PrimeGrid, LLR L1990 Makowski, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2019 Wood_D, PSieve, Srsieve, PrimeGrid, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2051 Reich, PSieve, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2058 Sas, PSieve, Srsieve, PrimeGrid, LLR L2070 Schemmel, PSieve, Srsieve, PrimeGrid, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2100 Christensen, PSieve, Srsieve, PrimeGrid, LLR L2101 Tutusaus, PSieve, Srsieve, Rieselprime, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2122 Megele, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2126 Senftleben, PSieve, Srsieve, PrimeGrid, LLR L2131 Johnson4, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2321 Medcalf, PSieve, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2327 Oh, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2338 Burt, PSieve, Srsieve, Rieselprime, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2399 Bouch, PSieve, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2413 Blyth, PSieve, Srsieve, PrimeGrid, LLR L2419 Gathright, PSieve, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2444 Batalov, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2494 Javtokas, PSieve, Srsieve, PrimeGrid, LLR L2507 Geis, PSieve, Srsieve, PrimeGrid, LLR L2517 McPherson, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2532 Papp2, PSieve, Srsieve, PrimeGrid, LLR L2533 Yoshikawa, PSieve, Srsieve, PrimeGrid, LLR L2545 Nose, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2562 Jones3, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2594 Sheridan, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2627 Graham2, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2649 Brandstaetter, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2673 Burningham, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2703 Armstrong, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2724 AverayJones, PSieve, Srsieve, PrimeGrid, LLR L2742 Fluttert, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2823 Loureiro, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2827 Melzer, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2859 Keenan, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2895 Leonard1, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2963 Newberry, PSieve, Srsieve, PrimeGrid, LLR L2967 Ryjkov, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2981 Yoshigoe, PSieve, Srsieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3034 Wakolbinger, PSieve, Srsieve, PrimeGrid, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3037 Noltensmeier, PSieve, Srsieve, PrimeGrid, LLR L3043 Hayase, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3049 Tardy, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3075 Goellner, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3105 Eldredge, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3131 Kopp, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3154 Hentrich, PSieve, Srsieve, PrimeGrid, LLR L3157 Becker2, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3179 Hamada, PSieve, Srsieve, PrimeGrid, LLR L3180 Poon, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3190 Vogel, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3206 Chang2, PSieve, Srsieve, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3213 OBrien1, PSieve, Srsieve, PrimeGrid, LLR L3221 Vicena, PSieve, Srsieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3233 Nadeau, PSieve, Srsieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3267 Cain, PSieve, Srsieve, PrimeGrid, LLR L3276 Jeka, PSieve, Srsieve, PrimeGrid, LLR L3277 Wijnen, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3279 Hollander, PSieve, Srsieve, PrimeGrid, LLR L3289 Evans1, PSieve, Srsieve, PrimeGrid, LLR L3290 Bednar1, PSieve, Srsieve, PrimeGrid, LLR L3294 Bartlett, PSieve, Srsieve, PrimeGrid, LLR L3313 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3336 Dongen, Siemelink, Srsieve, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3354 Willig, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3377 Ollivier, PSieve, Srsieve, PrimeGrid, LLR L3378 Glasgow, PSieve, Srsieve, PrimeGrid, LLR L3385 Rassokhin, PSieve, Srsieve, PrimeGrid, LLR L3410 Kurtovic, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3415 Johnston1, PSieve, Srsieve, PrimeGrid, LLR L3418 Stein, PSieve, Srsieve, PrimeGrid, LLR L3422 Micom, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3439 Huang, PSieve, Srsieve, PrimeGrid, LLR L3440 Pelikan, PSieve, Srsieve, PrimeGrid, LLR L3441 Ilves, PSieve, Srsieve, PrimeGrid, LLR L3444 Crane, PSieve, Srsieve, PrimeGrid, LLR L3445 Bishopp, PSieve, Srsieve, PrimeGrid, LLR L3446 Marshall3, PSieve, Srsieve, PrimeGrid, LLR L3452 Resto, PSieve, Srsieve, PrimeGrid, LLR L3453 Benes, PSieve, Srsieve, PrimeGrid, LLR L3456 Murai, PSieve, Srsieve, PrimeGrid, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3464 Ferrell, PSieve, Srsieve, PrimeGrid, LLR L3470 Fisan, PSieve, Srsieve, PrimeGrid, LLR L3471 Gieorgijewski, PSieve, Srsieve, PrimeGrid, LLR L3472 Hernas, PSieve, Srsieve, PrimeGrid, LLR L3473 Mizelle, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3487 Ziemann, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3518 Papendick, PSieve, Srsieve, PrimeGrid, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3538 Beard1, PSieve, Srsieve, PrimeGrid, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3555 Cervelle, PSieve, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3577 Sriworarat, PSieve, Srsieve, PrimeGrid, LLR L3580 Nelson1, PSieve, Srsieve, PrimeGrid, LLR L3586 Wharton, PSieve, Srsieve, PrimeGrid, LLR L3588 Matousek, PSieve, Srsieve, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3612 Smits, PSieve, Srsieve, PrimeGrid, LLR L3625 Haymoz, PSieve, Srsieve, PrimeGrid, LLR L3630 Brebois, PSieve, Srsieve, PrimeGrid, LLR L3640 Stopper, PSieve, Srsieve, PrimeGrid, LLR L3641 Adams4, PSieve, Srsieve, PrimeGrid, LLR L3650 Smit, PSieve, Srsieve, PrimeGrid, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3666 Bielecki, PSieve, Srsieve, PrimeGrid, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3682 Schaible, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3688 Hasznos, PSieve, Srsieve, PrimeGrid, LLR L3691 Williams5, PSieve, Srsieve, PrimeGrid, LLR L3696 Linderson, PSieve, Srsieve, PrimeGrid, LLR L3700 Kim4, PSieve, Srsieve, PrimeGrid, LLR L3709 Buss, PSieve, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3728 Rietveld, PSieve, Srsieve, PrimeGrid, LLR L3731 Deram, PSieve, Srsieve, PrimeGrid, LLR L3733 Bryniarski, PSieve, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3736 Lukosevisius, PSieve, Srsieve, PrimeGrid, LLR L3737 Cartiaux, PSieve, Srsieve, PrimeGrid, LLR L3738 Larsson1, PSieve, Srsieve, PrimeGrid, LLR L3739 Gournay, PSieve, Srsieve, PrimeGrid, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3744 Green1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3767 Huang1, PSieve, Srsieve, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3785 Reichel, PSieve, Srsieve, PrimeGrid, LLR L3787 Palumbo, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3790 Tamagawa, PSieve, Srsieve, PrimeGrid, LLR L3797 Schmidt3, PSieve, Srsieve, PrimeGrid, LLR L3800 Amschl, PSieve, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3838 Boyden, PSieve, Srsieve, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3843 Whiteley, PSieve, Srsieve, PrimeGrid, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3855 Lunner, PSieve, Srsieve, PrimeGrid, LLR L3857 Hudec, PSieve, Srsieve, PrimeGrid, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3860 Cimrman, PSieve, Srsieve, PrimeGrid, LLR L3861 Roemer, PSieve, Srsieve, PrimeGrid, LLR L3862 Gudenschwager, PSieve, Srsieve, PrimeGrid, LLR L3863 WaldenForrest, PSieve, Srsieve, PrimeGrid, LLR L3864 Piantoni, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3867 Traebert, PSieve, Srsieve, PrimeGrid, LLR L3868 Miller3, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3873 Sala, PSieve, Srsieve, PrimeGrid, LLR L3876 Apreutesei, PSieve, Srsieve, PrimeGrid, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3886 Vogel, Srsieve, CRUS, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3890 Beeson, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3909 Taylor2, PSieve, Srsieve, PrimeGrid, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3914 Matsuda, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3967 Inouye, PSieve, Srsieve, Rieselprime, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4026 Batalov, Cyclo, EMsieve, PIES, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4040 Oddone, PSieve, Srsieve, PrimeGrid, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4076 Lacroix, PSieve, Srsieve, NPLB, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4106 Ga, PSieve, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4109 Palmer1, PSieve, Srsieve, PrimeGrid, LLR L4111 Leps1, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4118 Slegel, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4122 Sasaki1, PSieve, Srsieve, PrimeGrid, LLR L4123 Bush, PSieve, Srsieve, PrimeGrid, LLR L4133 Ito, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4191 Mahan, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4262 Hutchins, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4269 Romanov, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4283 Crawford1, PSieve, Srsieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4287 Suzuki1, PSieve, Srsieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4299 Ertemalp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4323 Seisums, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4341 Goetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4347 Schaeffer, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4352 Fahlenkamp1, PSieve, Srsieve, PrimeGrid, LLR L4358 Tesarz, PSieve, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4371 Schmidt2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4521 Curtis, Srsieve, CRUS, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4547 Nair, TwinGen, NewPGen, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4575 Gingrich2, Srsieve, CRUS, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4629 Chen2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4714 James1, Srsieve, CRUS, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4733 Brazier, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4734 Howe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4788 Griffin1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4812 Nezumi, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4828 Gahan, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4837 Hines, Srsieve, CRUS, LLR L4839 Harris, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4853 Jackson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4862 McNary, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4865 Schmeisser, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4881 Bonath, Srsieve, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4894 Bredl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4899 Schioler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4927 Smith12, Srsieve, SRBase, CRUS, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4940 Baur, Srsieve, CRUS, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4950 Baur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4961 Vornicu, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4968 Kaczala, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4974 Monroe, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4994 Wong, Srsieve, NewPGen, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5000 Wimmer2, Srsieve, CRUS, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5016 NebredaJunghans, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5049 Stephens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5077 Martinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5092 Javens1, Srsieve, CRUS, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5101 Candido, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5118 Vanderveen1, PSieve, Srsieve, PrimeGrid, Rieselprime, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5121 Spinelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5128 Gulla, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5204 Lachance, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5205 Zuschlag, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5209 Hansen1, Srsieve, CRUS, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5211 Orpen1, Srsieve, CRUS, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5218 Atnashev, LLR2, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5222 Wolff, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5227 Nagayama, Srsieve, CRUS, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5234 Greeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5251 Bowe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5255 Hochwald, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5275 Templin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5322 Monnin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5327 Shenton, LLR2, Srsieve, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5333 Jurgen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5340 Ogawa, MultiSieve, NewPGen, LLR L5342 Rodenkirch, Srsieve, CRUS, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5347 Whyte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5349 Piliksers, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5355 Henriksson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5357 Ivanek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5361 Schneider6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5365 Racanelli, Srsieve, CRUS, LLR L5366 Michael, Srsieve, CRUS, LLR L5367 Hsu2, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5370 Piotrowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5374 Yanev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5386 Greubel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5388 Dewar, Srsieve, CRUS, LLR L5389 Doornink, TwinGen, LLR L5390 Lemkau, Srsieve, CRUS, LLR L5391 Black1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5398 Mittelstadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5409 Lu, Srsieve, CRUS, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5412 Poon1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5413 David1, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5415 VanHullebusch, Srsieve, CRUS, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5419 Straub, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5420 Gaillard2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5428 Akimori, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5430 TakashitaBynum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5432 Tatsianenka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5436 Dewar1, Srsieve, CRUS, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5455 Shtov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5457 Iwasaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5470 Latge, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5473 StPierre, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5474 Burns1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5483 DeRoest, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5490 Vasiliu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5491 Piaive, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5495 Gauch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5498 Shimizu1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5515 Pollak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5516 Piesker, PSieve, Srsieve, NPLB, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5519 Atnashev, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5520 Bennett1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5521 Terwisscha, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5522 Lynch1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5525 Ou1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5526 Kickler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5528 Hebr, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5533 Schadt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5538 Derrera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5539 Choliy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5542 Rauso, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5551 Marler, PSieve, Srsieve, NPLB, LLR L5552 Plotkin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5561 Howell, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5577 Utebaev, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5580 Ivanek1, Srsieve, CRUS, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5591 Yuan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5593 DeGroot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5597 Kodey, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5598 Rodermond, PSieve, Srsieve, NPLB, LLR L5599 Jayaputera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5602 Wen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5603 Homola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5604 Takahashi2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5605 Kocoj, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5617 Sliwicki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5620 He, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5622 Liu7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5623 John1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5628 Baranchikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5630 Orpen1, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5633 Qian1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5635 Koudelka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5642 Hakozaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5643 Fisher1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5644 Shen1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5654 DeJesus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5659 Sniekers, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5660 Andrews2, LLR L5661 Gollinger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5664 Kaczmarek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5665 Onodera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p195 Ogawa, NewPGen, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p254 Vogel, Srsieve, CRUS, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p257 Siemelink, Srsieve, OpenPFGW p258 Batalov, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p271 Dettweiler, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p281 Domanov1, Srsieve, NPLB, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p292 Dausch, Srsieve, SierpinskiRiesel, OpenPFGW p294 Batalov, EMsieve, PIES, LLR, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p300 Gramolin, NewPGen, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p341 Schmidt2, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p353 Yost, Srsieve, PrimeGrid, SierpinskiRiesel, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p366 Demeyer, Siemelink, Srsieve, CRUS, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p383 Maloy, OpenPFGW p384 Booker, OpenPFGW p385 Rajala, Srsieve, CRUS, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p390 Jaworski, Srsieve, Rieselprime, Prime95, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p396 Ikisugi, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p403 Bonath, Cksieve, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x46 Otremba, Fpsieve, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young