THE LARGEST KNOWN PRIMES (Primes with 800,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Tue 28 Jun 2022 06:39:05 PM CDT) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13 202705*2^21320516+1 6418121 L5181 2021 14 2^20996011-1 6320430 G6 2003 Mersenne 40 15 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 16 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 17 168451*2^19375200+1 5832522 L4676 2017 18d 3*2^18924988-1 5696990 L5530 2022 19 69*2^18831865-1 5668959 L4965 2021 20 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 21f 3*2^18196595-1 5477722 L5461 2022 22 3*2^17748034-1 5342692 L5404 2021 23 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 24e 3622*5^7558139-1 5282917 L4965 2022 25 7*6^6772401+1 5269954 L4965 2019 26 8508301*2^17016603-1 5122515 L4784 2018 Woodall 27 3*2^16819291-1 5063112 L5230 2021 28 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 29 69*2^15866556-1 4776312 L4965 2021 30 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 31 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 32 6*5^6546983+1 4576146 L4965 2020 33 69*2^14977631-1 4508719 L4965 2021 34 192971*2^14773498-1 4447272 L4965 2021 35 6962*31^2863120-1 4269952 L5410 2020 36a 37*2^14166940+1 4264676 L4965 2022 37 99739*2^14019102+1 4220176 L5008 2019 38f 69*2^13832885-1 4164116 L4965 2022 39 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 40 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 41 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 42 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 43 2^13466917-1 4053946 G5 2001 Mersenne 39 44 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 45 206039*2^13104952-1 3944989 L4965 2021 46 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 47 19249*2^13018586+1 3918990 SB10 2007 48 2293*2^12918431-1 3888839 L4965 2021 49 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 50 69*2^12231580-1 3682075 L4965 2021 51 27*2^12184319+1 3667847 L4965 2021 52 3*2^11895718-1 3580969 L4159 2015 53b 37*2^11855148+1 3568757 L4965 2022 54 3*2^11731850-1 3531640 L4103 2015 55 69*2^11718455-1 3527609 L4965 2020 56a 41*2^11676439+1 3514960 L4965 2022 57b 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 58 69*2^11604348-1 3493259 L4965 2020 59 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 60 3*2^11484018-1 3457035 L3993 2014 61 193997*2^11452891+1 3447670 L4398 2018 62 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 63 9221*2^11392194-1 3429397 L5267 2021 64 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 65 5*2^11355764-1 3418427 L4965 2021 66 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 67 146561*2^11280802-1 3395865 L5181 2020 68 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 69 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 70 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 71 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 72 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 73 9271*2^11134335-1 3351773 L4965 2021 74 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 75 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 76 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 77d 27*2^10902757-1 3282059 L4965 2022 78 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 79b 11*2^10803449+1 3252164 L4965 2022 80b 11*2^10797109+1 3250255 L4965 2022 81b 7*2^10612737-1 3194754 L4965 2022 82a 37*2^10599476+1 3190762 L4965 2022 83 5*2^10495620-1 3159498 L4965 2021 84 5*2^10349000-1 3115361 L4965 2021 85 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 86 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 87 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 88 475856^524288+1 2976633 L3230 2012 Generalized Fermat 89 9*2^9778263+1 2943552 L4965 2020 90 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 91 356926^524288+1 2911151 L3209 2012 Generalized Fermat 92 341112^524288+1 2900832 L3184 2012 Generalized Fermat 93e 43*2^9596983-1 2888982 L4965 2022 94 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 95 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 96 27653*2^9167433+1 2759677 SB8 2005 97 90527*2^9162167+1 2758093 L1460 2010 98 6795*2^9144320-1 2752719 L4965 2021 99 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 100a 63838*5^3887851-1 2717497 L5558 2022 101 13*2^8989858+1 2706219 L4965 2020 102c 4159*2^8938471-1 2690752 L4965 2022 103 273809*2^8932416-1 2688931 L1056 2017 104 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 105 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 106 2038*366^1028507-1 2636562 L2054 2016 107a 64598*5^3769854-1 2635020 L5427 2022 108a 8*785^900325+1 2606325 L4786 2022 109 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 110 75898^524288+1 2558647 p334 2011 Generalized Fermat 111 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 112 39*2^8413422+1 2532694 L5232 2021 113 31*2^8348000+1 2513000 L5229 2021 114 27*2^8342438-1 2511326 L3483 2021 115 3687*2^8261084-1 2486838 L4965 2021 116 273662*5^3493296-1 2441715 L5444 2021 117 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 118 102818*5^3440382-1 2404729 L5427 2021 119 11*2^7971110-1 2399545 L2484 2019 120 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 121 3177*2^7954621-1 2394584 L4965 2021 122 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 123 7*6^3072198+1 2390636 L4965 2019 124 3765*2^7904593-1 2379524 L4965 2021 125 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 126 861*2^7895451-1 2376771 L4965 2021 127 28433*2^7830457+1 2357207 SB7 2004 128 5*2^7755002-1 2334489 L4965 2021 129 2545*2^7732265-1 2327648 L4965 2021 130 5539*2^7730709-1 2327180 L4965 2021 131 4817*2^7719584-1 2323831 L4965 2021 132 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 133e 9467*2^7680034-1 2311925 L4965 2022 134 45*2^7661004+1 2306194 L5200 2020 135 15*2^7619838+1 2293801 L5192 2020 136 3597*2^7580693-1 2282020 L4965 2021 137 7401*2^7523295-1 2264742 L4965 2021 138 45*2^7513661+1 2261839 L5179 2020 139 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 140 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 141 109838*5^3168862-1 2214945 L5129 2020 142 101*2^7345194-1 2211126 L1884 2019 143 15*2^7300254+1 2197597 L5167 2020 144e 422429!+1 2193027 p425 2022 Factorial 145 1759*2^7284439-1 2192838 L4965 2021 146 737*2^7269322-1 2188287 L4665 2017 147 118568*5^3112069+1 2175248 L690 2020 148 6039*2^7207973-1 2169820 L4965 2021 149 502573*2^7181987-1 2162000 L3964 2014 150 402539*2^7173024-1 2159301 L3961 2014 151 3343*2^7166019-1 2157191 L1884 2016 152 161041*2^7107964+1 2139716 L4034 2015 153 27*2^7046834+1 2121310 L3483 2018 154 1759*2^7046791-1 2121299 L4965 2021 155 327*2^7044001-1 2120459 L4965 2021 156 5*2^7037188-1 2118406 L4965 2021 157 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 158 33661*2^7031232+1 2116617 SB11 2007 159 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 160 207494*5^3017502-1 2109149 L5083 2020 161 15*2^6993631-1 2105294 L4965 2021 162f 8943501*2^6972593-1 2098967 L466 2022 163 2^6972593-1 2098960 G4 1999 Mersenne 38 164 6219*2^6958945-1 2094855 L4965 2021 165 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 166 238694*5^2979422-1 2082532 L5081 2020 167 4*72^1119849-1 2079933 L4444 2016 168 33*2^6894190-1 2075360 L4965 2021 169c 2345*2^6882320-1 2071789 L4965 2022 170 146264*5^2953282-1 2064261 L1056 2020 171 69*2^6838971-1 2058738 L5037 2020 172 35816*5^2945294-1 2058677 L5076 2020 173 127*2^6836153-1 2057890 L1862 2018 174 19*2^6833086+1 2056966 L5166 2020 175 40597*2^6808509-1 2049571 L3749 2013 176 283*2^6804731-1 2048431 L2484 2020 177 1861709*2^6789999+1 2044000 L5191 2020 178 5781*2^6789459-1 2043835 L4965 2021 179 8435*2^6786180-1 2042848 L4965 2021 180 51*2^6753404+1 2032979 L4965 2020 181 9995*2^6711008-1 2020219 L4965 2020 182 39*2^6684941+1 2012370 L5162 2020 183 6679881*2^6679881+1 2010852 L917 2009 Cullen 184 37*2^6660841-1 2005115 L3933 2014 185 39*2^6648997+1 2001550 L5161 2020 186 304207*2^6643565-1 1999918 L3547 2013 187 69*2^6639971-1 1998833 L5037 2020 188 6471*2^6631137-1 1996175 L4965 2021 189 1319*2^6506224-1 1958572 L4965 2021 190 322498*5^2800819-1 1957694 L4954 2019 191 88444*5^2799269-1 1956611 L3523 2019 192 13*2^6481780+1 1951212 L4965 2020 193 21*2^6468257-1 1947141 L4965 2021 194 138514*5^2771922+1 1937496 L4937 2019 195a 33*2^6432160-1 1936275 L4965 2022 196 15*2^6429089-1 1935350 L4965 2021 197 398023*2^6418059-1 1932034 L3659 2013 198 631*2^6359347-1 1914357 L4965 2021 199 1995*2^6333396-1 1906546 L4965 2021 200 1582137*2^6328550+1 1905090 L801 2009 Cullen 201 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 202 3303*2^6264946-1 1885941 L4965 2021 203d 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 204e 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 205 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 206 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 207 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 208 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 209 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 210 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 211 7*6^2396573+1 1864898 L4965 2019 212 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 213 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 214 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 215 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 216 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 217 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 218 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 219 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 220 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 221 194368*5^2638045-1 1843920 L690 2018 222 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 223 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 224 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 225 66916*5^2628609-1 1837324 L690 2018 226 3*2^6090515-1 1833429 L1353 2010 227 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 228 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 229 8349*2^6082397-1 1830988 L4965 2021 230 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 231 32*470^683151+1 1825448 L4064 2021 232 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 233 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 234 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 235 9999*2^6037057-1 1817340 L4965 2021 236 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 237b 33*2^6019138-1 1811943 L4965 2022 238 1583*2^5989282-1 1802957 L4036 2015 239 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 240 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 241 327926*5^2542838-1 1777374 L4807 2018 242 81556*5^2539960+1 1775361 L4809 2018 243 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 244 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 245 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 246 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 247 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 248 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 249 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 250 7*2^5775996+1 1738749 L3325 2012 251 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 252 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 253 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 254 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 255b (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 256 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 257 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 258 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 259 1243*2^5686715-1 1711875 L1828 2016 260 25*2^5658915-1 1703505 L1884 2021 261 41*2^5651731+1 1701343 L1204 2020 262 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 263 9*2^5642513+1 1698567 L3432 2013 264 10*3^3550446+1 1693995 L4965 2020 265 2622*11^1621920-1 1689060 L2054 2015 266 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 267 301562*5^2408646-1 1683577 L4675 2017 268 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 269 171362*5^2400996-1 1678230 L4669 2017 270 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 271 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 272 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 273 252191*2^5497878-1 1655032 L3183 2012 274 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 275 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 276 258317*2^5450519+1 1640776 g414 2008 277 7*6^2104746+1 1637812 L4965 2019 278 5*2^5429494-1 1634442 L3345 2017 279 43*2^5408183-1 1628027 L1884 2018 280 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 281 1349*2^5385004-1 1621051 L1828 2017 282 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 283 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 284 45*2^5308037+1 1597881 L4761 2019 285 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 286 7*2^5229669-1 1574289 L4965 2021 287 180062*5^2249192-1 1572123 L4435 2016 288 124125*6^2018254+1 1570512 L4001 2019 289 27*2^5213635+1 1569462 L3760 2015 290 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 291f 308084!+1 1557176 p425 2022 Factorial 292 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 293 25*2^5152151-1 1550954 L1884 2020 294 53546*5^2216664-1 1549387 L4398 2016 295 773620^262144+1 1543643 L3118 2012 Generalized Fermat 296 39*2^5119458+1 1541113 L1204 2019 297 607*26^1089034+1 1540957 L5410 2021 298 223*2^5105835-1 1537012 L2484 2019 299 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 300 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 301 51*2^5085142-1 1530782 L760 2014 302 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 303 676754^262144+1 1528413 L2975 2012 Generalized Fermat 304 296024*5^2185270-1 1527444 L671 2016 305 5359*2^5054502+1 1521561 SB6 2003 306 13*2^4998362+1 1504659 L3917 2014 307 525094^262144+1 1499526 p338 2012 Generalized Fermat 308 92158*5^2145024+1 1499313 L4348 2016 309 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 310 77072*5^2139921+1 1495746 L4340 2016 311 2*3^3123036+1 1490068 L5043 2020 312a 519397*2^4908893-1 1477730 L5410 2022 313 306398*5^2112410-1 1476517 L4274 2016 314 265711*2^4858008+1 1462412 g414 2008 315 154222*5^2091432+1 1461854 L3523 2015 316 1271*2^4850526-1 1460157 L1828 2012 317b 333*2^4846958-1 1459083 L5546 2022 318 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 319 361658^262144+1 1457075 p332 2011 Generalized Fermat 320 100186*5^2079747-1 1453686 L4197 2015 321f 288465!+1 1449771 p3 2022 Factorial 322 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 323 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 324 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 325 653*10^1435026-1 1435029 p355 2014 326 197*2^4765318-1 1434506 L5175 2021 327 188*468^535963+1 1431156 L4832 2019 328 3267113#-1 1418398 p301 2021 Primorial 329 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 330 1229*2^4703492-1 1415896 L1828 2018 331 144052*5^2018290+1 1410730 L4146 2015 332 195*2^4685711-1 1410542 L5175 2021 333 9*2^4683555-1 1409892 L1828 2012 334 31*2^4673544+1 1406879 L4990 2019 335 34*993^469245+1 1406305 L4806 2018 336 79*2^4658115-1 1402235 L1884 2018 337 39*2^4657951+1 1402185 L1823 2019 338 4*650^498101-1 1401116 L4294 2021 339 11*2^4643238-1 1397755 L2484 2014 340 68*995^465908-1 1396712 L4001 2017 341 7*6^1793775+1 1395830 L4965 2019 342 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 343 27*2^4583717-1 1379838 L2992 2014 344 121*2^4553899-1 1370863 L3023 2012 345 27*2^4542344-1 1367384 L1204 2014 346 29*2^4532463+1 1364409 L4988 2019 347 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 348 145310^262144+1 1353265 p314 2011 Generalized Fermat 349 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 350 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 351 36772*6^1723287-1 1340983 L1301 2014 352 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 353 151*2^4424321-1 1331856 L1884 2016 354 195*2^4373994-1 1316706 L5175 2020 355b (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 356 49*2^4365175-1 1314051 L1959 2017 357 49*2^4360869-1 1312755 L1959 2017 358 13*2^4333087-1 1304391 L1862 2018 359 353159*2^4331116-1 1303802 L2408 2011 360b 9959*2^4308760-1 1297071 L5037 2022 361 23*2^4300741+1 1294654 L4147 2019 362 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 363 141941*2^4299438-1 1294265 L689 2011 364a 612749*2^4254500-1 1280738 L5410 2022 365 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 366 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 367 3*2^4235414-1 1274988 L606 2008 368 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 369 45*436^481613+1 1271213 L5410 2020 370 109208*5^1816285+1 1269534 L3523 2014 371 1091*2^4215518-1 1269001 L1828 2018 372 191*2^4203426-1 1265360 L2484 2012 373 1259*2^4196028-1 1263134 L1828 2016 374 325918*5^1803339-1 1260486 L3567 2014 375 133778*5^1785689+1 1248149 L3903 2014 376 17*2^4107544-1 1236496 L4113 2015 377 24032*5^1768249+1 1235958 L3925 2014 378 172*159^561319-1 1235689 L4001 2017 379 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 380 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 381 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 382 64*425^467857-1 1229712 p268 2021 383 97*2^4066717-1 1224206 L2484 2019 384 1031*2^4054974-1 1220672 L1828 2017 385 37*2^4046360+1 1218078 L2086 2019 386 39653*430^460397-1 1212446 L4187 2016 387 40734^262144+1 1208473 p309 2011 Generalized Fermat 388 9*2^4005979-1 1205921 L1828 2012 389 12*68^656921+1 1203815 L4001 2016 390 67*688^423893+1 1202836 L4001 2017 391 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 392b (146^276995+1)^2-2 1199030 p405 2022 393 138172*5^1714207-1 1198185 L3904 2014 394 50*383^463313+1 1196832 L2012 2021 395 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 396 29*2^3964697+1 1193495 L1204 2019 397 39*2^3961129+1 1192421 L1486 2019 398 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 399 22478*5^1675150-1 1170884 L3903 2014 400 1199*2^3889576-1 1170883 L1828 2018 401 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 402 94*872^397354+1 1168428 L5410 2019 403 27*2^3855094-1 1160501 L3033 2012 404 164*978^387920-1 1160015 L4700 2018 405 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 406 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 407 30*514^424652-1 1151218 L4001 2017 408 24518^262144+1 1150678 g413 2008 Generalized Fermat 409 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 410 241*2^3815727-1 1148651 L2484 2019 411 109*980^383669-1 1147643 L4001 2018 412 123547*2^3804809-1 1145367 L2371 2011 413 2564*75^610753+1 1145203 L3610 2014 414 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 415 166*443^432000+1 1143249 L5410 2020 416 326834*5^1634978-1 1142807 L3523 2014 417 43*182^502611-1 1135939 L4064 2020 418 415267*2^3771929-1 1135470 L2373 2011 419 11*2^3771821+1 1135433 p286 2013 420b 1455*2^3768024-1 1134292 L1134 2022 421 265*2^3765189-1 1133438 L2484 2018 422 938237*2^3752950-1 1129757 L521 2007 Woodall 423 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 424 207394*5^1612573-1 1127146 L3869 2014 425 684*10^1127118+1 1127121 L4036 2017 426 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 427 104944*5^1610735-1 1125861 L3849 2014 428 23451*2^3739388+1 1125673 L591 2015 429 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 430 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 431 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 432 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 433 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 434 119*2^3698412-1 1113336 L2484 2018 435 330286*5^1584399-1 1107453 L3523 2014 436 34*951^371834-1 1107391 L5410 2019 437 45*2^3677787+1 1107126 L1204 2019 438 13*2^3675223-1 1106354 L1862 2016 439 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 440 15*2^3668194-1 1104238 L3665 2013 441 13*2^3664703-1 1103187 L1862 2016 442 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 443 118*892^373012+1 1100524 L5071 2020 444 33300*430^417849-1 1100397 L4393 2016 445 33*2^3649810+1 1098704 L4958 2019 446 989*2^3640585+1 1095929 L5115 2020 447 567*2^3639287+1 1095538 L4959 2019 448 639*2^3635707+1 1094460 L1823 2019 449 753*2^3631472+1 1093185 L1823 2019 450 65531*2^3629342-1 1092546 L2269 2011 451 1121*2^3629201+1 1092502 L4761 2019 452 215*2^3628962-1 1092429 L2484 2018 453 113*2^3628034-1 1092150 L2484 2014 454 1175*2^3627541+1 1092002 L4840 2019 455 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 456 951*2^3623185+1 1090691 L1823 2019 457 29*920^367810-1 1090113 L4064 2015 458 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 459 485*2^3618563+1 1089299 L3924 2019 460 95*2^3614033+1 1087935 L1474 2019 461 1005*2^3612300+1 1087414 L1823 2019 462 861*2^3611815+1 1087268 L1745 2019 463 1087*2^3611476+1 1087166 L4834 2019 464 485767*2^3609357-1 1086531 L622 2008 465 675*2^3606447+1 1085652 L3278 2019 466 669*2^3606266+1 1085598 L1675 2019 467 65077*2^3605944+1 1085503 L4685 2020 468b 1365*2^3605491+1 1085365 L1134 2022 469 851*2^3604395+1 1085034 L2125 2019 470 1143*2^3602429+1 1084443 L4754 2019 471 1183*2^3601898+1 1084283 L1823 2019 472 189*2^3596375+1 1082620 L3760 2016 473 1089*2^3593267+1 1081685 L3035 2019 474a 19581121*2^3589357-1 1080512 p49 2022 475 1101*2^3589103+1 1080431 L1823 2019 476 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 477 275*2^3585539+1 1079358 L3803 2016 478 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 479 651*2^3579843+1 1077643 L3035 2018 480 583*2^3578402+1 1077210 L3035 2018 481 309*2^3577339+1 1076889 L4406 2016 482 1185*2^3574583+1 1076060 L4851 2018 483 251*2^3574535+1 1076045 L3035 2016 484b 1485*2^3574333+1 1075985 L1134 2022 485 1019*2^3571635+1 1075173 L1823 2018 486 119*2^3571416-1 1075106 L2484 2018 487 35*2^3570777+1 1074913 L2891 2014 488 33*2^3570132+1 1074719 L2552 2014 489 5*2^3569154-1 1074424 L503 2009 490 81*492^399095-1 1074352 L4001 2015 491 22934*5^1536762-1 1074155 L3789 2014 492 265*2^3564373-1 1072986 L2484 2018 493 771*2^3564109+1 1072907 L2125 2018 494 381*2^3563676+1 1072776 L4190 2016 495 555*2^3563328+1 1072672 L4850 2018 496 1183*2^3560584+1 1071846 L1823 2018 497 415*2^3559614+1 1071554 L3035 2016 498 1103*2^3558176-1 1071121 L1828 2018 499 1379*2^3557072-1 1070789 L1828 2018 500 681*2^3553141+1 1069605 L3035 2018 501 599*2^3551793+1 1069200 L3824 2018 502 621*2^3551472+1 1069103 L4687 2018 503 773*2^3550373+1 1068772 L1808 2018 504 1199*2^3548380-1 1068172 L1828 2018 505 191*2^3548117+1 1068092 L4203 2015 506 867*2^3547711+1 1067971 L4155 2018 507 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 508 351*2^3545752+1 1067381 L4082 2016 509 93*2^3544744+1 1067077 L1728 2014 510 1159*2^3543702+1 1066764 L1823 2018 511 178658*5^1525224-1 1066092 L3789 2014 512 1085*2^3539671+1 1065551 L3035 2018 513 465*2^3536871+1 1064707 L4459 2016 514 1019*2^3536312-1 1064539 L1828 2012 515 1179*2^3534450+1 1063979 L3035 2018 516 447*2^3533656+1 1063740 L4457 2016 517 1059*2^3533550+1 1063708 L1823 2018 518 345*2^3532957+1 1063529 L4314 2016 519 553*2^3532758+1 1063469 L1823 2018 520c 543131*2^3529754-1 1062568 L4925 2022 521 141*2^3529287+1 1062424 L4185 2015 522 13*2^3527315-1 1061829 L1862 2016 523 1393*2^3525571-1 1061306 L1828 2017 524 1071*2^3523944+1 1060816 L1675 2018 525 329*2^3518451+1 1059162 L1823 2016 526 135*2^3518338+1 1059128 L4045 2015 527 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 528 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 529 599*2^3515959+1 1058412 L1823 2018 530 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 531 1135*2^3510890+1 1056887 L1823 2018 532 428639*2^3506452-1 1055553 L2046 2011 533a 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 534a 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 535a 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 536a 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 537b 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 538 104*383^408249+1 1054591 L2012 2021 539b 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 540 555*2^3502765+1 1054441 L1823 2018 541b 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 542b 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 543b 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 544 643*2^3501974+1 1054203 L1823 2018 545 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 546 1159*2^3501490+1 1054057 L2125 2018 547c 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 548c 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 549c 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 550c 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 551 1189*2^3499042+1 1053320 L4724 2018 552d 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 553d 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 554d 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 555d 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 556d 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 557d 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 558d 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 559 609*2^3497474+1 1052848 L1823 2018 560 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 561d 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 562d 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 563d 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 564d 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 565d 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 566e 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 567e 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 568 87*2^3496188+1 1052460 L1576 2014 569e 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 570e 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 571e 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 572e 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 573e 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 574 783*2^3494129+1 1051841 L3824 2018 575e 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 576e 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 577e 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 578e 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 579e 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 580e 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 581e 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 582 51*2^3490971+1 1050889 L1823 2014 583 1485*2^3490746+1 1050823 L1134 2021 584e 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 585e 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 586e 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 587e 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 588e 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 589e 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 590e 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 591 753*2^3488818+1 1050242 L1823 2018 592e 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 593e 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 594e 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 595e 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 596 699*2^3487253+1 1049771 L1204 2018 597e 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 598e 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 599e 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 600f 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 601 249*2^3486411+1 1049517 L4045 2015 602 195*2^3486379+1 1049507 L4108 2015 603f 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 604f 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 605f 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 606f 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 607 59912*5^1500861+1 1049062 L3772 2014 608 495*2^3484656+1 1048989 L3035 2016 609f 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 610f 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 611f 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 612f 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 613f 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 614f 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 615f 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 616f 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 617 323*2^3482789+1 1048427 L1204 2016 618f 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 619f 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 620f 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 621f 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 622f 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 623 1149*2^3481694+1 1048098 L1823 2018 624f 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 625f 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 626f 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 627f 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 628f 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 629f 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 630f 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 631 701*2^3479779+1 1047521 L2125 2018 632f 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 633 813*2^3479728+1 1047506 L4724 2018 634f 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 635f 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 636 197*2^3477399+1 1046804 L2125 2015 637f 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 638f 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 639f 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 640f 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 641 95940796^131072+1 1046218 L4591 2021 Generalized Fermat 642 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 643 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 644 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 645 491*2^3473837+1 1045732 L4343 2016 646 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 647 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 648 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 649 1061*2^3471354-1 1044985 L1828 2017 650 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 651 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 652 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 653 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 654 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 655 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 656 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 657 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 658 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 659 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 660 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 661 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 662 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 663 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 664 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 665 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 666 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 667 641*2^3464061+1 1042790 L1444 2018 668 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 669 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 670 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 671 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 672 453*2^3461688+1 1042075 L3035 2016 673 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 674 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 675 571*2^3460216+1 1041632 L3035 2018 676 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 677 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 678 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 679 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 680 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 681 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 682 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 683 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 684 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 685 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 686 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 687 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 688 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 689 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 690 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 691 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 692 1155*2^3455254+1 1040139 L4711 2017 693 37292*5^1487989+1 1040065 L3553 2013 694 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 695 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 696 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 697 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 698 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 699 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 700 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 701 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 702 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 703 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 704 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 705 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 706 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 707 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 708 1273*2^3448551-1 1038121 L1828 2012 709 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 710 1065*2^3447906+1 1037927 L4664 2017 711 1155*2^3446253+1 1037429 L3035 2017 712 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 713 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 714 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 715 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 716 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 717 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 718 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 719 943*2^3442990+1 1036447 L4687 2017 720 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 721 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 722 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 723 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 724 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 725 943*2^3440196+1 1035606 L1448 2017 726 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 727 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 728 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 729 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 730 543*2^3438810+1 1035188 L3035 2017 731 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 732 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 733 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 734 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 735 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 736 74*941^348034-1 1034913 L5410 2020 737 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 738 113*2^3437145+1 1034686 L4045 2015 739 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 740 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 741 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 742 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 743 1147*2^3435970+1 1034334 L3035 2017 744 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 745 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 746 911*2^3432643+1 1033332 L1355 2017 747 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 748 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 749 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 750 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 751 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 752 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 753 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 754 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 755 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 756 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 757 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 758 1127*2^3427219+1 1031699 L3035 2017 759 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 760 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 761a 5445*2^3425839+1 1031285 L5237 2022 762 159*2^3425766+1 1031261 L4045 2015 763 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 764a 3405*2^3425045+1 1031045 L5261 2022 765 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 766a 1695*2^3424517+1 1030886 L5387 2022 767a 4715*2^3424433+1 1030861 L5557 2022 768a 5525*2^3424423+1 1030858 L5387 2022 769a 8615*2^3424231+1 1030801 L5261 2022 770a 5805*2^3424200+1 1030791 L5237 2022 771 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 772 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 773 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 774a 2109*2^3423797+1 1030669 L5197 2022 775a 4929*2^3423494+1 1030579 L5554 2022 776b 2987*2^3422911+1 1030403 L5226 2022 777 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 778a 4843*2^3422644+1 1030323 L5553 2022 779a 5559*2^3422566+1 1030299 L5555 2022 780b 7583*2^3422501+1 1030280 L5421 2022 781 1119*2^3422189+1 1030185 L1355 2017 782b 2895*2^3422030+1 1030138 L5237 2022 783b 2835*2^3421697+1 1030037 L5387 2022 784b 3363*2^3421353+1 1029934 L5226 2022 785 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 786b 9147*2^3421264+1 1029908 L5237 2022 787b 9705*2^3420915+1 1029803 L5540 2022 788 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 789b 8919*2^3420758+1 1029755 L5226 2022 790 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 791 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 792b 5489*2^3420137+1 1029568 L5174 2022 793b 9957*2^3420098+1 1029557 L5237 2022 794 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 795 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 796b 7213*2^3419370+1 1029337 L5421 2022 797b 7293*2^3419264+1 1029305 L5192 2022 798 975*2^3419230+1 1029294 L3545 2017 799b 4191*2^3419227+1 1029294 L5421 2022 800b 2393*2^3418921+1 1029202 L5197 2022 801 999*2^3418885+1 1029190 L3035 2017 802b 2925*2^3418543+1 1029088 L5174 2022 803 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 804 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 805 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 806c 7383*2^3418297+1 1029014 L5189 2022 807 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 808 907*2^3417890+1 1028891 L3035 2017 809c 5071*2^3417884+1 1028890 L5237 2022 810c 3473*2^3417741+1 1028847 L5541 2022 811 191249*2^3417696-1 1028835 L1949 2010 812 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 813c 3299*2^3417329+1 1028723 L5421 2022 814c 6947*2^3416979+1 1028618 L5540 2022 815 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 816c 8727*2^3416652+1 1028519 L5226 2022 817c 8789*2^3416543+1 1028486 L5197 2022 818 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 819c 7917*2^3415947+1 1028307 L5537 2022 820 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 821c 2055*2^3415873+1 1028284 L5535 2022 822c 4731*2^3415712+1 1028236 L5192 2022 823c 2219*2^3415687+1 1028228 L5178 2022 824 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 825c 5877*2^3415419+1 1028148 L5532 2022 826c 3551*2^3415275+1 1028104 L5231 2022 827 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 828c 2313*2^3415046+1 1028035 L5226 2022 829 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 830c 7637*2^3414875+1 1027984 L5507 2022 831c 2141*2^3414821+1 1027967 L5226 2022 832 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 833c 3667*2^3414686+1 1027927 L5226 2022 834 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 835c 6159*2^3414623+1 1027908 L5226 2022 836 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 837d 4577*2^3413539+1 1027582 L5387 2022 838d 5137*2^3413524+1 1027577 L5261 2022 839d 8937*2^3413364+1 1027529 L5527 2022 840d 8829*2^3413339+1 1027522 L5531 2022 841d 7617*2^3413315+1 1027515 L5197 2022 842 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 843d 3141*2^3413112+1 1027453 L5463 2022 844d 8831*2^3412931+1 1027399 L5310 2022 845 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 846 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 847d 5421*2^3412877+1 1027383 L5310 2022 848d 9187*2^3412700+1 1027330 L5337 2022 849 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 850d 8243*2^3412577+1 1027292 L5524 2022 851d 1751*2^3412565+1 1027288 L5523 2022 852d 9585*2^3412318+1 1027215 L5197 2022 853d 9647*2^3412247+1 1027193 L5178 2022 854d 3207*2^3412108+1 1027151 L5189 2022 855 479*2^3411975+1 1027110 L2873 2016 856 245*2^3411973+1 1027109 L1935 2015 857 177*2^3411847+1 1027071 L4031 2015 858 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 859d 9963*2^3411566+1 1026988 L5237 2022 860 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 861d 9785*2^3411223+1 1026885 L5189 2022 862d 5401*2^3411136+1 1026858 L5261 2022 863 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 864d 9431*2^3411105+1 1026849 L5237 2022 865d 8227*2^3410878+1 1026781 L5316 2022 866d 4735*2^3410724+1 1026734 L5226 2022 867d 9515*2^3410707+1 1026730 L5237 2022 868d 6783*2^3410690+1 1026724 L5434 2022 869d 8773*2^3410558+1 1026685 L5261 2022 870d 4629*2^3410321+1 1026613 L5517 2022 871 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 872 113*2^3409934-1 1026495 L2484 2014 873d 5721*2^3409839+1 1026468 L5226 2022 874 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 875d 6069*2^3409493+1 1026364 L5237 2022 876 1981*910^346850+1 1026347 L1141 2021 877e 5317*2^3409236+1 1026287 L5471 2022 878e 7511*2^3408985+1 1026211 L5514 2022 879e 7851*2^3408909+1 1026188 L5176 2022 880 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 881e 6027*2^3408444+1 1026048 L5239 2022 882 59*2^3408416-1 1026038 L426 2010 883e 2153*2^3408333+1 1026014 L5237 2022 884e 9831*2^3408056+1 1025932 L5233 2022 885e 3615*2^3408035+1 1025925 L5217 2022 886e 6343*2^3407950+1 1025899 L5226 2022 887e 8611*2^3407516+1 1025769 L5509 2022 888 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 889e 7111*2^3407452+1 1025750 L5508 2022 890 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 891e 6945*2^3407256+1 1025691 L5507 2022 892e 6465*2^3407229+1 1025682 L5301 2022 893e 1873*2^3407156+1 1025660 L5440 2022 894e 7133*2^3406377+1 1025426 L5279 2022 895e 7063*2^3406122+1 1025349 L5178 2022 896e 3105*2^3405800+1 1025252 L5502 2022 897 953*2^3405729+1 1025230 L3035 2017 898 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 899 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 900 373*2^3404702+1 1024921 L3924 2016 901e 7221*2^3404507+1 1024863 L5231 2022 902e 6641*2^3404259+1 1024788 L5501 2022 903e 9225*2^3404209+1 1024773 L5250 2022 904 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 905 833*2^3403765+1 1024639 L3035 2017 906 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 907e 2601*2^3403459+1 1024547 L5350 2022 908e 8835*2^3403266+1 1024490 L5161 2022 909e 7755*2^3403010+1 1024412 L5161 2022 910e 3123*2^3402834+1 1024359 L5260 2022 911 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 912 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 913e 1417*2^3402246+1 1024182 L5497 2022 914e 5279*2^3402241+1 1024181 L5250 2022 915e 6651*2^3402137+1 1024150 L5476 2022 916e 1779*2^3401715+1 1024022 L5493 2022 917 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 918e 8397*2^3401502+1 1023959 L5476 2022 919e 4057*2^3401472+1 1023949 L5492 2022 920 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 921e 4095*2^3401174+1 1023860 L5418 2022 922e 5149*2^3400970+1 1023798 L5176 2022 923e 4665*2^3400922+1 1023784 L5308 2022 924 24*414^391179+1 1023717 L4273 2016 925 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 926 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 927e 1725*2^3400371+1 1023617 L5197 2022 928 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 929e 9399*2^3400243+1 1023580 L5488 2022 930e 1241*2^3400127+1 1023544 L5279 2022 931e 1263*2^3399876+1 1023468 L5174 2022 932 1167*2^3399748+1 1023430 L3545 2017 933 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 934e 7679*2^3398569+1 1023076 L5295 2022 935e 6447*2^3398499+1 1023054 L5302 2022 936 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 937e 2785*2^3398332+1 1023004 L5250 2022 938 611*2^3398273+1 1022985 L3035 2017 939e 2145*2^3398034+1 1022914 L5302 2022 940e 3385*2^3397254+1 1022679 L5161 2022 941 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 942e 4463*2^3396657+1 1022500 L5476 2022 943e 2889*2^3396450+1 1022437 L5178 2022 944e 8523*2^3396448+1 1022437 L5231 2022 945 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 946 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 947e 3349*2^3396326+1 1022400 L5480 2022 948 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 949e 4477*2^3395786+1 1022238 L5161 2022 950e 3853*2^3395762+1 1022230 L5302 2022 951e 2693*2^3395725+1 1022219 L5284 2022 952e 8201*2^3395673+1 1022204 L5178 2022 953 255*2^3395661+1 1022199 L3898 2014 954 1049*2^3395647+1 1022195 L3035 2017 955e 9027*2^3395623+1 1022189 L5263 2022 956e 2523*2^3395549+1 1022166 L5472 2022 957e 3199*2^3395402+1 1022122 L5264 2022 958 342924651*2^3394939-1 1021988 L4166 2017 959e 3825*2^3394947+1 1021985 L5471 2022 960e 1895*2^3394731+1 1021920 L5174 2022 961 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 962 555*2^3393389+1 1021515 L2549 2017 963f 1865*2^3393387+1 1021515 L5237 2022 964f 4911*2^3393373+1 1021511 L5231 2022 965 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 966f 5229*2^3392587+1 1021275 L5463 2022 967 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 968 609*2^3392301+1 1021188 L3035 2017 969f 9787*2^3392236+1 1021169 L5350 2022 970 303*2^3391977+1 1021090 L2602 2016 971 805*2^3391818+1 1021042 L4609 2017 972f 6475*2^3391496+1 1020946 L5174 2022 973 67*2^3391385-1 1020911 L1959 2014 974 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 975f 4639*2^3390634+1 1020687 L5189 2022 976f 5265*2^3390581+1 1020671 L5456 2022 977 663*2^3390469+1 1020636 L4316 2017 978 6945*2^3390340+1 1020598 L5174 2021 979 5871*2^3390268+1 1020577 L5231 2021 980 7443*2^3390141+1 1020539 L5226 2021 981 5383*2^3389924+1 1020473 L5350 2021 982 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 983 9627*2^3389331+1 1020295 L5231 2021 984 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 985 8253*2^3388624+1 1020082 L5226 2021 986 3329*2^3388472-1 1020036 L4841 2020 987 4695*2^3388393+1 1020012 L5237 2021 988 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 989 7177*2^3388144+1 1019937 L5174 2021 990 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 991 9611*2^3388059+1 1019912 L5435 2021 992 1833*2^3387760+1 1019821 L5226 2021 993 9003*2^3387528+1 1019752 L5189 2021 994 3161*2^3387141+1 1019635 L5226 2021 995 7585*2^3387110+1 1019626 L5189 2021 996 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 997 453*2^3387048+1 1019606 L2602 2016 998 5177*2^3386919+1 1019568 L5226 2021 999 8739*2^3386813+1 1019537 L5226 2021 1000 2875*2^3386638+1 1019484 L5226 2021 1001 7197*2^3386526+1 1019450 L5178 2021 1002 1605*2^3386229+1 1019360 L5226 2021 1003 8615*2^3386181+1 1019346 L5442 2021 1004 3765*2^3386141+1 1019334 L5174 2021 1005 5379*2^3385806+1 1019233 L5237 2021 1006 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1007 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1008 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1009 173198*5^1457792-1 1018959 L3720 2013 1010 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1011 2109*2^3384733+1 1018910 L5261 2021 1012 7067*2^3384667+1 1018891 L5439 2021 1013 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1014 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1015 2077*2^3384472+1 1018831 L5237 2021 1016 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1017 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1018 9165*2^3383917+1 1018665 L5435 2021 1019 5579*2^3383209+1 1018452 L5434 2021 1020 8241*2^3383131+1 1018428 L5387 2021 1021 7409*2^3382869+1 1018349 L5161 2021 1022 4883*2^3382813+1 1018332 L5161 2021 1023 9783*2^3382792+1 1018326 L5189 2021 1024 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1025 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1026 8877*2^3381936+1 1018069 L5429 2021 1027 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1028 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1029 6675*2^3381688+1 1017994 L5197 2021 1030 2445*2^3381129+1 1017825 L5231 2021 1031 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1032 3381*2^3380585+1 1017662 L5237 2021 1033 7899*2^3380459+1 1017624 L5421 2021 1034 5945*2^3379933+1 1017465 L5418 2021 1035 1425*2^3379921+1 1017461 L1134 2020 1036 4975*2^3379420+1 1017311 L5161 2021 1037 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1038 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1039 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1040 9065*2^3378851+1 1017140 L5414 2021 1041 2369*2^3378761+1 1017112 L5197 2021 1042 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1043 621*2^3378148+1 1016927 L3035 2017 1044 7035*2^3378141+1 1016926 L5408 2021 1045 2067*2^3378115+1 1016918 L5405 2021 1046 1093*2^3378000+1 1016883 L4583 2017 1047 9577*2^3377612+1 1016767 L5406 2021 1048 861*2^3377601+1 1016763 L4582 2017 1049 5811*2^3377016+1 1016587 L5261 2021 1050 2285*2^3376911+1 1016555 L5261 2021 1051 4199*2^3376903+1 1016553 L5174 2021 1052 6405*2^3376890+1 1016549 L5269 2021 1053 1783*2^3376810+1 1016525 L5261 2021 1054 5401*2^3376768+1 1016513 L5174 2021 1055 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1056 2941*2^3376536+1 1016443 L5174 2021 1057 1841*2^3376379+1 1016395 L5401 2021 1058 6731*2^3376133+1 1016322 L5261 2021 1059 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1060 8121*2^3375933+1 1016262 L5356 2021 1061 5505*2^3375777+1 1016214 L5174 2021 1062 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1063 3207*2^3375314+1 1016075 L5237 2021 1064 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1065 5307*2^3374939+1 1015962 L5392 2021 1066 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1067 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1068 208003!-1 1015843 p394 2016 Factorial 1069 6219*2^3374198+1 1015739 L5393 2021 1070 3777*2^3374072+1 1015701 L5261 2021 1071 9347*2^3374055+1 1015696 L5387 2021 1072 1461*2^3373383+1 1015493 L5384 2021 1073 6395*2^3373135+1 1015419 L5382 2021 1074 7869*2^3373021+1 1015385 L5381 2021 1075 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1076 4905*2^3372216+1 1015142 L5261 2021 1077 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1078 2839*2^3372034+1 1015087 L5174 2021 1079 7347*2^3371803+1 1015018 L5217 2021 1080 9799*2^3371378+1 1014890 L5261 2021 1081 4329*2^3371201+1 1014837 L5197 2021 1082 3657*2^3371183+1 1014831 L5360 2021 1083 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1084 179*2^3371145+1 1014819 L3763 2014 1085 5155*2^3371016+1 1014781 L5237 2021 1086 7575*2^3371010+1 1014780 L5237 2021 1087 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1088 9195*2^3370798+1 1014716 L5178 2021 1089 1749*2^3370786+1 1014711 L5362 2021 1090 8421*2^3370599+1 1014656 L5174 2021 1091 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1092 4357*2^3369572+1 1014346 L5231 2021 1093 6073*2^3369544+1 1014338 L5358 2021 1094 839*2^3369383+1 1014289 L2891 2017 1095 65*2^3369359+1 1014280 L5236 2021 1096 8023*2^3369228+1 1014243 L5356 2021 1097 677*2^3369115+1 1014208 L2103 2017 1098 1437*2^3369083+1 1014199 L5282 2021 1099 9509*2^3368705+1 1014086 L5237 2021 1100 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1101 4851*2^3368668+1 1014074 L5307 2021 1102 7221*2^3368448+1 1014008 L5353 2021 1103 5549*2^3368437+1 1014005 L5217 2021 1104 715*2^3368210+1 1013936 L4527 2017 1105 617*2^3368119+1 1013908 L4552 2017 1106 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1107 1847*2^3367999+1 1013872 L5352 2021 1108 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1109 6497*2^3367743+1 1013796 L5285 2021 1110 2533*2^3367666+1 1013772 L5326 2021 1111 6001*2^3367552+1 1013738 L5350 2021 1112 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1113 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1114 777*2^3367372+1 1013683 L4408 2017 1115 9609*2^3367351+1 1013678 L5285 2021 1116 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1117 2529*2^3367317+1 1013667 L5237 2021 1118 5941*2^3366960+1 1013560 L5189 2021 1119 5845*2^3366956+1 1013559 L5197 2021 1120 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1121 9853*2^3366608+1 1013454 L5178 2021 1122 61*2^3366033-1 1013279 L4405 2017 1123 7665*2^3365896+1 1013240 L5345 2021 1124 8557*2^3365648+1 1013165 L5346 2021 1125 369*2^3365614+1 1013154 L4364 2016 1126 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1127 8201*2^3365283+1 1013056 L5345 2021 1128 9885*2^3365151+1 1013016 L5344 2021 1129 5173*2^3365096+1 1012999 L5285 2021 1130 8523*2^3364918+1 1012946 L5237 2021 1131 3985*2^3364776+1 1012903 L5178 2021 1132 9711*2^3364452+1 1012805 L5192 2021 1133 7003*2^3364172+1 1012721 L5217 2021 1134 6703*2^3364088+1 1012696 L5337 2021 1135 7187*2^3364011+1 1012673 L5217 2021 1136 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1137 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1138 2345*2^3363157+1 1012415 L5336 2021 1139 6527*2^3363135+1 1012409 L5167 2021 1140 9387*2^3363088+1 1012395 L5161 2021 1141 8989*2^3362986+1 1012364 L5161 2021 1142 533*2^3362857+1 1012324 L3171 2017 1143 619*2^3362814+1 1012311 L4527 2017 1144 2289*2^3362723+1 1012284 L5161 2021 1145 7529*2^3362565+1 1012237 L5161 2021 1146 7377*2^3362366+1 1012177 L5161 2021 1147 4509*2^3362311+1 1012161 L5324 2021 1148 7021*2^3362208+1 1012130 L5178 2021 1149 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1150 104*873^344135-1 1012108 L4700 2018 1151 4953*2^3362054+1 1012083 L5323 2021 1152 8575*2^3361798+1 1012006 L5237 2021 1153 2139*2^3361706+1 1011978 L5174 2021 1154 6939*2^3361203+1 1011827 L5217 2021 1155 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1156 3^2120580-3^623816-1 1011774 CH9 2019 1157 8185*2^3360896+1 1011735 L5189 2021 1158 2389*2^3360882+1 1011730 L5317 2021 1159 2787*2^3360631+1 1011655 L5197 2021 1160 6619*2^3360606+1 1011648 L5316 2021 1161 2755*2^3360526+1 1011623 L5174 2021 1162 1445*2^3360099+1 1011494 L5261 2021 1163 8757*2^3359788+1 1011401 L5197 2021 1164 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1165 5085*2^3359696+1 1011373 L5261 2021 1166 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1167 6459*2^3359457+1 1011302 L5310 2021 1168 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1169 6115*2^3358998+1 1011163 L5309 2021 1170 7605*2^3358929+1 1011143 L5308 2021 1171 2315*2^3358899+1 1011133 L5197 2021 1172 6603*2^3358525+1 1011021 L5307 2021 1173 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1174 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1175 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1176 5893*2^3357490+1 1010709 L5285 2021 1177 6947*2^3357075+1 1010585 L5302 2021 1178 4621*2^3357068+1 1010582 L5301 2021 1179 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1180 1479*2^3356275+1 1010343 L5178 2021 1181 3645*2^3356232+1 1010331 L5296 2021 1182 1259*2^3356215+1 1010325 L5298 2021 1183 2075*2^3356057+1 1010278 L5174 2021 1184 4281*2^3356051+1 1010276 L5295 2021 1185 1275*2^3356045+1 1010274 L5294 2021 1186 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1187 4365*2^3355770+1 1010192 L5261 2021 1188 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1189 2183*2^3355297+1 1010049 L5266 2021 1190 3087*2^3355000+1 1009960 L5226 2021 1191 8673*2^3354760+1 1009888 L5233 2021 1192 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1193 3015*2^3353943+1 1009641 L5290 2021 1194 6819*2^3353877+1 1009622 L5174 2021 1195 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1196 6393*2^3353366+1 1009468 L5287 2021 1197 3573*2^3353273+1 1009440 L5161 2021 1198 4047*2^3353222+1 1009425 L5286 2021 1199 1473*2^3353114+1 1009392 L5161 2021 1200 1183*2^3353058+1 1009375 L3824 2017 1201 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1202 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1203 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1204 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1205 7123*2^3352180+1 1009111 L5161 2021 1206 2757*2^3352180+1 1009111 L5285 2021 1207 9307*2^3352014+1 1009061 L5284 2021 1208 2217*2^3351732+1 1008976 L5283 2021 1209 543*2^3351686+1 1008961 L4198 2017 1210 4419*2^3351666+1 1008956 L5279 2021 1211 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1212 3059*2^3351379+1 1008870 L5278 2021 1213 7789*2^3351046+1 1008770 L5276 2021 1214 9501*2^3350668+1 1008656 L5272 2021 1215 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1216 9691*2^3349952+1 1008441 L5242 2021 1217 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1218 3209*2^3349719+1 1008370 L5269 2021 1219 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1220 393*2^3349525+1 1008311 L3101 2016 1221 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1222 5487*2^3349303+1 1008245 L5266 2021 1223 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1224 2511*2^3349104+1 1008185 L5264 2021 1225 1005*2^3349046-1 1008167 L4518 2021 1226 7659*2^3348894+1 1008122 L5263 2021 1227 9703*2^3348872+1 1008115 L5262 2021 1228 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1229 7935*2^3348578+1 1008027 L5161 2021 1230 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1231 7821*2^3348400+1 1007973 L5260 2021 1232 7911*2^3347532+1 1007712 L5250 2021 1233 8295*2^3347031+1 1007561 L5249 2021 1234 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1235 4029*2^3346729+1 1007470 L5239 2021 1236 9007*2^3346716+1 1007466 L5161 2021 1237 8865*2^3346499+1 1007401 L5238 2021 1238 6171*2^3346480+1 1007395 L5174 2021 1239 6815*2^3346045+1 1007264 L5235 2021 1240 5*326^400785+1 1007261 L4786 2019 1241 5951*2^3345977+1 1007244 L5233 2021 1242 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1243 1257*2^3345843+1 1007203 L5192 2021 1244 4701*2^3345815+1 1007195 L5192 2021 1245 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1246 7545*2^3345355+1 1007057 L5231 2021 1247 5559*2^3344826+1 1006897 L5223 2021 1248 6823*2^3344692+1 1006857 L5223 2021 1249 4839*2^3344453+1 1006785 L5188 2021 1250 7527*2^3344332+1 1006749 L5220 2021 1251 7555*2^3344240+1 1006721 L5188 2021 1252 6265*2^3344080+1 1006673 L5197 2021 1253 1299*2^3343943+1 1006631 L5217 2021 1254 2815*2^3343754+1 1006574 L5216 2021 1255 5349*2^3343734+1 1006568 L5174 2021 1256 2863*2^3342920+1 1006323 L5179 2020 1257 7387*2^3342848+1 1006302 L5208 2020 1258 9731*2^3342447+1 1006181 L5203 2020 1259 7725*2^3341708+1 1005959 L5195 2020 1260 7703*2^3341625+1 1005934 L5178 2020 1261 7047*2^3341482+1 1005891 L5194 2020 1262 4839*2^3341309+1 1005838 L5192 2020 1263 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1264 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1265 8989*2^3340866+1 1005705 L5189 2020 1266 6631*2^3340808+1 1005688 L5188 2020 1267 1341*2^3340681+1 1005649 L5188 2020 1268 733*2^3340464+1 1005583 L3035 2016 1269 2636*138^469911+1 1005557 L5410 2021 1270 3679815*2^3340001+1 1005448 L4922 2019 1271 57*2^3339932-1 1005422 L3519 2015 1272 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1273 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1274 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1275 3651*2^3339341+1 1005246 L5177 2020 1276 3853*2^3339296+1 1005232 L5178 2020 1277 8015*2^3339267+1 1005224 L5176 2020 1278 3027*2^3339182+1 1005198 L5174 2020 1279 9517*2^3339002+1 1005144 L5172 2020 1280 4003*2^3338588+1 1005019 L3035 2020 1281 6841*2^3338336+1 1004944 L1474 2020 1282 2189*2^3338209+1 1004905 L5031 2020 1283 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1284 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1285 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1286 2957*2^3337667+1 1004742 L5144 2020 1287 1515*2^3337389+1 1004658 L1474 2020 1288 7933*2^3337270+1 1004623 L4666 2020 1289 1251*2^3337116+1 1004576 L4893 2020 1290 651*2^3337101+1 1004571 L3260 2016 1291 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1292 8397*2^3336654+1 1004437 L5125 2020 1293 8145*2^3336474+1 1004383 L5110 2020 1294 1087*2^3336385-1 1004355 L1828 2012 1295 5325*2^3336120+1 1004276 L2125 2020 1296 849*2^3335669+1 1004140 L3035 2016 1297 8913*2^3335216+1 1004005 L5079 2020 1298 7725*2^3335213+1 1004004 L3035 2020 1299 611*2^3334875+1 1003901 L3813 2016 1300 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1301 403*2^3334410+1 1003761 L4293 2016 1302 5491*2^3334392+1 1003756 L4815 2020 1303 6035*2^3334341+1 1003741 L2125 2020 1304 1725*2^3334341+1 1003740 L2125 2020 1305 4001*2^3334031+1 1003647 L1203 2020 1306 2315*2^3333969+1 1003629 L2125 2020 1307 6219*2^3333810+1 1003581 L4582 2020 1308 8063*2^3333721+1 1003554 L1823 2020 1309 9051*2^3333677+1 1003541 L3924 2020 1310 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1311 4091*2^3333153+1 1003383 L1474 2020 1312 9949*2^3332750+1 1003262 L5090 2020 1313 3509*2^3332649+1 1003231 L5085 2020 1314 3781*2^3332436+1 1003167 L1823 2020 1315 4425*2^3332394+1 1003155 L3431 2020 1316 6459*2^3332086+1 1003062 L2629 2020 1317 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1318 5257*2^3331758+1 1002963 L1188 2020 1319 2939*2^3331393+1 1002853 L1823 2020 1320 6959*2^3331365+1 1002845 L1675 2020 1321 8815*2^3330748+1 1002660 L3329 2020 1322 4303*2^3330652+1 1002630 L4730 2020 1323 8595*2^3330649+1 1002630 L4723 2020 1324 673*2^3330436+1 1002564 L3035 2016 1325 8163*2^3330042+1 1002447 L3278 2020 1326 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1327 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1328 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1329 2829*2^3329061+1 1002151 L4343 2020 1330 5775*2^3329034+1 1002143 L1188 2020 1331 7101*2^3328905+1 1002105 L4568 2020 1332 7667*2^3328807+1 1002075 L4087 2020 1333 129*2^3328805+1 1002073 L3859 2014 1334 7261*2^3328740+1 1002055 L2914 2020 1335 4395*2^3328588+1 1002009 L3924 2020 1336 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1337 143183*2^3328297+1 1001923 L4504 2017 1338 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1339 9681*2^3327987+1 1001828 L1204 2020 1340 2945*2^3327987+1 1001828 L2158 2020 1341 5085*2^3327789+1 1001769 L1823 2020 1342 8319*2^3327650+1 1001727 L1204 2020 1343 4581*2^3327644+1 1001725 L2142 2020 1344 655*2^3327518+1 1001686 L4490 2016 1345 8863*2^3327406+1 1001653 L1675 2020 1346 659*2^3327371+1 1001642 L3502 2016 1347 3411*2^3327343+1 1001634 L1675 2020 1348 4987*2^3327294+1 1001619 L3924 2020 1349 821*2^3327003+1 1001531 L3035 2016 1350 2435*2^3326969+1 1001521 L3035 2020 1351c 1931*2^3326850-1 1001485 L4113 2022 1352 2277*2^3326794+1 1001469 L5014 2020 1353 6779*2^3326639+1 1001422 L3924 2020 1354 6195*2^3325993+1 1001228 L1474 2019 1355 555*2^3325925+1 1001206 L4414 2016 1356 9041*2^3325643+1 1001123 L3924 2019 1357d 1965*2^3325639-1 1001121 L4113 2022 1358 1993*2^3325302+1 1001019 L3662 2019 1359 6179*2^3325027+1 1000937 L3048 2019 1360 4485*2^3324900+1 1000899 L1355 2019 1361 3559*2^3324650+1 1000823 L3035 2019 1362 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1363 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1364 6927*2^3324387+1 1000745 L3091 2019 1365 9575*2^3324287+1 1000715 L3824 2019 1366 1797*2^3324259+1 1000705 L3895 2019 1367 4483*2^3324048+1 1000642 L3035 2019 1368 791*2^3323995+1 1000626 L3035 2016 1369 6987*2^3323926+1 1000606 L4973 2019 1370 3937*2^3323886+1 1000593 L3035 2019 1371 2121*2^3323852+1 1000583 L1823 2019 1372 1571*2^3323493+1 1000475 L3035 2019 1373 2319*2^3323402+1 1000448 L4699 2019 1374 2829*2^3323341+1 1000429 L4754 2019 1375 4335*2^3323323+1 1000424 L1823 2019 1376 8485*2^3322938+1 1000308 L4858 2019 1377 6505*2^3322916+1 1000302 L4858 2019 1378 597*2^3322871+1 1000287 L3035 2016 1379 9485*2^3322811+1 1000270 L2603 2019 1380 8619*2^3322774+1 1000259 L3035 2019 1381 387*2^3322763+1 1000254 L1455 2016 1382d 1965*2^3322579-1 1000200 L4113 2022 1383 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1384c 6366*745^348190-1 1000060 L4189 2022 1385 5553507*2^3322000+1 1000029 p391 2016 1386 5029159647*2^3321910-1 1000005 L4960 2021 1387 5009522505*2^3321910-1 1000005 L4960 2021 1388 4766298357*2^3321910-1 1000005 L4960 2021 1389 4759383915*2^3321910-1 1000005 L4960 2021 1390 4635733263*2^3321910-1 1000005 L4960 2021 1391 4603393047*2^3321910-1 1000005 L4960 2021 1392 4550053935*2^3321910-1 1000005 L4960 2021 1393 4288198767*2^3321910-1 1000005 L4960 2021 1394 4229494557*2^3321910-1 1000005 L4960 2021 1395 4110178197*2^3321910-1 1000005 L4960 2021 1396 4022490843*2^3321910-1 1000005 L4960 2021 1397 3936623697*2^3321910-1 1000005 L4960 2021 1398 3751145343*2^3321910-1 1000005 L4960 2021 1399 3715773735*2^3321910-1 1000005 L4960 2021 1400 3698976057*2^3321910-1 1000005 L4960 2021 1401 3659465685*2^3321910-1 1000005 L4960 2020 1402 3652932033*2^3321910-1 1000005 L4960 2020 1403 3603204333*2^3321910-1 1000005 L4960 2020 1404 3543733545*2^3321910-1 1000005 L4960 2020 1405 3191900133*2^3321910-1 1000005 L4960 2020 1406 3174957723*2^3321910-1 1000005 L4960 2020 1407 2973510903*2^3321910-1 1000005 L4960 2019 1408 2848144257*2^3321910-1 1000005 L4960 2019 1409 2820058827*2^3321910-1 1000005 L4960 2019 1410 2611553775*2^3321910-1 1000004 L4960 2020 1411 2601087525*2^3321910-1 1000004 L4960 2019 1412 2386538565*2^3321910-1 1000004 L4960 2019 1413 2272291887*2^3321910-1 1000004 L4960 2019 1414 2167709265*2^3321910-1 1000004 L4960 2019 1415 2087077797*2^3321910-1 1000004 L4960 2019 1416 1848133623*2^3321910-1 1000004 L4960 2019 1417 1825072257*2^3321910-1 1000004 L4960 2019 1418 1633473837*2^3321910-1 1000004 L4960 2019 1419 1228267623*2^3321910-1 1000004 L4808 2019 1420 1148781333*2^3321910-1 1000004 L4808 2019 1421 1065440787*2^3321910-1 1000004 L4808 2019 1422 1055109357*2^3321910-1 1000004 L4960 2019 1423 992309607*2^3321910-1 1000004 L4808 2019 1424 926102325*2^3321910-1 1000004 L4808 2019 1425 892610007*2^3321910-1 1000004 L4960 2019 1426 763076757*2^3321910-1 1000004 L4960 2019 1427 607766997*2^3321910-1 1000004 L4808 2019 1428 539679177*2^3321910-1 1000004 L4808 2019 1429 425521077*2^3321910-1 1000004 L4808 2019 1430 132940575*2^3321910-1 1000003 L4808 2019 1431 239378138685*2^3321891+1 1000001 L5104 2020 1432 464253*2^3321908-1 1000000 L466 2013 1433 3^2095902+3^647322-1 1000000 x44 2018 1434 191273*2^3321908-1 1000000 L466 2013 1435b ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1436 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1437 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1438 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1439 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1440 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1441 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1442 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1443 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1444 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1445 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1446 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1447 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1448 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1449 10^999999+308267*10^292000+1 1000000 CH10 2021 1450 10^999999-1022306*10^287000-1 999999 CH13 2021 1451 10^999999-1087604*10^287000-1 999999 CH13 2021 1452 531631540026641*6^1285077+1 999999 L3494 2021 1453 3139*2^3321905-1 999997 L185 2008 1454f 42550702^131072+1 999937 L4309 2022 Generalized Fermat 1455f 42414020^131072+1 999753 L5030 2022 Generalized Fermat 1456 4847*2^3321063+1 999744 SB9 2005 1457f 42254832^131072+1 999539 L5375 2022 Generalized Fermat 1458f 42243204^131072+1 999524 L4898 2022 Generalized Fermat 1459f 42230406^131072+1 999506 L5453 2022 Generalized Fermat 1460f 42168978^131072+1 999424 L5462 2022 Generalized Fermat 1461f 41688706^131072+1 998772 L5270 2022 Generalized Fermat 1462f 41364744^131072+1 998327 L5453 2022 Generalized Fermat 1463f 41237116^131072+1 998152 L5459 2022 Generalized Fermat 1464f 41102236^131072+1 997965 L4245 2022 Generalized Fermat 1465f 41007562^131072+1 997834 L4210 2022 Generalized Fermat 1466f 41001148^131072+1 997825 L4210 2022 Generalized Fermat 1467f 40550398^131072+1 997196 L4245 2022 Generalized Fermat 1468f 40463598^131072+1 997074 L4591 2022 Generalized Fermat 1469f 40151896^131072+1 996633 L4245 2022 Generalized Fermat 1470 49*2^3309087-1 996137 L1959 2013 1471f 39746366^131072+1 996056 L4201 2022 Generalized Fermat 1472 139413*6^1279992+1 996033 L4001 2015 1473 51*2^3308171+1 995861 L2840 2015 1474f 39597790^131072+1 995842 L4737 2022 Generalized Fermat 1475f 39502358^131072+1 995705 L5453 2022 Generalized Fermat 1476f 39324372^131072+1 995448 L5202 2022 Generalized Fermat 1477 245114*5^1424104-1 995412 L3686 2013 1478f 39100746^131072+1 995123 L5441 2022 Generalized Fermat 1479 38824296^131072+1 994719 L4245 2021 Generalized Fermat 1480 38734748^131072+1 994588 L4249 2021 Generalized Fermat 1481 175124*5^1422646-1 994393 L3686 2013 1482 38310998^131072+1 993962 L4737 2021 Generalized Fermat 1483 38196496^131072+1 993791 L4861 2021 Generalized Fermat 1484 38152876^131072+1 993726 L4245 2021 Generalized Fermat 1485 37909914^131072+1 993363 L4249 2021 Generalized Fermat 1486 1611*22^738988+1 992038 L4139 2015 1487 36531196^131072+1 991254 L4249 2021 Generalized Fermat 1488 2017*2^3292325-1 991092 L3345 2017 1489 36422846^131072+1 991085 L4245 2021 Generalized Fermat 1490 36416848^131072+1 991076 L5202 2021 Generalized Fermat 1491 36038176^131072+1 990481 L4245 2021 Generalized Fermat 1492 35997532^131072+1 990416 L4245 2021 Generalized Fermat 1493 35957420^131072+1 990353 L4245 2021 Generalized Fermat 1494 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1495 35391288^131072+1 989449 L5070 2021 Generalized Fermat 1496 35372304^131072+1 989419 L5443 2021 Generalized Fermat 1497 61*2^3286535-1 989348 L4405 2016 1498 35327718^131072+1 989347 L4591 2021 Generalized Fermat 1499 35282096^131072+1 989274 L4245 2021 Generalized Fermat 1500 35141602^131072+1 989046 L4729 2021 Generalized Fermat 1501 35139782^131072+1 989043 L4245 2021 Generalized Fermat 1502 35047222^131072+1 988893 L4249 2021 Generalized Fermat 1503 34957136^131072+1 988747 L5321 2021 Generalized Fermat 1504 34871942^131072+1 988608 L4245 2021 Generalized Fermat 1505 34763644^131072+1 988431 L4737 2021 Generalized Fermat 1506 34585314^131072+1 988138 L4201 2021 Generalized Fermat 1507 34530386^131072+1 988048 L5070 2021 Generalized Fermat 1508 34087952^131072+1 987314 L4764 2021 Generalized Fermat 1509 87*2^3279368+1 987191 L3458 2015 1510 33732746^131072+1 986717 L4359 2021 Generalized Fermat 1511 33474284^131072+1 986279 L5051 2021 Generalized Fermat 1512 33395198^131072+1 986145 L4658 2021 Generalized Fermat 1513 33191418^131072+1 985796 L4201 2021 Generalized Fermat 1514 32869172^131072+1 985241 L4285 2021 Generalized Fermat 1515 32792696^131072+1 985108 L5198 2021 Generalized Fermat 1516 32704348^131072+1 984955 L5312 2021 Generalized Fermat 1517 32608738^131072+1 984788 L5395 2021 Generalized Fermat 1518 32430486^131072+1 984476 L4245 2021 Generalized Fermat 1519 32417420^131072+1 984453 L4245 2021 Generalized Fermat 1520 65*2^3270127+1 984409 L3924 2015 1521 32348894^131072+1 984333 L4245 2021 Generalized Fermat 1522 32286660^131072+1 984223 L5400 2021 Generalized Fermat 1523 32200644^131072+1 984071 L4387 2021 Generalized Fermat 1524 32137342^131072+1 983959 L4559 2021 Generalized Fermat 1525 32096608^131072+1 983887 L4559 2021 Generalized Fermat 1526 32055422^131072+1 983814 L4559 2021 Generalized Fermat 1527 31821360^131072+1 983397 L4861 2021 Generalized Fermat 1528 31768014^131072+1 983301 L4252 2021 Generalized Fermat 1529a 335*2^3266237+1 983238 L5559 2022 1530a 1031*2^3265915+1 983142 L5364 2022 1531 31469984^131072+1 982765 L5078 2021 Generalized Fermat 1532 5*2^3264650-1 982759 L384 2013 1533 223*2^3264459-1 982703 L1884 2012 1534a 1101*2^3264400+1 982686 L5231 2022 1535a 483*2^3264181+1 982620 L5174 2022 1536a 525*2^3263227+1 982332 L5231 2022 1537 31145080^131072+1 982174 L4201 2021 Generalized Fermat 1538 31044982^131072+1 981991 L5041 2021 Generalized Fermat 1539a 683*2^3262037+1 981974 L5192 2022 1540a 923*2^3261401+1 981783 L5477 2022 1541 30844300^131072+1 981622 L5102 2021 Generalized Fermat 1542 30819256^131072+1 981575 L4201 2021 Generalized Fermat 1543 9*2^3259381-1 981173 L1828 2011 1544a 1059*2^3258751+1 980985 L5231 2022 1545 6*5^1403337+1 980892 L4965 2020 1546 30318724^131072+1 980643 L4309 2021 Generalized Fermat 1547 30315072^131072+1 980636 L5375 2021 Generalized Fermat 1548 30300414^131072+1 980609 L4755 2021 Generalized Fermat 1549 30225714^131072+1 980468 L4201 2021 Generalized Fermat 1550b 875*2^3256589+1 980334 L5550 2022 1551 30059800^131072+1 980155 L4928 2021 Generalized Fermat 1552 30022816^131072+1 980085 L5273 2021 Generalized Fermat 1553 29959190^131072+1 979964 L4905 2021 Generalized Fermat 1554 29607314^131072+1 979292 L5378 2021 Generalized Fermat 1555b 779*2^3253063+1 979273 L5192 2022 1556 29505368^131072+1 979095 L5378 2021 Generalized Fermat 1557b 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 1558 29169314^131072+1 978443 L5380 2021 Generalized Fermat 1559b 417*2^3248255+1 977825 L5178 2022 1560 28497098^131072+1 977116 L4308 2021 Generalized Fermat 1561 28398204^131072+1 976918 L5379 2021 Generalized Fermat 1562 28294666^131072+1 976710 L5375 2021 Generalized Fermat 1563 28175634^131072+1 976470 L5378 2021 Generalized Fermat 1564 33*2^3242126-1 975979 L3345 2014 1565 27822108^131072+1 975752 L4760 2021 Generalized Fermat 1566 39*2^3240990+1 975637 L3432 2014 1567 27758510^131072+1 975621 L4289 2021 Generalized Fermat 1568 27557876^131072+1 975208 L4245 2021 Generalized Fermat 1569 27544748^131072+1 975181 L4387 2021 Generalized Fermat 1570 27408050^131072+1 974898 L4210 2021 Generalized Fermat 1571c 225*2^3236967+1 974427 L5529 2022 1572 27022768^131072+1 974092 L4309 2021 Generalized Fermat 1573 26896670^131072+1 973826 L5376 2021 Generalized Fermat 1574b 1075*2^3234606+1 973717 L5192 2022 1575 26757382^131072+1 973530 L5375 2021 Generalized Fermat 1576 26599558^131072+1 973194 L4245 2021 Generalized Fermat 1577 6*5^1392287+1 973168 L4965 2020 1578 26500832^131072+1 972982 L4956 2021 Generalized Fermat 1579c 325*2^3231474+1 972774 L5536 2022 1580c 933*2^3231438+1 972763 L5197 2022 1581c 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 1582 26172278^131072+1 972272 L4245 2021 Generalized Fermat 1583c 697*2^3229518+1 972185 L5534 2022 1584c 385*2^3226814+1 971371 L5178 2022 1585 211195*2^3224974+1 970820 L2121 2013 1586d 1173*2^3223546+1 970388 L5178 2022 1587 7*6^1246814+1 970211 L4965 2019 1588 25128150^131072+1 969954 L4738 2021 Generalized Fermat 1589 25124378^131072+1 969946 L5102 2021 Generalized Fermat 1590d 1089*2^3221691+1 969829 L5178 2022 1591 35*832^332073-1 969696 L4001 2019 1592 600921*2^3219922-1 969299 g337 2018 1593d 939*2^3219319+1 969115 L5178 2022 1594 24734116^131072+1 969055 L5070 2021 Generalized Fermat 1595 24644826^131072+1 968849 L5070 2021 Generalized Fermat 1596 24642712^131072+1 968844 L5070 2021 Generalized Fermat 1597 24641166^131072+1 968840 L5070 2021 Generalized Fermat 1598d 129*2^3218214+1 968782 L5529 2022 1599 24522386^131072+1 968565 L5070 2021 Generalized Fermat 1600 24486806^131072+1 968483 L4737 2021 Generalized Fermat 1601d 811*2^3216944+1 968400 L5233 2022 1602 24297936^131072+1 968042 L4201 2021 Generalized Fermat 1603d 1023*2^3214745+1 967738 L5178 2022 1604d 187*2^3212152+1 966957 L5178 2022 1605a 301*2^3211281-1 966695 L5545 2022 1606 6*409^369832+1 965900 L4001 2015 1607 23363426^131072+1 965809 L5033 2021 Generalized Fermat 1608d 1165*2^3207702+1 965618 L5178 2022 1609 94373*2^3206717+1 965323 L2785 2013 1610 2751*2^3206569-1 965277 L4036 2015 1611d 761*2^3206341+1 965208 L5178 2022 1612 23045178^131072+1 965029 L5023 2021 Generalized Fermat 1613 23011666^131072+1 964946 L5273 2021 Generalized Fermat 1614d 911*2^3205225+1 964872 L5364 2022 1615 22980158^131072+1 964868 L4201 2021 Generalized Fermat 1616 22901508^131072+1 964673 L4743 2021 Generalized Fermat 1617 22808110^131072+1 964440 L5248 2021 Generalized Fermat 1618 22718284^131072+1 964215 L5254 2021 Generalized Fermat 1619 22705306^131072+1 964183 L5248 2021 Generalized Fermat 1620 113983*2^3201175-1 963655 L613 2008 1621 34*888^326732-1 963343 L4001 2017 1622e 899*2^3198219+1 962763 L5503 2022 1623 22007146^131072+1 962405 L4245 2020 Generalized Fermat 1624 4*3^2016951+1 962331 L4965 2020 1625 21917442^131072+1 962173 L4622 2020 Generalized Fermat 1626e 987*2^3195883+1 962060 L5282 2022 1627 21869554^131072+1 962048 L5061 2020 Generalized Fermat 1628 21757066^131072+1 961754 L4773 2020 Generalized Fermat 1629 21582550^131072+1 961296 L5068 2020 Generalized Fermat 1630 21517658^131072+1 961125 L5126 2020 Generalized Fermat 1631 20968936^131072+1 959654 L4245 2020 Generalized Fermat 1632e 671*2^3185411+1 958908 L5315 2022 1633 20674450^131072+1 958849 L4245 2020 Generalized Fermat 1634e 1027*2^3184540+1 958646 L5174 2022 1635e 789*2^3183463+1 958321 L5482 2022 1636e 855*2^3183158+1 958229 L5161 2022 1637 20234282^131072+1 957624 L4942 2020 Generalized Fermat 1638 20227142^131072+1 957604 L4677 2020 Generalized Fermat 1639e 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 1640 20185276^131072+1 957486 L4201 2020 Generalized Fermat 1641e 935*2^3180599+1 957459 L5477 2022 1642e 573*2^3179293+1 957066 L5226 2022 1643 33*2^3176269+1 956154 L3432 2013 1644f 81*2^3174353-1 955578 L3887 2022 1645 19464034^131072+1 955415 L4956 2020 Generalized Fermat 1646 600921*2^3173683-1 955380 g337 2018 1647f 587*2^3173567+1 955342 L5301 2022 1648 19216648^131072+1 954687 L5024 2020 Generalized Fermat 1649 1414*95^482691-1 954633 L4877 2019 1650f 305*2^3171039+1 954581 L5301 2022 1651f 755*2^3170701+1 954479 L5302 2022 1652f 775*2^3170580+1 954443 L5449 2022 1653 78*236^402022-1 953965 L5410 2020 1654 18968126^131072+1 953946 L5011 2020 Generalized Fermat 1655 18813106^131072+1 953479 L4201 2020 Generalized Fermat 1656 18608780^131072+1 952857 L4488 2020 Generalized Fermat 1657 1087*2^3164677-1 952666 L1828 2012 1658 18509226^131072+1 952552 L4884 2020 Generalized Fermat 1659 18501600^131072+1 952528 L4875 2020 Generalized Fermat 1660f 459*2^3163175+1 952214 L5178 2022 1661 15*2^3162659+1 952057 p286 2012 1662 18309468^131072+1 951934 L4928 2020 Generalized Fermat 1663 18298534^131072+1 951900 L4201 2020 Generalized Fermat 1664f 849*2^3161727+1 951778 L5178 2022 1665 67*2^3161450+1 951694 L3223 2015 1666f 119*2^3161195+1 951617 L5320 2022 1667 1759*2^3160863-1 951518 L4965 2021 1668 58*117^460033+1 951436 L5410 2020 1669f 417*2^3160443+1 951391 L5302 2022 1670 9231*70^515544+1 951234 L5410 2021 1671f 671*2^3159523+1 951115 L5188 2022 1672 17958952^131072+1 950834 L4201 2020 Generalized Fermat 1673 17814792^131072+1 950375 L4752 2020 Generalized Fermat 1674 17643330^131072+1 949824 L4201 2020 Generalized Fermat 1675 19*2^3155009-1 949754 L1828 2012 1676f 281*2^3151457+1 948686 L5316 2022 1677 179*2^3150265+1 948327 L5302 2021 1678 17141888^131072+1 948183 L4963 2019 Generalized Fermat 1679 17138628^131072+1 948172 L4963 2019 Generalized Fermat 1680 17119936^131072+1 948110 L4963 2019 Generalized Fermat 1681 17052490^131072+1 947885 L4715 2019 Generalized Fermat 1682 17025822^131072+1 947796 L4870 2019 Generalized Fermat 1683 16985784^131072+1 947662 L4295 2019 Generalized Fermat 1684 865*2^3147482+1 947490 L5178 2021 1685 963*2^3145753+1 946969 L5451 2021 1686 16741226^131072+1 946837 L4201 2019 Generalized Fermat 1687 387*2^3144483+1 946587 L5450 2021 1688 1035*2^3144236+1 946513 L5449 2021 1689 1065*2^3143667+1 946342 L4944 2021 1690 193*2^3142150+1 945884 L5178 2021 1691 915*2^3141942+1 945822 L5448 2021 1692 939*2^3141397+1 945658 L5320 2021 1693 1063*2^3141350+1 945644 L5178 2021 1694 16329572^131072+1 945420 L4201 2019 Generalized Fermat 1695 69*2^3140225-1 945304 L3764 2014 1696 3*2^3136255-1 944108 L256 2007 1697 417*2^3136187+1 944089 L5178 2021 1698 15731520^131072+1 943296 L4245 2019 Generalized Fermat 1699 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 1700 15667716^131072+1 943064 L4387 2019 Generalized Fermat 1701 15567144^131072+1 942698 L4918 2019 Generalized Fermat 1702 299*2^3130621+1 942414 L5178 2021 1703 15342502^131072+1 941870 L4245 2019 Generalized Fermat 1704 15237960^131072+1 941481 L4898 2019 Generalized Fermat 1705 571*2^3127388+1 941441 L5440 2021 1706 15147290^131072+1 941141 L4861 2019 Generalized Fermat 1707 197*2^3126343+1 941126 L5178 2021 1708 15091270^131072+1 940930 L4760 2019 Generalized Fermat 1709 1097*2^3124455+1 940558 L5178 2021 1710 3125*2^3124079+1 940445 L1160 2019 1711 495*2^3123624+1 940308 L5438 2021 1712 14790404^131072+1 939784 L4871 2019 Generalized Fermat 1713 1041*2^3120649+1 939412 L5437 2021 1714 14613898^131072+1 939101 L4926 2019 Generalized Fermat 1715 3317*2^3117162-1 938363 L5399 2021 1716 763*2^3115684+1 937918 L4944 2021 1717 581*2^3114611+1 937595 L5178 2021 1718 14217182^131072+1 937534 L4387 2019 Generalized Fermat 1719 134*864^319246-1 937473 L5410 2020 1720c 700057*2^3113753-1 937339 L5410 2022 1721 1197*2^3111838+1 936760 L5178 2021 1722 14020004^131072+1 936739 L4249 2019 Generalized Fermat 1723 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 1724 755*2^3110759+1 936435 L5320 2021 1725 13800346^131072+1 935840 L4880 2019 Generalized Fermat 1726 13613070^131072+1 935062 L4245 2019 Generalized Fermat 1727 628*80^491322+1 935033 L5410 2021 1728 761*2^3105087+1 934728 L5197 2021 1729 13433028^131072+1 934305 L4868 2018 Generalized Fermat 1730 1019*2^3103680-1 934304 L1828 2012 1731 579*2^3102639+1 933991 L5315 2021 1732 99*2^3102401-1 933918 L1862 2017 1733 256612*5^1335485-1 933470 L1056 2013 1734 13083418^131072+1 932803 L4747 2018 Generalized Fermat 1735 69*2^3097340-1 932395 L3764 2014 1736 153*2^3097277+1 932376 L4944 2021 1737 12978952^131072+1 932347 L4849 2018 Generalized Fermat 1738 12961862^131072+1 932272 L4245 2018 Generalized Fermat 1739 207*2^3095391+1 931808 L5178 2021 1740 12851074^131072+1 931783 L4670 2018 Generalized Fermat 1741 45*2^3094632-1 931579 L1862 2018 1742 259*2^3094582+1 931565 L5214 2021 1743 553*2^3094072+1 931412 L4944 2021 1744 57*2^3093440-1 931220 L2484 2020 1745 12687374^131072+1 931054 L4289 2018 Generalized Fermat 1746 513*2^3092705+1 931000 L4329 2016 1747 12661786^131072+1 930939 L4819 2018 Generalized Fermat 1748 933*2^3091825+1 930736 L5178 2021 1749 38*875^316292-1 930536 L4001 2019 1750 5*2^3090860-1 930443 L1862 2012 1751 12512992^131072+1 930266 L4814 2018 Generalized Fermat 1752 12357518^131072+1 929554 L4295 2018 Generalized Fermat 1753 12343130^131072+1 929488 L4720 2018 Generalized Fermat 1754 297*2^3087543+1 929446 L5326 2021 1755 1149*2^3087514+1 929438 L5407 2021 1756 745*2^3087428+1 929412 L5178 2021 1757 373*520^342177+1 929357 L3610 2014 1758 19401*2^3086450-1 929119 L541 2015 1759 75*2^3086355+1 929088 L3760 2015 1760 65*2^3080952-1 927461 L2484 2020 1761 11876066^131072+1 927292 L4737 2018 Generalized Fermat 1762 1139*2^3079783+1 927111 L5174 2021 1763 271*2^3079189-1 926931 L2484 2018 1764 766*33^610412+1 926923 L4001 2016 1765 11778792^131072+1 926824 L4672 2018 Generalized Fermat 1766 555*2^3078792+1 926812 L5226 2021 1767 31*332^367560+1 926672 L4294 2018 1768 167*2^3077568-1 926443 L1862 2019 1769 10001*2^3075602-1 925853 L4405 2019 1770 116*107^455562-1 924513 L4064 2021 1771 11292782^131072+1 924425 L4672 2018 Generalized Fermat 1772 14844*430^350980-1 924299 L4001 2016 1773 11267296^131072+1 924297 L4654 2017 Generalized Fermat 1774 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 1775 1105*2^3069884+1 924131 L5314 2021 1776 319*2^3069362+1 923973 L5377 2021 1777 11195602^131072+1 923933 L4706 2017 Generalized Fermat 1778 973*2^3069092+1 923892 L5214 2021 1779 765*2^3068511+1 923717 L5174 2021 1780 60849*2^3067914+1 923539 L591 2014 1781 674*249^385359+1 923400 L5410 2019 1782 499*2^3066970+1 923253 L5373 2021 1783 553*2^3066838+1 923213 L5368 2021 1784 629*2^3066827+1 923210 L5226 2021 1785 11036888^131072+1 923120 L4660 2017 Generalized Fermat 1786 261*2^3066009+1 922964 L5197 2021 1787 10994460^131072+1 922901 L4704 2017 Generalized Fermat 1788 21*2^3065701+1 922870 p286 2012 1789 10962066^131072+1 922733 L4702 2017 Generalized Fermat 1790 10921162^131072+1 922520 L4559 2017 Generalized Fermat 1791 875*2^3063847+1 922313 L5364 2021 1792 43*2^3063674+1 922260 L3432 2013 1793 677*2^3063403+1 922180 L5346 2021 1794 8460*241^387047-1 921957 L5410 2019 1795 10765720^131072+1 921704 L4695 2017 Generalized Fermat 1796 111*2^3060238-1 921226 L2484 2020 1797 1165*2^3060228+1 921224 L5360 2021 1798 5*2^3059698-1 921062 L503 2008 1799 10453790^131072+1 920031 L4694 2017 Generalized Fermat 1800 453*2^3056181+1 920005 L5320 2021 1801 791*2^3055695+1 919859 L5177 2021 1802 10368632^131072+1 919565 L4692 2017 Generalized Fermat 1803c 582971*2^3053414-1 919175 L5410 2022 1804 123*2^3049038+1 917854 L4119 2015 1805 10037266^131072+1 917716 L4691 2017 Generalized Fermat 1806 400*95^463883-1 917435 L4001 2019 1807 9907326^131072+1 916975 L4690 2017 Generalized Fermat 1808 454*383^354814+1 916558 L2012 2020 1809 9785844^131072+1 916272 L4326 2017 Generalized Fermat 1810 435*2^3041954+1 915723 L5320 2021 1811 639*2^3040438+1 915266 L5320 2021 1812 1045*2^3037988+1 914529 L5178 2021 1813 291*2^3037904+1 914503 L3545 2015 1814 311*2^3037565+1 914401 L5178 2021 1815 373*2^3036746+1 914155 L5178 2021 1816 9419976^131072+1 914103 L4591 2017 Generalized Fermat 1817 801*2^3036045+1 913944 L5348 2021 1818 915*2^3033775+1 913261 L5178 2021 1819 38804*3^1913975+1 913203 L5410 2021 1820 9240606^131072+1 913009 L4591 2017 Generalized Fermat 1821 869*2^3030655+1 912322 L5260 2021 1822 643*2^3030650+1 912320 L5320 2021 1823 99*2^3029959-1 912111 L1862 2020 1824 417*2^3029342+1 911926 L5178 2021 1825 345*2^3027769+1 911452 L5343 2021 1826 26*3^1910099+1 911351 L4799 2020 1827 355*2^3027372+1 911333 L5174 2021 1828 99*2^3026660-1 911118 L1862 2020 1829 417*2^3026492+1 911068 L5197 2021 1830 1065*2^3025527+1 910778 L5208 2021 1831 34202*3^1908800+1 910734 L5410 2021 1832 8343*42^560662+1 910099 L4444 2020 1833 699*2^3023263+1 910096 L5335 2021 1834 8770526^131072+1 910037 L4245 2017 Generalized Fermat 1835 8704114^131072+1 909604 L4670 2017 Generalized Fermat 1836 383731*2^3021377-1 909531 L466 2011 1837 46821*2^3021380-374567 909531 p363 2013 1838 2^3021377-1 909526 G3 1998 Mersenne 37 1839 615*2^3019445+1 908947 L5260 2021 1840 389*2^3019025+1 908820 L5178 2021 1841 875*2^3018175+1 908565 L5334 2021 1842 555*2^3016352+1 908016 L5178 2021 1843 7*2^3015762+1 907836 g279 2008 1844 759*2^3015314+1 907703 L5178 2021 1845 32582*3^1901790+1 907389 L5372 2021 1846 75*2^3012342+1 906808 L3941 2015 1847 459*2^3011814+1 906650 L5178 2021 1848 991*2^3010036+1 906115 L5326 2021 1849 583*2^3009698+1 906013 L5325 2021 1850 8150484^131072+1 905863 L4249 2017 Generalized Fermat 1851 593*2^3006969+1 905191 L5178 2021 1852 367*2^3004536+1 904459 L5178 2021 1853 7926326^131072+1 904276 L4249 2017 Generalized Fermat 1854 1003*2^3003756+1 904224 L5320 2021 1855 573*2^3002662+1 903895 L5319 2021 1856 7858180^131072+1 903784 L4201 2017 Generalized Fermat 1857 329*2^3002295+1 903784 L5318 2021 1858 7832704^131072+1 903599 L4249 2017 Generalized Fermat 1859 268514*5^1292240-1 903243 L3562 2013 1860 7*10^902708+1 902709 p342 2013 1861 435*2^2997453+1 902326 L5167 2021 1862 583*2^2996526+1 902047 L5174 2021 1863 1037*2^2995695+1 901798 L5178 2021 1864 717*2^2995326+1 901686 L5178 2021 1865 885*2^2995274+1 901671 L5178 2021 1866 43*2^2994958+1 901574 L3222 2013 1867 1065*2^2994154+1 901334 L5315 2021 1868 561*2^2994132+1 901327 L5314 2021 1869 1095*2^2992587-1 900862 L1828 2011 1870 519*2^2991849+1 900640 L5311 2021 1871 7379442^131072+1 900206 L4201 2017 Generalized Fermat 1872 459*2^2990134+1 900123 L5197 2021 1873 15*2^2988834+1 899730 p286 2012 1874 29*564^326765+1 899024 L4001 2017 1875 971*2^2982525+1 897833 L5197 2021 1876 1033*2^2980962+1 897362 L5305 2021 1877 39*2^2978894+1 896739 L2719 2013 1878 38*977^299737+1 896184 L5410 2021 1879 4348099*2^2976221-1 895939 L466 2008 1880 205833*2^2976222-411665 895938 L4667 2017 1881 18976*2^2976221-18975 895937 p373 2014 1882 2^2976221-1 895932 G2 1997 Mersenne 36 1883 1024*3^1877301+1 895704 p378 2014 1884 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 1885 24704*3^1877135+1 895626 L5410 2021 1886 591*2^2975069+1 895588 L5299 2021 1887 249*2^2975002+1 895568 L2322 2015 1888 195*2^2972947+1 894949 L3234 2015 1889 6705932^131072+1 894758 L4201 2017 Generalized Fermat 1890 391*2^2971600+1 894544 L5242 2021 1891 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 1892 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 1893 493*72^480933+1 893256 L3610 2014 1894 561*2^2964753+1 892483 L5161 2021 1895 1185*2^2964350+1 892362 L5161 2021 1896 6403134^131072+1 892128 L4510 2016 Generalized Fermat 1897 6391936^131072+1 892028 L4511 2016 Generalized Fermat 1898 21*2^2959789-1 890987 L5313 2021 1899 627*2^2959098+1 890781 L5197 2021 1900 45*2^2958002-1 890449 L1862 2017 1901 729*2^2955389+1 889664 L5282 2021 1902 198677*2^2950515+1 888199 L2121 2012 1903 88*985^296644+1 887987 L5410 2020 1904b 303*2^2949403-1 887862 L1817 2022 1905 5877582^131072+1 887253 L4245 2016 Generalized Fermat 1906b 321*2^2946654-1 887034 L1817 2022 1907 17*2^2946584-1 887012 L3519 2013 1908 489*2^2944673+1 886438 L5167 2021 1909 141*2^2943065+1 885953 L3719 2015 1910 757*2^2942742+1 885857 L5261 2021 1911 5734100^131072+1 885846 L4477 2016 Generalized Fermat 1912 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 1913 33*2^2939063-1 884748 L3345 2013 1914 5903*2^2938744-1 884654 L4036 2015 1915 717*2^2937963+1 884418 L5256 2021 1916 5586416^131072+1 884361 L4454 2016 Generalized Fermat 1917 243*2^2937316+1 884223 L4114 2015 1918 973*2^2937046+1 884142 L5253 2021 1919 61*2^2936967-1 884117 L2484 2017 1920 903*2^2934602+1 883407 L5246 2021 1921 5471814^131072+1 883181 L4362 2016 Generalized Fermat 1922 188*228^374503+1 883056 L4786 2020 1923 53*248^368775+1 883016 L5196 2020 1924 5400728^131072+1 882436 L4201 2016 Generalized Fermat 1925 17*326^350899+1 881887 L4786 2019 1926 855*2^2929550+1 881886 L5200 2021 1927 5326454^131072+1 881648 L4201 2016 Generalized Fermat 1928 839*2^2928551+1 881585 L5242 2021 1929 7019*10^881309-1 881313 L3564 2013 1930 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 1931 577*2^2925602+1 880697 L5201 2021 1932 97366*5^1259955-1 880676 L3567 2013 1933 973*2^2923062+1 879933 L5228 2021 1934 1126*177^391360+1 879770 L4955 2020 1935 243944*5^1258576-1 879713 L3566 2013 1936 693*2^2921528+1 879471 L5201 2021 1937 6*10^879313+1 879314 L5009 2019 1938 269*2^2918105+1 878440 L2715 2015 1939 331*2^2917844+1 878362 L5210 2021 1940 169*2^2917805-1 878350 L2484 2018 1941 1085*2^2916967+1 878098 L5174 2020 1942 389*2^2916499+1 877957 L5215 2020 1943 431*2^2916429+1 877936 L5214 2020 1944 1189*2^2916406+1 877929 L5174 2020 1945 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 1946 4974408^131072+1 877756 L4380 2016 Generalized Fermat 1947 465*2^2914079+1 877228 L5210 2020 1948 427194*113^427194+1 877069 p310 2012 Generalized Cullen 1949 4893072^131072+1 876817 L4303 2016 Generalized Fermat 1950 493*2^2912552+1 876769 L5192 2021 1951 143157*2^2911403+1 876425 L4504 2017 1952 567*2^2910402+1 876122 L5201 2020 1953 683*2^2909217+1 875765 L5199 2020 1954 674*249^365445+1 875682 L5410 2019 1955 475*2^2908802+1 875640 L5192 2021 1956 371*2^2907377+1 875211 L5197 2020 1957 207*2^2903535+1 874054 L3173 2015 1958 851*2^2902731+1 873813 L5177 2020 1959 777*2^2901907+1 873564 L5192 2020 1960 717*2^2900775+1 873224 L5185 2020 1961 99*2^2899303-1 872780 L1862 2017 1962 63*2^2898957+1 872675 L3262 2013 1963 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 1964 747*2^2895307+1 871578 L5178 2020 1965 403*2^2894566+1 871354 L5180 2020 1966 629*2^2892961+1 870871 L5173 2020 1967 627*2^2891514+1 870436 L5168 2020 1968b 325*2^2890955-1 870267 L5545 2022 1969 363*2^2890208+1 870042 L3261 2020 1970 471*2^2890148+1 870024 L5158 2020 1971 4329134^131072+1 869847 L4395 2016 Generalized Fermat 1972 583*2^2889248+1 869754 L5139 2020 1973 955*2^2887934+1 869358 L4958 2020 1974b 303*2^2887603-1 869258 L5184 2022 1975 937*2^2887130+1 869116 L5134 2020 1976 885*2^2886389+1 868893 L3924 2020 1977 763*2^2885928+1 868754 L2125 2020 1978 1071*2^2884844+1 868428 L3593 2020 1979 1181*2^2883981+1 868168 L3593 2020 1980b 327*2^2881349-1 867375 L5545 2022 1981 51*2^2881227+1 867338 L3512 2013 1982 933*2^2879973+1 866962 L4951 2020 1983 261*2^2879941+1 866952 L4119 2015 1984 4085818^131072+1 866554 L4201 2016 Generalized Fermat 1985 65*2^2876718-1 865981 L2484 2016 1986 21*948^290747-1 865500 L4985 2019 1987 4013*2^2873250-1 864939 L1959 2014 1988 41*2^2872058-1 864578 L2484 2013 1989 359*2^2870935+1 864241 L1300 2020 1990 165*2^2870868+1 864220 L4119 2015 1991 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 1992 665*2^2869847+1 863913 L2885 2020 1993 283*2^2868750+1 863583 L3877 2015 1994 845*2^2868291+1 863445 L5100 2020 1995 3125*2^2867399+1 863177 L1754 2019 1996 701*2^2867141+1 863099 L1422 2020 1997 3814944^131072+1 862649 L4201 2016 Generalized Fermat 1998 307*2^2862962+1 861840 L4740 2020 1999 147*2^2862651+1 861746 L1741 2015 2000 1207*2^2861901-1 861522 L1828 2011 2001 231*2^2860725+1 861167 L2873 2015 2002 193*2^2858812+1 860591 L2997 2015 2003 629*2^2857891+1 860314 L3035 2020 2004 493*2^2857856+1 860304 L5087 2020 2005 241*2^2857313-1 860140 L2484 2018 2006 707*2^2856331+1 859845 L5084 2020 2007 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2008 949*2^2854946+1 859428 L2366 2020 2009 222361*2^2854840+1 859398 g403 2006 2010 725*2^2854661+1 859342 L5031 2020 2011 399*2^2851994+1 858539 L4099 2020 2012 225*2^2851959+1 858528 L3941 2015 2013 247*2^2851602+1 858421 L3865 2015 2014 183*2^2850321+1 858035 L2117 2015 2015 1191*2^2849315+1 857733 L1188 2020 2016 717*2^2848598+1 857517 L1204 2020 2017 795*2^2848360+1 857445 L4099 2020 2018 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2019 705*2^2846638+1 856927 L1808 2020 2020 369*2^2846547+1 856899 L4099 2020 2021 233*2^2846392-1 856852 L2484 2021 2022 955*2^2844974+1 856426 L1188 2020 2023 753*2^2844700+1 856343 L1204 2020 2024 11138*745^297992-1 855884 L4189 2019 2025 111*2^2841992+1 855527 L1792 2015 2026 44*744^297912-1 855478 L5410 2021 2027 649*2^2841318+1 855325 L4732 2020 2028f 228*912^288954-1 855305 L5410 2022 2029 305*2^2840155+1 854975 L4907 2020 2030 1149*2^2839622+1 854815 L2042 2020 2031 95*2^2837909+1 854298 L3539 2013 2032 199*2^2835667-1 853624 L2484 2019 2033 595*2^2833406+1 852943 L4343 2020 2034 1101*2^2832061+1 852539 L4930 2020 2035 813*2^2831757+1 852447 L4951 2020 2036 435*2^2831709+1 852432 L4951 2020 2037 543*2^2828217+1 851381 L4746 2019 2038 704*249^354745+1 850043 L5410 2019 2039 1001*2^2822037+1 849521 L1209 2019 2040 84466*5^1215373-1 849515 L3562 2013 2041 97*2^2820650+1 849103 L2163 2013 2042 107*2^2819922-1 848884 L2484 2013 2043 84256*3^1778899+1 848756 L4789 2018 2044 45472*3^1778899-1 848756 L4789 2018 2045 14804*3^1778530+1 848579 L4064 2021 2046 497*2^2818787+1 848543 L4842 2019 2047 97*2^2818306+1 848397 L3262 2013 2048 313*2^2817751-1 848231 L802 2021 2049 177*2^2816050+1 847718 L129 2012 2050 553*2^2815596+1 847582 L4980 2019 2051 1071*2^2814469+1 847243 L3035 2019 2052 105*2^2813000+1 846800 L3200 2015 2053 1115*2^2812911+1 846774 L1125 2019 2054 96*10^846519-1 846521 L2425 2011 Near-repdigit 2055 763*2^2811726+1 846417 L3919 2019 2056 1125*2^2811598+1 846379 L4981 2019 2057 891*2^2810100+1 845928 L4981 2019 2058 441*2^2809881+1 845862 L4980 2019 2059 711*2^2808473+1 845438 L1502 2019 2060 1089*2^2808231+1 845365 L4687 2019 2061 63*2^2807130+1 845033 L3262 2013 2062 1083*2^2806536+1 844855 L3035 2019 2063 675*2^2805669+1 844594 L1932 2019 2064 819*2^2805389+1 844510 L3372 2019 2065 1027*2^2805222+1 844459 L3035 2019 2066 437*2^2803775+1 844024 L3168 2019 2067 4431*372^327835-1 842718 L5410 2019 2068 150344*5^1205508-1 842620 L3547 2013 2069 311*2^2798459+1 842423 L4970 2019 2070 81*2^2797443-1 842117 L3887 2021 2071 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2072 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2073 43*2^2795582+1 841556 L2842 2013 2074 1001*2^2794357+1 841189 L1675 2019 2075 117*2^2794014+1 841085 L1741 2015 2076 1057*2^2792700+1 840690 L1675 2019 2077 345*2^2792269+1 840560 L1754 2019 2078 711*2^2792072+1 840501 L4256 2019 2079 315*2^2791414-1 840302 L2235 2021 2080 973*2^2789516+1 839731 L3372 2019 2081 27602*3^1759590+1 839543 L4064 2021 2082 2187*2^2786802+1 838915 L1745 2019 2083 15*2^2785940+1 838653 p286 2012 2084 333*2^2785626-1 838560 L802 2021 2085 1337*2^2785444-1 838506 L4518 2017 2086 711*2^2784213+1 838135 L4687 2019 2087 58582*91^427818+1 838118 L5410 2020 2088 923*2^2783153+1 837816 L1675 2019 2089 1103*2^2783149+1 837815 L3784 2019 2090 485*2^2778151+1 836310 L1745 2019 2091 600921*2^2776014-1 835670 g337 2017 2092 1129*2^2774934+1 835342 L1774 2019 2093 750*1017^277556-1 834703 L4955 2021 2094 8700*241^350384-1 834625 L5410 2019 2095 1023*2^2772512+1 834613 L4724 2019 2096 656*249^348030+1 833953 L5410 2019 2097 92*10^833852-1 833854 L4789 2018 Near-repdigit 2098 437*2^2769299+1 833645 L3760 2019 2099 967*2^2768408+1 833377 L3760 2019 2100 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2101 1171*2^2768112+1 833288 L2676 2019 2102 57*2^2765963+1 832640 L3262 2013 2103 1323*2^2764024+1 832058 L1115 2019 2104 77*2^2762047+1 831461 L3430 2013 2105 745*2^2761514+1 831302 L1204 2019 2106 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2107 7*10^830865+1 830866 p342 2014 2108 893*2^2758841+1 830497 L4826 2019 2109 537*2^2755164+1 829390 L3035 2019 2110 579*2^2754370+1 829151 L1823 2019 2111 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2112 215*2^2751022-1 828143 L2484 2018 2113 337*2^2750860+1 828094 L4854 2019 2114 701*2^2750267+1 827916 L3784 2019 2115 467*2^2749195+1 827593 L1745 2019 2116 245*2^2748663+1 827433 L3173 2015 2117 591*2^2748315+1 827329 L3029 2019 2118 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2119 1089*2^2746155+1 826679 L2583 2019 2120 707*2^2745815+1 826576 L3760 2019 2121 459*2^2742310+1 825521 L4582 2019 2122 777*2^2742196+1 825487 L3919 2019 2123 609*2^2741078+1 825150 L3091 2019 2124f 684*157^375674+1 824946 L5112 2022 2125 639*2^2740186+1 824881 L4958 2019 2126 905*2^2739805+1 824767 L4958 2019 2127 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2128 777*2^2737282+1 824007 L1823 2019 2129 765*2^2735232+1 823390 L1823 2019 2130 609*2^2735031+1 823330 L1823 2019 2131 305*2^2733989+1 823016 L1823 2019 2132 165*2^2732983+1 822713 L1741 2015 2133 1133*2^2731993+1 822415 L4687 2019 2134 251*2^2730917+1 822091 L3924 2015 2135 1185*2^2730620+1 822002 L4948 2019 2136b (10^410997+1)^2-2 821995 p405 2022 2137 173*2^2729905+1 821786 L3895 2015 2138 1981*2^2728877-1 821478 L1134 2018 2139 693*2^2728537+1 821375 L3035 2019 2140 501*2^2728224+1 821280 L3035 2019 2141 763*2^2727928+1 821192 L3924 2019 2142 10*743^285478+1 819606 L4955 2019 2143 17*2^2721830-1 819354 p279 2010 2144 1006*639^291952+1 819075 L4444 2021 2145 1101*2^2720091+1 818833 L4935 2019 2146 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2147 165*2^2717378-1 818015 L2055 2012 2148 68633*2^2715609+1 817485 L5105 2020 2149 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2150 9574*5^1169232+1 817263 L5410 2021 2151 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2152 133*2^2713410+1 816820 L3223 2015 2153 45*2^2711732+1 816315 L1349 2012 2154 569*2^2711451+1 816231 L4568 2019 2155 12830*3^1709456+1 815622 L5410 2021 2156 335*2^2708958-1 815481 L2235 2020 2157 93*2^2708718-1 815408 L1862 2016 2158 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2159 837*2^2708160+1 815241 L4314 2019 2160 1005*2^2707268+1 814972 L4687 2019 2161 13*458^306196+1 814748 L3610 2015 2162 253*2^2705844+1 814543 L4083 2015 2163 657*2^2705620+1 814476 L4907 2019 2164 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2165 303*2^2703864+1 813947 L1204 2019 2166 141*2^2702160+1 813434 L1741 2015 2167 753*2^2701925+1 813364 L4314 2019 2168 133*2^2701452+1 813221 L3173 2015 2169 521*2^2700095+1 812813 L4854 2019 2170 393*2^2698956+1 812470 L1823 2019 2171 417*2^2698652+1 812378 L3035 2019 2172 525*2^2698118+1 812218 L1823 2019 2173 3125*2^2697651+1 812078 L3924 2019 2174 153*2^2697173+1 811933 L3865 2015 2175 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2176 26*3^1700041+1 811128 L4799 2020 2177 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2178 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2179 58*536^296735-1 809841 L5410 2021 2180 33016*3^1696980+1 809670 L5366 2021 2181 7335*2^2689080-1 809498 L4036 2015 2182 1049*2^2688749+1 809398 L4869 2018 2183 329*2^2688221+1 809238 L3035 2018 2184 865*2^2687434+1 809002 L4844 2018 2185 989*2^2686591+1 808748 L2805 2018 2186 136*904^273532+1 808609 L5410 2020 2187 243*2^2685873+1 808531 L3865 2015 2188 909*2^2685019+1 808275 L3431 2018 2189 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2190 1455*2^2683953-1 807954 L1134 2020 2191 11210*241^339153-1 807873 L5410 2019 2192 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2193 975*2^2681840+1 807318 L4155 2018 2194 295*2^2680932+1 807044 L1741 2015 2195 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2196 575*2^2679711+1 806677 L2125 2018 2197 2386*52^469972+1 806477 L4955 2019 2198 219*2^2676229+1 805628 L1792 2015 2199 637*2^2675976+1 805552 L3035 2018 2200 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2201 951*2^2674564+1 805127 L1885 2018 2202 1372930^131072+1 804474 g236 2003 Generalized Fermat 2203 662*1009^267747-1 804286 L5410 2020 2204 261*2^2671677+1 804258 L3035 2015 2205 895*2^2671520+1 804211 L3035 2018 2206 1361244^131072+1 803988 g236 2004 Generalized Fermat 2207 789*2^2670409+1 803877 L3035 2018 2208 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2209 503*2^2668529+1 803310 L4844 2018 2210 255*2^2668448+1 803286 L1129 2015 2211 4189*2^2666639-1 802742 L1959 2017 2212 539*2^2664603+1 802129 L4717 2018 2213 26036*745^279261-1 802086 L4189 2020 2214 1396*5^1146713-1 801522 L3547 2013 2215 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2216 51*892^271541+1 801147 L5410 2019 2217 297*2^2660048+1 800757 L3865 2015 2218 99*2^2658496-1 800290 L1862 2021 2219b (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2220 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2221 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2222 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2223 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 2224 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 2225 1183953*2^2367907-1 712818 L447 2007 Woodall 2226 150209!+1 712355 p3 2011 Factorial 2227 147855!-1 700177 p362 2013 Factorial 2228 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 2229 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 2230 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 2231 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 2232b (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 2233 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 2234 404882*43^404882-1 661368 p310 2011 Generalized Woodall 2235 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 2236 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 2237 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 2238 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 2239 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 2240 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 2241 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 2242 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 2243 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 2244 292402*159^292402+1 643699 g407 2012 Generalized Cullen 2245 93*10^642225-1 642227 L4789 2020 Near-repdigit 2246 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 2247 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 2248 563528*13^563528-1 627745 p262 2009 Generalized Woodall 2249 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 2250 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 2251 269328*211^269328+1 626000 p354 2012 Generalized Cullen 2252 8*10^608989-1 608990 p297 2011 Near-repdigit 2253 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 2254 251749*2^2013995-1 606279 L436 2007 Woodall 2255 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 2256 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 2257 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 2258 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 2259 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 2260 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 2261 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 2262 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 2263 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 2264 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 2265 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 2266 92*10^544905-1 544907 L3735 2015 Near-repdigit 2267 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 2268 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 2269 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 2270 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 2271 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 2272 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 2273 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 2274 110059!+1 507082 p312 2011 Factorial 2275 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 2276 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 2277 30981*14^433735-1 497121 p77 2015 Generalized Woodall 2278 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 2279 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 2280 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 2281 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 2282 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 2283 1098133#-1 476311 p346 2012 Primorial 2284 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 2285 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 2286 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 2287 103040!-1 471794 p301 2010 Factorial 2288 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 2289 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 2290 341351*22^341351-1 458243 p260 2017 Generalized Woodall 2291 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 2292 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 2293 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 2294 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 2295 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 2296 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 2297 176660*18^353320-1 443519 p325 2011 Generalized Woodall 2298 1467763*2^1467763-1 441847 L381 2007 Woodall 2299 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 2300 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 2301 94550!-1 429390 p290 2010 Factorial 2302 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 2303 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 2304 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 2305 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 2306 2^1398269-1 420921 G1 1996 Mersenne 35 2307 182402*14^364804-1 418118 p325 2011 Generalized Woodall 2308 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 2309 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 2310 338707*2^1354830+1 407850 L124 2005 Cullen 2311 11*2^1343347+1 404389 p169 2005 Divides GF(1343346,6) 2312 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 2313 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 2314 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 2315 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 2316 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 2317 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 2318 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 2319 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 2320 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 2321 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 2322 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 2323 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 2324 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 2325 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 2326 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 2327 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 2328 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 2329 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 2330 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 2331 1268979*2^1268979-1 382007 L201 2007 Woodall 2332 2^1257787-1 378632 SG 1996 Mersenne 34 2333 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 2334 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 2335 843301#-1 365851 p302 2010 Primorial 2336 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 2337 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 2338 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 2339 1195203*2^1195203-1 359799 L124 2005 Woodall 2340 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 2341 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 2342 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 2343 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 2344 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 2345 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 2346 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 2347 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 2348 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 2349 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 2350 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 2351 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 2352 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 2353 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 2354 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 2355 3*2^916773+1 275977 g245 2001 Divides GF(916771,3), GF(916772,10) 2356 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 2357 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 2358 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 2359 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 2360 2^859433-1 258716 SG 1994 Mersenne 33 2361 2^756839-1 227832 SG 1992 Mersenne 32 2362 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 2363 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 2364 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 2365 667071*2^667071-1 200815 g55 2000 Woodall 2366 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 2367 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 2368 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 2369 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 2370 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 2371 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 2372 392113#+1 169966 p16 2001 Primorial 2373 366439#+1 158936 p16 2001 Primorial 2374 481899*2^481899+1 145072 gm 1998 Cullen 2375 34790!-1 142891 p85 2002 Factorial 2376 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 2377 361275*2^361275+1 108761 DS 1998 Cullen 2378 26951!+1 107707 p65 2002 Factorial 2379 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 2380 65516468355*2^333333-1 100355 L923 2009 Twin (p) 2381 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 2382 21480!-1 83727 p65 2001 Factorial 2383 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 2384 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 2385 262419*2^262419+1 79002 DS 1998 Cullen 2386 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 2387 160204065*2^262148-1 78923 L5115 2021 Twin (p) 2388 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 2389 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 2390 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2391 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2392 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 2393 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 2394 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 2395 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 2396 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 2397 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 2398 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 2399 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 2400 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 2401 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 2402 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 2403 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 2404 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 2405 12770275971*2^222225-1 66907 L527 2017 Twin (p) 2406 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 2407 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 2408 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 2409 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 2410 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 2411 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 2412e 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 2413e 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 2414e 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 2415e 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 2416 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 2417 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 2418 145823#+1 63142 p21 2000 Primorial 2419 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 2420 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 2421 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 2422 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 2423 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 2424 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 2425 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 2426 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 2427 70965694293*2^200006-1 60219 L95 2016 Twin (p) 2428 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 2429 66444866235*2^200003-1 60218 L95 2016 Twin (p) 2430 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 2431 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 2432 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 2433 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 2434 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 2435 2003663613*2^195000-1 58711 L202 2007 Twin (p) 2436 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 2437 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 2438 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 2439 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 2440 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 2441 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 2442 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 2443 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 2444 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 2445 17976255129*2^183241-1 55172 p415 2021 Twin (p) 2446 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 2447 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 2448 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 2449 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 2450 191547657*2^173372-1 52199 L5116 2020 Twin (p) 2451 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 2452 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 2453b 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 2454b 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 2455 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 2456 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 2457 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 2458 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 2459 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 2460 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 2461 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 2462 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 2463 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 2464 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 2465 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 2466 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 2467 33218925*2^169690-1 51090 g259 2002 Twin (p) 2468 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 2469a 10^50000+65859 50001 E3 2022 ECPP 2470d R(49081) 49081 c70 2022 Repunit, unique, ECPP 2471 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 2472 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 2473 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 2474 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 2475 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 2476 110427610*3^100003-1 47722 p415 2021 Twin (p) 2477 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 2478 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 2479 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 2480 3706785456*13^42069-1 46873 p412 2020 Twin (p) 2481 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 2482 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 2483 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 2484 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 2485 151023*2^151023-1 45468 g25 1998 Woodall 2486 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 2487 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 2488 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 2489 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 2490 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 2491 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 2492 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 2493 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 2494 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 2495 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 2496 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 2497 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 2498 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 2499 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 2500 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 2501 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 2502a 10^40000+14253 40001 E3 2022 ECPP 2503 p(1289844341) 40000 c84 2020 Partitions, ECPP 2504 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 2505 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 2506a tau (47^4176) 38404 E3 2022 ECPP 2507 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 2508 2^116224-15905 34987 c87 2017 ECPP 2509 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 2510 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 2511 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 2512 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 2513 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 2514 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 2515 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 2516 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 2517 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 2518 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 2519a (18^25667-1)/17 32218 E5 2022 Generalized repunit, ECPP 2520 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 2521 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 2522c (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 2523 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 2524 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 2525 V(148091) 30950 c81 2015 Lucas number, ECPP 2526 U(148091) 30949 x49 2021 Fibonacci number, ECPP 2527 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 2528a Phi(36547,-10) 29832 E1 2022 Unique, ECPP 2529a 2^99069+9814666761 29823 E4 2022 ECPP 2530 49363*2^98727-1 29725 Y 1997 Woodall 2531 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 2532 -τ(331^2128) 29492 c80 2015 ECPP 2533 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 2534 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 2535 V(140057) 29271 c76 2014 Lucas number,ECPP 2536 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 2537 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 2538 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 2539 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 2540 primV(205011) 28552 x39 2009 Lucas primitive part 2541 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 2542 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 2543 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 2544 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 2545 (10^27669+7)/8313493832818655929448065598763458531111 27630 c96 2021 ECPP 2546 90825*2^90825+1 27347 Y 1997 Cullen 2547 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 2548 U(130021) 27173 x48 2021 Fibonacci number, ECPP 2549 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 2550 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 2551 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 2552c 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 2553c 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 2554 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 2555 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 2556 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 2557 1036053977*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10664254*60013#) 2558a (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 2559b (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 2560 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 2561 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 2562 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 2563 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 2564 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 2565 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 2566 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 2567 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 2568 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 2569 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 2570 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 2571 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 2572 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 2573 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 2574 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 2575b (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 2576 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 2577 6917!-1 23560 g1 1998 Factorial 2578 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 2579 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 2580 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 2581 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 2582 U(104911) 21925 c82 2015 Fibonacci number, ECPP 2583 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 2584 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 2585 6380!+1 21507 g1 1998 Factorial 2586 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 2587 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 2588 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 2589 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 2590 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 2591 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 2592 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 2593 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 2594 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 2595 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 2596b primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 2597 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 2598 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 2599 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 2600 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 2601 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 2602 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 2603 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 2604a primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 2605 V(94823) 19817 c73 2014 Lucas number, ECPP 2606 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 2607 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 2608 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 2609a (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 2610 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 2611a primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 2612b primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 2613a (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 2614 V(89849) 18778 c70 2014 Lucas number, ECPP 2615 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 2616 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 2617a (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 2618 Phi(18827,10) 18480 c47 2014 Unique, ECPP 2619a primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2620b primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 2621 42209#+1 18241 p8 1999 Primorial 2622 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 2623 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 2624 7457*2^59659+1 17964 Y 1997 Cullen 2625b primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2626b primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 2627a (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 2628 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 2629 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 2630b primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 2631 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 2632 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 2633 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 2634 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 2635 U(81839) 17103 p54 2001 Fibonacci number 2636a (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 2637 V(81671) 17069 c66 2013 Lucas number, ECPP 2638b primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 2639 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 2640 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 2641 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 2642 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 2643 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 2644 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 2645 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 2646 p(221444161) 16569 c77 2017 Partitions, ECPP 2647a (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 2648b primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2649 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 2650a (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 2651 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 2652 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 2653 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 2654 U(2554,-1,4751) 16185 CH3 2005 Generalized Lucas number 2655b primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 2656 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 2657 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 2658 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 2659 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 2660 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 2661 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 2662 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 2663 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 2664 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 2665 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2666 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 2667 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2668 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 2669 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 2670c 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 2671c 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 2672c 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 2673 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2674 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 2675 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 2676 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 2677 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 2678 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 2679 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2680 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 2681 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 2682 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2683 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 2684 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 2685 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 2686 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 2687 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 2688 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 2689 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 2690 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2691 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 2692c 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 2693c 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 2694c 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 2695b 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 2696 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 2697 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 2698 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 2699 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 2700 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2701 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 2702 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 2703 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 2704 p(131328565) 12758 c77 2017 Partitions, ECPP 2705 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2706 p(130249452) 12705 c85 2017 Partitions, ECPP 2707 p(130243561) 12705 c85 2017 Partitions, ECPP 2708 p(130242827) 12705 c85 2017 Partitions, ECPP 2709 p(130232271) 12705 c85 2017 Partitions, ECPP 2710 p(130201087) 12703 c85 2017 Partitions, ECPP 2711 p(130168020) 12701 c85 2017 Partitions, ECPP 2712 p(130142600) 12700 c85 2017 Partitions, ECPP 2713 p(130123073) 12699 c85 2017 Partitions, ECPP 2714 p(130086648) 12697 c85 2017 Partitions, ECPP 2715 p(130085878) 12697 c85 2017 Partitions, ECPP 2716 p(130060601) 12696 c85 2016 Partitions, ECPP 2717 p(130000231) 12693 c59 2016 Partitions, ECPP 2718 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2719 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 2720 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 2721 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 2722 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 2723 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 2724 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 2725 p(122110618) 12302 c77 2015 Partitions, ECPP 2726 p(120052058) 12198 c59 2012 Partitions, ECPP 2727 p(120037981) 12197 c59 2014 Partitions, ECPP 2728 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 2729 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 2730 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 2731 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 2732 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 2733 V(56003) 11704 p193 2006 Lucas number 2734 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 2735 p(110030755) 11677 c59 2014 Partitions, ECPP 2736 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 2737 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 2738 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 2739 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 2740 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 2741 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 2742 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 2743 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 2744 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 2745 primU(67825) 11336 x23 2007 Fibonacci primitive part 2746 3610!-1 11277 C 1993 Factorial 2747 p(100115477) 11138 c59 2016 Partitions, ECPP 2748 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 2749 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 2750 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 2751 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 2752 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 2753 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 2754 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 2755 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 2756 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 2757 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 2758 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 2759 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 2760 3507!-1 10912 C 1992 Factorial 2761 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 2762 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 2763 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 2764 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 2765 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 2766 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 2767 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 2768 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 2769 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 2770 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 2771 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 2772 V(51169) 10694 p54 2001 Lucas number 2773 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 2774 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 2775 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 2776 U(50833) 10624 CH4 2005 Fibonacci number 2777 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 2778 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 2779 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 2780 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 2781 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 2782 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 2783 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 2784 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 2785 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 2786 24029#+1 10387 C 1993 Primorial 2787 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 2788 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 2789 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 2790 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 2791 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 2792 23801#+1 10273 C 1993 Primorial 2793 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 2794 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 2795 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 2796 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 2797 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 2798 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 2799 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 2800 32469*2^32469+1 9779 MM 1997 Cullen 2801 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 2802 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 2803 8073*2^32294+1 9726 MM 1997 Cullen 2804 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 2805 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 2806 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 2807 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 2808 V(44507) 9302 CH3 2005 Lucas number 2809 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 2810 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 2811 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 2812 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 2813 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 2814 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2815 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 2816 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 2817 (2^28759-1)/226160777 8649 c60 2012 Mersenne cofactor, ECPP 2818 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 2819 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 2820 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 2821 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 2822 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 2823 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 2824 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2825 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 2826 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2827 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 2828 18523#+1 8002 D 1989 Primorial 2829 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 2830 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 2831 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 2832 U(37511) 7839 x13 2005 Fibonacci number 2833 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 2834 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 2835 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 2836 V(36779) 7687 CH3 2005 Lucas number 2837 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 2838 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 2839 V(35449) 7409 p12 2001 Lucas number 2840 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 2841 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 2842 V(34759)/27112021 7257 c33 2005 Lucas cofactor, ECPP 2843 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 2844 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 2845 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 2846 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP 2847 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 2848 U(33997)/8119544695419968014626314520991088099382355441843013 7053 c8 2013 Fibonacci cofactor, ECPP 2849 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 2850 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 2851 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 2852 V(33353)/279902102741094707003083072429 6941 c8 2013 Lucas cofactor, ECPP 2853 23005*2^23005-1 6930 Y 1997 Woodall 2854 22971*2^22971-1 6920 Y 1997 Woodall 2855 15877#-1 6845 CD 1992 Primorial 2856 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 2857 primU(40295) 6737 p12 2001 Fibonacci primitive part 2858 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 2859 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 2860 primU(43653) 6082 CH7 2010 Fibonacci primitive part 2861 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 2862 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 2863 13649#+1 5862 D 1987 Primorial 2864 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 2865 18885*2^18885-1 5690 K 1987 Woodall 2866 1963!-1 5614 CD 1992 Factorial 2867 13033#-1 5610 CD 1992 Primorial 2868 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 2869 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 2870 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 2871 U(25561) 5342 p54 2001 Fibonacci number 2872 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 2873 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 2874 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 2875 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 2876 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 2877 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 2878 11549#+1 4951 D 1986 Primorial 2879 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 2880 7911*2^15823-1 4768 K 1987 Woodall 2881 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 2882 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 2883 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 2884 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 2885 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 2886 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 2887 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 2888 1477!+1 4042 D 1984 Factorial 2889 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 2890 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 2891 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 2892 12379*2^12379-1 3731 K 1984 Woodall 2893 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 2894 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 2895 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 2896 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 2897 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 2898 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 2899 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 2900 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 2901 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 2902 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 2903 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 2904 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 2905 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 2906 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 2907 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 2908a 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 2909a 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 2910 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 2911 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 2912 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 2913d 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 2914d 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 2915d 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 2916d 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 2917d 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 2918 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 2919 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 2920 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 2921 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 2922 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 2923 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 2924 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 2925 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2926 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2927 V(14449) 3020 DK 1995 Lucas number 2928 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 2929 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 2930 U(14431) 3016 p54 2001 Fibonacci number 2931 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 2932 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2933 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2934 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2935 V(13963) 2919 c11 2002 Lucas number, ECPP 2936 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 2937 9531*2^9531-1 2874 K 1984 Woodall 2938 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 2939 6569#-1 2811 D 1992 Primorial 2940 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 2941 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 2942 V(12251) 2561 p54 2001 Lucas number 2943 974!-1 2490 CD 1992 Factorial 2944 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 2945 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 2946 7755*2^7755-1 2339 K 1984 Woodall 2947 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 2948 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 2949 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 2950 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 2951 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 2952 V(10691) 2235 DK 1995 Lucas number 2953 872!+1 2188 D 1983 Factorial 2954 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 2955 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 2956 -E(886)/68689 2051 c4 2002 Euler irregular, ECPP 2957 4787#+1 2038 D 1984 Primorial 2958 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 2959 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 2960 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 2961 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 2962 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 2963 U(9677) 2023 c2 2000 Fibonacci number, ECPP 2964 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 2965 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 2966 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 2967 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 2968 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 2969 6611*2^6611+1 1994 K 1984 Cullen 2970 4583#-1 1953 D 1992 Primorial 2971 U(9311) 1946 DK 1995 Fibonacci number 2972 4547#+1 1939 D 1984 Primorial 2973 4297#-1 1844 D 1992 Primorial 2974f 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 2975 V(8467) 1770 c2 2000 Lucas number, ECPP 2976 4093#-1 1750 CD 1992 Primorial 2977 5795*2^5795+1 1749 K 1984 Cullen 2978 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 2979 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 2980 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 2981 V(7741) 1618 DK 1995 Lucas number 2982 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 2983 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 2984 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 2985 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 2986 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 2987 83*2^5318-1 1603 K 1984 Woodall 2988 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 2989 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 2990 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 2991 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 2992 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 2993 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 2994 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 2995 4713*2^4713+1 1423 K 1984 Cullen 2996 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 2997 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 2998 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 2999 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 3000 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 3001 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 3002 V(5851) 1223 DK 1995 Lucas number 3003 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 3004 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 3005 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 3006 U(5387) 1126 WM 1990 Fibonacci number 3007 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 3008 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 3009 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 3010 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 3011 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 3012 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 3013 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 3014 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 3015 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 3016 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 3017 R(1031) 1031 WD 1985 Repunit 3018 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 3019 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 3020 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 3021 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 3022 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 3023 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 3024 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 3025 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 3026 V(4793) 1002 DK 1995 Lucas number 3027 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 3028 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 3029 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 3030 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 3031 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 3032 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c80 Lygeros, Rozier, Anonymous, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c85 Lasher, Broadhurst, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c96 Reich2, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH7 Broadhurst, OpenPFGW, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe gm Morii, Proth.exe K Keller L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5389 Doornink, TwinGen, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p169 Eaton, NewPGen, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown Y Young