THE LARGEST KNOWN PRIMES (Primes with 700,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Sat Apr 10 15:51:05 CDT 2021) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: http://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: http://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48? 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13 2^20996011-1 6320430 G6 2003 Mersenne 40 14 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 15 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 16 168451*2^19375200+1 5832522 L4676 2017 17 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 18 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 19 7*6^6772401+1 5269954 L4965 2019 20 8508301*2^17016603-1 5122515 L4784 2018 Woodall 21d 3*2^16819291-1 5063112 L5230 2021 22 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 23 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 24 6*5^6546983+1 4576146 L4965 2020 25b 192971*2^14773498-1 4447272 L4965 2021 26 6962*31^2863120-1 4269952 L4944 2020 27 99739*2^14019102+1 4220176 L5008 2019 28b 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 29 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 30 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 31 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 32 2^13466917-1 4053946 G5 2001 Mersenne 39 33 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 34 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 35 19249*2^13018586+1 3918990 SB10 2007 36c 2293*2^12918431-1 3888839 L4965 2021 37 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 38c 27*2^12184319+1 3667847 L4965 2021 39 3*2^11895718-1 3580969 L4159 2015 40 3*2^11731850-1 3531640 L4103 2015 41e 69*2^11718455-1 3527609 L4965 2020 42e 69*2^11604348-1 3493259 L4965 2020 43 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 44 3*2^11484018-1 3457035 L3993 2014 45 193997*2^11452891+1 3447670 L4398 2018 46 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 47c 9221*2^11392194-1 3429397 L5267 2021 48 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 49 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 50f 146561*2^11280802-1 3395865 L5181 2020 51 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 52 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 53 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 54 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 55 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 56d 9271*2^11134335-1 3351773 L4965 2021 57 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 58 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 59 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 60 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 61 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 62 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 63 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 64 475856^524288+1 2976633 L3230 2012 Generalized Fermat 65 9*2^9778263+1 2943552 L4965 2020 66 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 67 356926^524288+1 2911151 L3209 2012 Generalized Fermat 68 341112^524288+1 2900832 L3184 2012 Generalized Fermat 69f 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 70 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 71 27653*2^9167433+1 2759677 SB8 2005 72 90527*2^9162167+1 2758093 L1460 2010 73b 6795*2^9144320-1 2752719 L4965 2021 74 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 75 13*2^8989858+1 2706219 L4965 2020 76 273809*2^8932416-1 2688931 L1056 2017 77 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 78b 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 79 2038*366^1028507-1 2636562 L2054 2016 80c 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 81 75898^524288+1 2558647 p334 2011 Generalized Fermat 82d 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 83d 39*2^8413422+1 2532694 L5232 2021 84d 31*2^8348000+1 2513000 L5229 2021 85c 27*2^8342438-1 2511326 L3483 2021 86 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 87 11*2^7971110-1 2399545 L2484 2019 88d 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 89d 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 90 7*6^3072198+1 2390636 L4965 2019 91d 3765*2^7904593-1 2379524 L4965 2021 92d 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 93c 861*2^7895451-1 2376771 L4965 2021 94 28433*2^7830457+1 2357207 SB7 2004 95d 2545*2^7732265-1 2327648 L4965 2021 96d 5539*2^7730709-1 2327180 L4965 2021 97 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 98e 45*2^7661004+1 2306194 L5200 2020 99e 15*2^7619838+1 2293801 L5192 2020 100d 3597*2^7580693-1 2282020 L4965 2021 101c 7401*2^7523295-1 2264742 L4965 2021 102f 45*2^7513661+1 2261839 L5179 2020 103 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 104 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 105 109838*5^3168862-1 2214945 L5129 2020 106 101*2^7345194-1 2211126 L1884 2019 107 15*2^7300254+1 2197597 L5167 2020 108 737*2^7269322-1 2188287 L4665 2017 109 118568*5^3112069+1 2175248 L690 2020 110b 6039*2^7207973-1 2169820 L4965 2021 111 502573*2^7181987-1 2162000 L3964 2014 112 402539*2^7173024-1 2159301 L3961 2014 113 3343*2^7166019-1 2157191 L1884 2016 114 161041*2^7107964+1 2139716 L4034 2015 115 27*2^7046834+1 2121310 L3483 2018 116d 327*2^7044001-1 2120459 L4965 2021 117 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 118 33661*2^7031232+1 2116617 SB11 2007 119 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 120 207494*5^3017502-1 2109149 L5083 2020 121 2^6972593-1 2098960 G4 1999 Mersenne 38 122d 6219*2^6958945-1 2094855 L4965 2021 123 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 124 238694*5^2979422-1 2082532 L5081 2020 125 4*72^1119849-1 2079933 L4444 2016 126 146264*5^2953282-1 2064261 L1056 2020 127 69*2^6838971-1 2058738 L5037 2020 128 35816*5^2945294-1 2058677 L5076 2020 129 127*2^6836153-1 2057890 L1862 2018 130 19*2^6833086+1 2056966 L5166 2020 131 40597*2^6808509-1 2049571 L3749 2013 132 283*2^6804731-1 2048431 L2484 2020 133e 1861709*2^6789999+1 2044000 L5191 2020 134d 5781*2^6789459-1 2043835 L4965 2021 135d 8435*2^6786180-1 2042848 L4965 2021 136 51*2^6753404+1 2032979 L4965 2020 137e 9995*2^6711008-1 2020219 L4965 2020 138 39*2^6684941+1 2012370 L5162 2020 139 6679881*2^6679881+1 2010852 L917 2009 Cullen 140 37*2^6660841-1 2005115 L3933 2014 141 39*2^6648997+1 2001550 L5161 2020 142 304207*2^6643565-1 1999918 L3547 2013 143 69*2^6639971-1 1998833 L5037 2020 144c 6471*2^6631137-1 1996175 L4965 2021 145d 1319*2^6506224-1 1958572 L4965 2021 146 322498*5^2800819-1 1957694 L4954 2019 147 88444*5^2799269-1 1956611 L3523 2019 148 13*2^6481780+1 1951212 L4965 2020 149 138514*5^2771922+1 1937496 L4937 2019 150 398023*2^6418059-1 1932034 L3659 2013 151b 1995*2^6333396-1 1906546 L4965 2021 152 1582137*2^6328550+1 1905090 L801 2009 Cullen 153d 3303*2^6264946-1 1885941 L4965 2021 154c 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 155 7*6^2396573+1 1864898 L4965 2019 156c 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 157d 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 158e 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 159e 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 160e 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 161 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 162 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 163 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 164 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 165 194368*5^2638045-1 1843920 L690 2018 166 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 167 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 168 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 169 66916*5^2628609-1 1837324 L690 2018 170 3*2^6090515-1 1833429 L1353 2010 171 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 172 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 173 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 174 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 175 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 176 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 177d 9999*2^6037057-1 1817340 L4965 2021 178 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 179 1583*2^5989282-1 1802957 L4036 2015 180 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 181 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 182 327926*5^2542838-1 1777374 L4807 2018 183 81556*5^2539960+1 1775361 L4809 2018 184 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 185 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 186 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 187 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 188 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 189 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 190 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 191 7*2^5775996+1 1738749 L3325 2012 192 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 193 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 194 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 195 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 196 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 197 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 198 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 199 1243*2^5686715-1 1711875 L1828 2016 200d 25*2^5658915-1 1703505 L1884 2021 201 41*2^5651731+1 1701343 L1204 2020 202 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 203 9*2^5642513+1 1698567 L3432 2013 204 10*3^3550446+1 1693995 L4965 2020 205 2622*11^1621920-1 1689060 L2054 2015 206 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 207 301562*5^2408646-1 1683577 L4675 2017 208 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 209 171362*5^2400996-1 1678230 L4669 2017 210 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 211 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 212 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 213 252191*2^5497878-1 1655032 L3183 2012 214 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 215 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 216 258317*2^5450519+1 1640776 g414 2008 217 7*6^2104746+1 1637812 L4965 2019 218 5*2^5429494-1 1634442 L3345 2017 219 43*2^5408183-1 1628027 L1884 2018 220 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 221 1349*2^5385004-1 1621051 L1828 2017 222 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 223 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 224 45*2^5308037+1 1597881 L4761 2019 225 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 226 180062*5^2249192-1 1572123 L4435 2016 227 124125*6^2018254+1 1570512 L4001 2019 228 27*2^5213635+1 1569462 L3760 2015 229 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 230 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 231 25*2^5152151-1 1550954 L1884 2020 232 53546*5^2216664-1 1549387 L4398 2016 233 773620^262144+1 1543643 L3118 2012 Generalized Fermat 234 39*2^5119458+1 1541113 L1204 2019 235a 607*26^1089034+1 1540957 L4944 2021 236 223*2^5105835-1 1537012 L2484 2019 237 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 238 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 239 51*2^5085142-1 1530782 L760 2014 240 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 241 676754^262144+1 1528413 L2975 2012 Generalized Fermat 242 296024*5^2185270-1 1527444 L671 2016 243 5359*2^5054502+1 1521561 SB6 2003 244 13*2^4998362+1 1504659 L3917 2014 245 525094^262144+1 1499526 p338 2012 Generalized Fermat 246 92158*5^2145024+1 1499313 L4348 2016 247 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 248 77072*5^2139921+1 1495746 L4340 2016 249 2*3^3123036+1 1490068 L5043 2020 250 306398*5^2112410-1 1476517 L4274 2016 251 265711*2^4858008+1 1462412 g414 2008 252 154222*5^2091432+1 1461854 L3523 2015 253 1271*2^4850526-1 1460157 L1828 2012 254 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 255 361658^262144+1 1457075 p332 2011 Generalized Fermat 256 100186*5^2079747-1 1453686 L4197 2015 257 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 258 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 259e 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 260 653*10^1435026-1 1435029 p355 2014 261 188*468^535963+1 1431156 L4832 2019 262 100*406^543228+1 1417027 L4944 2020 Generalized Fermat 263 1229*2^4703492-1 1415896 L1828 2018 264 144052*5^2018290+1 1410730 L4146 2015 265b 195*2^4685711-1 1410542 L5175 2021 266 9*2^4683555-1 1409892 L1828 2012 267 31*2^4673544+1 1406879 L4990 2019 268 34*993^469245+1 1406305 L4806 2018 269 79*2^4658115-1 1402235 L1884 2018 270 39*2^4657951+1 1402185 L1823 2019 271 11*2^4643238-1 1397755 L2484 2014 272 68*995^465908-1 1396712 L4001 2017 273 7*6^1793775+1 1395830 L4965 2019 274 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 275 27*2^4583717-1 1379838 L2992 2014 276 121*2^4553899-1 1370863 L3023 2012 277 27*2^4542344-1 1367384 L1204 2014 278 29*2^4532463+1 1364409 L4988 2019 279 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 280 145310^262144+1 1353265 p314 2011 Generalized Fermat 281 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 282 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 283 36772*6^1723287-1 1340983 L1301 2014 284 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 285 151*2^4424321-1 1331856 L1884 2016 286f 195*2^4373994-1 1316706 L5175 2020 287 49*2^4365175-1 1314051 L1959 2017 288 49*2^4360869-1 1312755 L1959 2017 289 13*2^4333087-1 1304391 L1862 2018 290 353159*2^4331116-1 1303802 L2408 2011 291 23*2^4300741+1 1294654 L4147 2019 292 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 293 141941*2^4299438-1 1294265 L689 2011 294 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 295 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 296 3*2^4235414-1 1274988 L606 2008 297 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 298e 45*436^481613+1 1271213 L4944 2020 299 109208*5^1816285+1 1269534 L3523 2014 300 1091*2^4215518-1 1269001 L1828 2018 301 191*2^4203426-1 1265360 L2484 2012 302 1259*2^4196028-1 1263134 L1828 2016 303 325918*5^1803339-1 1260486 L3567 2014 304 133778*5^1785689+1 1248149 L3903 2014 305 17*2^4107544-1 1236496 L4113 2015 306 24032*5^1768249+1 1235958 L3925 2014 307 172*159^561319-1 1235689 L4001 2017 308 97*2^4066717-1 1224206 L2484 2019 309 1031*2^4054974-1 1220672 L1828 2017 310 37*2^4046360+1 1218078 L2086 2019 311 39653*430^460397-1 1212446 L4187 2016 312 40734^262144+1 1208473 p309 2011 Generalized Fermat 313 9*2^4005979-1 1205921 L1828 2012 314 12*68^656921+1 1203815 L4001 2016 315 67*688^423893+1 1202836 L4001 2017 316 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 317 138172*5^1714207-1 1198185 L3904 2014 318 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 319 29*2^3964697+1 1193495 L1204 2019 320 39*2^3961129+1 1192421 L1486 2019 321 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 322 22478*5^1675150-1 1170884 L3903 2014 323 1199*2^3889576-1 1170883 L1828 2018 324 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 325 94*872^397354+1 1168428 L4944 2019 326 27*2^3855094-1 1160501 L3033 2012 327 164*978^387920-1 1160015 L4700 2018 328 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 329 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 330 30*514^424652-1 1151218 L4001 2017 331 24518^262144+1 1150678 g413 2008 Generalized Fermat 332 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 333 241*2^3815727-1 1148651 L2484 2019 334 109*980^383669-1 1147643 L4001 2018 335 123547*2^3804809-1 1145367 L2371 2011 336 2564*75^610753+1 1145203 L3610 2014 337 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 338 166*443^432000+1 1143249 L4944 2020 339 326834*5^1634978-1 1142807 L3523 2014 340 43*182^502611-1 1135939 L4064 2020 341 415267*2^3771929-1 1135470 L2373 2011 342 11*2^3771821+1 1135433 p286 2013 343 265*2^3765189-1 1133438 L2484 2018 344 938237*2^3752950-1 1129757 L521 2007 Woodall 345 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 346 207394*5^1612573-1 1127146 L3869 2014 347 684*10^1127118+1 1127121 L4036 2017 348 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 349 104944*5^1610735-1 1125861 L3849 2014 350 23451*2^3739388+1 1125673 L591 2015 351 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 352 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 353 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 354 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 355 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 356 119*2^3698412-1 1113336 L2484 2018 357 330286*5^1584399-1 1107453 L3523 2014 358 34*951^371834-1 1107391 L4944 2019 359 45*2^3677787+1 1107126 L1204 2019 360 13*2^3675223-1 1106354 L1862 2016 361 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 362 15*2^3668194-1 1104238 L3665 2013 363 13*2^3664703-1 1103187 L1862 2016 364 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 365 118*892^373012+1 1100524 L5071 2020 366 33300*430^417849-1 1100397 L4393 2016 367 33*2^3649810+1 1098704 L4958 2019 368 989*2^3640585+1 1095929 L5115 2020 369 567*2^3639287+1 1095538 L4959 2019 370 639*2^3635707+1 1094460 L1823 2019 371 753*2^3631472+1 1093185 L1823 2019 372 65531*2^3629342-1 1092546 L2269 2011 373 1121*2^3629201+1 1092502 L4761 2019 374 215*2^3628962-1 1092429 L2484 2018 375 113*2^3628034-1 1092150 L2484 2014 376 1175*2^3627541+1 1092002 L4840 2019 377 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 378 951*2^3623185+1 1090691 L1823 2019 379 29*920^367810-1 1090113 L4064 2015 380 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 381 485*2^3618563+1 1089299 L3924 2019 382 95*2^3614033+1 1087935 L1474 2019 383 1005*2^3612300+1 1087414 L1823 2019 384 861*2^3611815+1 1087268 L1745 2019 385 1087*2^3611476+1 1087166 L4834 2019 386 485767*2^3609357-1 1086531 L622 2008 387 675*2^3606447+1 1085652 L3278 2019 388 669*2^3606266+1 1085598 L1675 2019 389 65077*2^3605944+1 1085503 L4685 2020 390 851*2^3604395+1 1085034 L2125 2019 391 1143*2^3602429+1 1084443 L4754 2019 392 1183*2^3601898+1 1084283 L1823 2019 393 189*2^3596375+1 1082620 L3760 2016 394 1089*2^3593267+1 1081685 L3035 2019 395 1101*2^3589103+1 1080431 L1823 2019 396 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 397 275*2^3585539+1 1079358 L3803 2016 398 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 399 651*2^3579843+1 1077643 L3035 2018 400 583*2^3578402+1 1077210 L3035 2018 401 309*2^3577339+1 1076889 L4406 2016 402 1185*2^3574583+1 1076060 L4851 2018 403 251*2^3574535+1 1076045 L3035 2016 404 1019*2^3571635+1 1075173 L1823 2018 405 119*2^3571416-1 1075106 L2484 2018 406 35*2^3570777+1 1074913 L2891 2014 407 33*2^3570132+1 1074719 L2552 2014 408 5*2^3569154-1 1074424 L503 2009 409 81*492^399095-1 1074352 L4001 2015 410 22934*5^1536762-1 1074155 L3789 2014 411 265*2^3564373-1 1072986 L2484 2018 412 771*2^3564109+1 1072907 L2125 2018 413 381*2^3563676+1 1072776 L4190 2016 414 555*2^3563328+1 1072672 L4850 2018 415 1183*2^3560584+1 1071846 L1823 2018 416 415*2^3559614+1 1071554 L3035 2016 417 1103*2^3558176-1 1071121 L1828 2018 418 1379*2^3557072-1 1070789 L1828 2018 419 681*2^3553141+1 1069605 L3035 2018 420 599*2^3551793+1 1069200 L3824 2018 421 621*2^3551472+1 1069103 L4687 2018 422 773*2^3550373+1 1068772 L1808 2018 423 1199*2^3548380-1 1068172 L1828 2018 424 191*2^3548117+1 1068092 L4203 2015 425 867*2^3547711+1 1067971 L4155 2018 426 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 427 351*2^3545752+1 1067381 L4082 2016 428 93*2^3544744+1 1067077 L1728 2014 429 1159*2^3543702+1 1066764 L1823 2018 430 178658*5^1525224-1 1066092 L3789 2014 431 1085*2^3539671+1 1065551 L3035 2018 432 465*2^3536871+1 1064707 L4459 2016 433 1019*2^3536312-1 1064539 L1828 2012 434 1179*2^3534450+1 1063979 L3035 2018 435 447*2^3533656+1 1063740 L4457 2016 436 1059*2^3533550+1 1063708 L1823 2018 437 345*2^3532957+1 1063529 L4314 2016 438 553*2^3532758+1 1063469 L1823 2018 439 141*2^3529287+1 1062424 L4185 2015 440 13*2^3527315-1 1061829 L1862 2016 441 1393*2^3525571-1 1061306 L1828 2017 442 1071*2^3523944+1 1060816 L1675 2018 443 329*2^3518451+1 1059162 L1823 2016 444 135*2^3518338+1 1059128 L4045 2015 445 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 446 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 447 599*2^3515959+1 1058412 L1823 2018 448 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 449 1135*2^3510890+1 1056887 L1823 2018 450 428639*2^3506452-1 1055553 L2046 2011 451b 104*383^408249+1 1054591 L2012 2021 452 555*2^3502765+1 1054441 L1823 2018 453 643*2^3501974+1 1054203 L1823 2018 454 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 455 1159*2^3501490+1 1054057 L2125 2018 456 1189*2^3499042+1 1053320 L4724 2018 457 609*2^3497474+1 1052848 L1823 2018 458 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 459 87*2^3496188+1 1052460 L1576 2014 460 783*2^3494129+1 1051841 L3824 2018 461 51*2^3490971+1 1050889 L1823 2014 462 753*2^3488818+1 1050242 L1823 2018 463 699*2^3487253+1 1049771 L1204 2018 464 249*2^3486411+1 1049517 L4045 2015 465 195*2^3486379+1 1049507 L4108 2015 466 59912*5^1500861+1 1049062 L3772 2014 467 495*2^3484656+1 1048989 L3035 2016 468 323*2^3482789+1 1048427 L1204 2016 469 1149*2^3481694+1 1048098 L1823 2018 470 701*2^3479779+1 1047521 L2125 2018 471 813*2^3479728+1 1047506 L4724 2018 472 197*2^3477399+1 1046804 L2125 2015 473 491*2^3473837+1 1045732 L4343 2016 474 1061*2^3471354-1 1044985 L1828 2017 475 641*2^3464061+1 1042790 L1444 2018 476 453*2^3461688+1 1042075 L3035 2016 477a 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 478 571*2^3460216+1 1041632 L3035 2018 479b 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 480b 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 481b 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 482b 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 483b 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 484b 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 485c 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 486c 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 487c 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 488c 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 489c 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 490c 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 491c 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 492c 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 493c 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 494c 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 495 1155*2^3455254+1 1040139 L4711 2017 496 37292*5^1487989+1 1040065 L3553 2013 497c 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 498c 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 499c 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 500c 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 501c 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 502c 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 503c 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 504c 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 505c 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 506c 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 507c 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 508c 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 509c 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 510c 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 511 1273*2^3448551-1 1038121 L1828 2012 512d 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 513 1065*2^3447906+1 1037927 L4664 2017 514 1155*2^3446253+1 1037429 L3035 2017 515d 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 516d 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 517d 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 518e 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 519e 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 520e 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 521 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 522 943*2^3442990+1 1036447 L4687 2017 523f 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 524f 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 525f 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 526f 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 527f 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 528 943*2^3440196+1 1035606 L1448 2017 529 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 530 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 531 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 532 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 533 543*2^3438810+1 1035188 L3035 2017 534 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 535 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 536 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 537 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 538 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 539 74*941^348034-1 1034913 L4944 2020 540 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 541 113*2^3437145+1 1034686 L4045 2015 542 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 543 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 544 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 545 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 546 1147*2^3435970+1 1034334 L3035 2017 547 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 548 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 549 911*2^3432643+1 1033332 L1355 2017 550 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 551 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 552 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 553 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 554 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 555 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 556 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 557 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 558 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 559 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 560 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 561 1127*2^3427219+1 1031699 L3035 2017 562 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 563 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 564 159*2^3425766+1 1031261 L4045 2015 565 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 566 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 567 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 568 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 569 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 570 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 571 1119*2^3422189+1 1030185 L1355 2017 572 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 573 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 574 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 575 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 576 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 577 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 578 975*2^3419230+1 1029294 L3545 2017 579 999*2^3418885+1 1029190 L3035 2017 580 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 581 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 582 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 583 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 584 907*2^3417890+1 1028891 L3035 2017 585 191249*2^3417696-1 1028835 L1949 2010 586 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 587 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 588 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 589 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 590 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 591 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 592 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 593 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 594 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 595 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 596 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 597 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 598 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 599 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 600 479*2^3411975+1 1027110 L2873 2016 601 245*2^3411973+1 1027109 L1935 2015 602 177*2^3411847+1 1027071 L4031 2015 603 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 604 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 605 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 606 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 607 113*2^3409934-1 1026495 L2484 2014 608 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 609 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 610 59*2^3408416-1 1026038 L426 2010 611 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 612 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 613 953*2^3405729+1 1025230 L3035 2017 614 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 615 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 616 373*2^3404702+1 1024921 L3924 2016 617 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 618 833*2^3403765+1 1024639 L3035 2017 619 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 620 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 621 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 622 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 623 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 624 24*414^391179+1 1023717 L4273 2016 625 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 626 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 627 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 628 1167*2^3399748+1 1023430 L3545 2017 629 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 630 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 631 611*2^3398273+1 1022985 L3035 2017 632 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 633 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 634 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 635 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 636 255*2^3395661+1 1022199 L3898 2014 637 1049*2^3395647+1 1022195 L3035 2017 638 342924651*2^3394939-1 1021988 L4166 2017 639 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 640 555*2^3393389+1 1021515 L2549 2017 641 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 642 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 643 609*2^3392301+1 1021188 L3035 2017 644 303*2^3391977+1 1021090 L2602 2016 645 805*2^3391818+1 1021042 L4609 2017 646 67*2^3391385-1 1020911 L1959 2014 647 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 648 663*2^3390469+1 1020636 L4316 2017 649 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 650 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 651 3329*2^3388472-1 1020036 L4841 2020 652 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 653 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 654 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 655 453*2^3387048+1 1019606 L2602 2016 656 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 657 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 658 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 659 173198*5^1457792-1 1018959 L3720 2013 660 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 661 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 662 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 663 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 664 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 665 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 666 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 667 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 668 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 669 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 670 1425*2^3379921+1 1017461 L1134 2020 671 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 672 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 673 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 674 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 675 621*2^3378148+1 1016927 L3035 2017 676 1093*2^3378000+1 1016883 L4583 2017 677 861*2^3377601+1 1016763 L4582 2017 678 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 679 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 680 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 681 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 682 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 683 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 684 208003!-1 1015843 p394 2016 Factorial 685 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 686 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 687 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 688 179*2^3371145+1 1014819 L3763 2014 689 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 690 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 691 839*2^3369383+1 1014289 L2891 2017 692d 65*2^3369359+1 1014280 L5236 2021 693 677*2^3369115+1 1014208 L2103 2017 694 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 695 715*2^3368210+1 1013936 L4527 2017 696 617*2^3368119+1 1013908 L4552 2017 697 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 698 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 699 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 700 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 701 777*2^3367372+1 1013683 L4408 2017 702 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 703 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 704 61*2^3366033-1 1013279 L4405 2017 705 369*2^3365614+1 1013154 L4364 2016 706 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 707 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 708 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 709 533*2^3362857+1 1012324 L3171 2017 710 619*2^3362814+1 1012311 L4527 2017 711a 4509*2^3362311+1 1012161 L5324 2021 712a 7021*2^3362208+1 1012130 L5178 2021 713 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 714 104*873^344135-1 1012108 L4700 2018 715a 4953*2^3362054+1 1012083 L5323 2021 716a 8575*2^3361798+1 1012006 L5237 2021 717a 2139*2^3361706+1 1011978 L5174 2021 718a 6939*2^3361203+1 1011827 L5217 2021 719 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 720 3^2120580-3^623816-1 1011774 CH9 2019 721a 8185*2^3360896+1 1011735 L5189 2021 722b 2389*2^3360882+1 1011730 L5317 2021 723b 2787*2^3360631+1 1011655 L5197 2021 724b 6619*2^3360606+1 1011648 L5316 2021 725b 2755*2^3360526+1 1011623 L5174 2021 726b 1445*2^3360099+1 1011494 L5261 2021 727b 8757*2^3359788+1 1011401 L5197 2021 728 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 729b 5085*2^3359696+1 1011373 L5261 2021 730 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 731b 6459*2^3359457+1 1011302 L5310 2021 732 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 733b 6115*2^3358998+1 1011163 L5309 2021 734b 7605*2^3358929+1 1011143 L5308 2021 735b 2315*2^3358899+1 1011133 L5197 2021 736b 6603*2^3358525+1 1011021 L5307 2021 737 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 738 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 739 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 740c 5893*2^3357490+1 1010709 L5285 2021 741c 6947*2^3357075+1 1010585 L5302 2021 742c 4621*2^3357068+1 1010582 L5301 2021 743 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 744c 1479*2^3356275+1 1010343 L5178 2021 745c 3645*2^3356232+1 1010331 L5296 2021 746c 1259*2^3356215+1 1010325 L5298 2021 747c 2075*2^3356057+1 1010278 L5174 2021 748c 4281*2^3356051+1 1010276 L5295 2021 749c 1275*2^3356045+1 1010274 L5294 2021 750 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 751c 4365*2^3355770+1 1010192 L5261 2021 752 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 753c 2183*2^3355297+1 1010049 L5266 2021 754c 3087*2^3355000+1 1009960 L5226 2021 755c 8673*2^3354760+1 1009888 L5233 2021 756 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 757c 3015*2^3353943+1 1009641 L5290 2021 758c 6819*2^3353877+1 1009622 L5174 2021 759 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 760c 6393*2^3353366+1 1009468 L5287 2021 761c 3573*2^3353273+1 1009440 L5161 2021 762c 4047*2^3353222+1 1009425 L5286 2021 763c 1473*2^3353114+1 1009392 L5161 2021 764 1183*2^3353058+1 1009375 L3824 2017 765 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 766 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 767 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 768 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 769c 7123*2^3352180+1 1009111 L5161 2021 770c 2757*2^3352180+1 1009111 L5285 2021 771c 9307*2^3352014+1 1009061 L5284 2021 772c 2217*2^3351732+1 1008976 L5283 2021 773 543*2^3351686+1 1008961 L4198 2017 774c 4419*2^3351666+1 1008956 L5279 2021 775 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 776c 3059*2^3351379+1 1008870 L5278 2021 777c 7789*2^3351046+1 1008770 L5276 2021 778c 9501*2^3350668+1 1008656 L5272 2021 779 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 780c 9691*2^3349952+1 1008441 L5242 2021 781 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 782c 3209*2^3349719+1 1008370 L5269 2021 783 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 784 393*2^3349525+1 1008311 L3101 2016 785 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 786c 5487*2^3349303+1 1008245 L5266 2021 787 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 788c 2511*2^3349104+1 1008185 L5264 2021 789c 7659*2^3348894+1 1008122 L5263 2021 790c 9703*2^3348872+1 1008115 L5262 2021 791 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 792c 7935*2^3348578+1 1008027 L5161 2021 793 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 794c 7821*2^3348400+1 1007973 L5260 2021 795c 7911*2^3347532+1 1007712 L5250 2021 796c 8295*2^3347031+1 1007561 L5249 2021 797 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 798d 4029*2^3346729+1 1007470 L5239 2021 799d 9007*2^3346716+1 1007466 L5161 2021 800d 8865*2^3346499+1 1007401 L5238 2021 801d 6171*2^3346480+1 1007395 L5174 2021 802d 6815*2^3346045+1 1007264 L5235 2021 803 5*326^400785+1 1007261 L4786 2019 804d 5951*2^3345977+1 1007244 L5233 2021 805 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 806c 1257*2^3345843+1 1007203 L5192 2021 807c 4701*2^3345815+1 1007195 L5192 2021 808 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 809d 7545*2^3345355+1 1007057 L5231 2021 810d 5559*2^3344826+1 1006897 L5223 2021 811d 6823*2^3344692+1 1006857 L5223 2021 812d 4839*2^3344453+1 1006785 L5188 2021 813d 7527*2^3344332+1 1006749 L5220 2021 814d 7555*2^3344240+1 1006721 L5188 2021 815d 6265*2^3344080+1 1006673 L5197 2021 816d 1299*2^3343943+1 1006631 L5217 2021 817d 2815*2^3343754+1 1006574 L5216 2021 818d 5349*2^3343734+1 1006568 L5174 2021 819e 2863*2^3342920+1 1006323 L5179 2020 820e 7387*2^3342848+1 1006302 L5208 2020 821e 9731*2^3342447+1 1006181 L5203 2020 822e 7725*2^3341708+1 1005959 L5195 2020 823e 7703*2^3341625+1 1005934 L5178 2020 824e 7047*2^3341482+1 1005891 L5194 2020 825e 4839*2^3341309+1 1005838 L5192 2020 826 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 827 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 828f 8989*2^3340866+1 1005705 L5189 2020 829f 6631*2^3340808+1 1005688 L5188 2020 830f 1341*2^3340681+1 1005649 L5188 2020 831 733*2^3340464+1 1005583 L3035 2016 832 3679815*2^3340001+1 1005448 L4922 2019 833 57*2^3339932-1 1005422 L3519 2015 834 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 835 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 836 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 837f 3651*2^3339341+1 1005246 L5177 2020 838f 3853*2^3339296+1 1005232 L5178 2020 839f 8015*2^3339267+1 1005224 L5176 2020 840f 3027*2^3339182+1 1005198 L5174 2020 841f 9517*2^3339002+1 1005144 L5172 2020 842 4003*2^3338588+1 1005019 L3035 2020 843 6841*2^3338336+1 1004944 L1474 2020 844 2189*2^3338209+1 1004905 L5031 2020 845 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 846 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 847 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 848 2957*2^3337667+1 1004742 L5144 2020 849 1515*2^3337389+1 1004658 L1474 2020 850 7933*2^3337270+1 1004623 L4666 2020 851 1251*2^3337116+1 1004576 L4893 2020 852 651*2^3337101+1 1004571 L3260 2016 853 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 854 8397*2^3336654+1 1004437 L5125 2020 855 8145*2^3336474+1 1004383 L5110 2020 856 1087*2^3336385-1 1004355 L1828 2012 857 5325*2^3336120+1 1004276 L2125 2020 858 849*2^3335669+1 1004140 L3035 2016 859 8913*2^3335216+1 1004005 L5079 2020 860 7725*2^3335213+1 1004004 L3035 2020 861 611*2^3334875+1 1003901 L3813 2016 862 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 863 403*2^3334410+1 1003761 L4293 2016 864 5491*2^3334392+1 1003756 L4815 2020 865 6035*2^3334341+1 1003741 L2125 2020 866 1725*2^3334341+1 1003740 L2125 2020 867 4001*2^3334031+1 1003647 L1203 2020 868 2315*2^3333969+1 1003629 L2125 2020 869 6219*2^3333810+1 1003581 L4582 2020 870 8063*2^3333721+1 1003554 L1823 2020 871 9051*2^3333677+1 1003541 L3924 2020 872 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 873 4091*2^3333153+1 1003383 L1474 2020 874 9949*2^3332750+1 1003262 L5090 2020 875 3509*2^3332649+1 1003231 L5085 2020 876 3781*2^3332436+1 1003167 L1823 2020 877 4425*2^3332394+1 1003155 L3431 2020 878 6459*2^3332086+1 1003062 L2629 2020 879 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 880 5257*2^3331758+1 1002963 L1188 2020 881 2939*2^3331393+1 1002853 L1823 2020 882 6959*2^3331365+1 1002845 L1675 2020 883 8815*2^3330748+1 1002660 L3329 2020 884 4303*2^3330652+1 1002630 L4730 2020 885 8595*2^3330649+1 1002630 L4723 2020 886 673*2^3330436+1 1002564 L3035 2016 887 8163*2^3330042+1 1002447 L3278 2020 888 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 889 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 890 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 891 2829*2^3329061+1 1002151 L4343 2020 892 5775*2^3329034+1 1002143 L1188 2020 893 7101*2^3328905+1 1002105 L4568 2020 894 7667*2^3328807+1 1002075 L4087 2020 895 129*2^3328805+1 1002073 L3859 2014 896 7261*2^3328740+1 1002055 L2914 2020 897 4395*2^3328588+1 1002009 L3924 2020 898 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 899 143183*2^3328297+1 1001923 L4504 2017 900 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 901 9681*2^3327987+1 1001828 L1204 2020 902 2945*2^3327987+1 1001828 L2158 2020 903 5085*2^3327789+1 1001769 L1823 2020 904 8319*2^3327650+1 1001727 L1204 2020 905 4581*2^3327644+1 1001725 L2142 2020 906 655*2^3327518+1 1001686 L4490 2016 907 8863*2^3327406+1 1001653 L1675 2020 908 659*2^3327371+1 1001642 L3502 2016 909 3411*2^3327343+1 1001634 L1675 2020 910 4987*2^3327294+1 1001619 L3924 2020 911 821*2^3327003+1 1001531 L3035 2016 912 2435*2^3326969+1 1001521 L3035 2020 913 2277*2^3326794+1 1001469 L5014 2020 914 6779*2^3326639+1 1001422 L3924 2020 915 6195*2^3325993+1 1001228 L1474 2019 916 555*2^3325925+1 1001206 L4414 2016 917 9041*2^3325643+1 1001123 L3924 2019 918 1993*2^3325302+1 1001019 L3662 2019 919 6179*2^3325027+1 1000937 L3048 2019 920 4485*2^3324900+1 1000899 L1355 2019 921 3559*2^3324650+1 1000823 L3035 2019 922 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 923 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 924 6927*2^3324387+1 1000745 L3091 2019 925 9575*2^3324287+1 1000715 L3824 2019 926 1797*2^3324259+1 1000705 L3895 2019 927 4483*2^3324048+1 1000642 L3035 2019 928 791*2^3323995+1 1000626 L3035 2016 929 6987*2^3323926+1 1000606 L4973 2019 930 3937*2^3323886+1 1000593 L3035 2019 931 2121*2^3323852+1 1000583 L1823 2019 932 1571*2^3323493+1 1000475 L3035 2019 933 2319*2^3323402+1 1000448 L4699 2019 934 2829*2^3323341+1 1000429 L4754 2019 935 4335*2^3323323+1 1000424 L1823 2019 936 8485*2^3322938+1 1000308 L4858 2019 937 6505*2^3322916+1 1000302 L4858 2019 938 597*2^3322871+1 1000287 L3035 2016 939 9485*2^3322811+1 1000270 L2603 2019 940 8619*2^3322774+1 1000259 L3035 2019 941 387*2^3322763+1 1000254 L1455 2016 942 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 943 5553507*2^3322000+1 1000029 p391 2016 944d 4288198767*2^3321910-1 1000005 L4960 2021 945c 4229494557*2^3321910-1 1000005 L4960 2021 946c 4022490843*2^3321910-1 1000005 L4960 2021 947c 3751145343*2^3321910-1 1000005 L4960 2021 948b 3715773735*2^3321910-1 1000005 L4960 2021 949d 3698976057*2^3321910-1 1000005 L4960 2021 950 3659465685*2^3321910-1 1000005 L4960 2020 951 3652932033*2^3321910-1 1000005 L4960 2020 952 3603204333*2^3321910-1 1000005 L4960 2020 953 3543733545*2^3321910-1 1000005 L4960 2020 954 3191900133*2^3321910-1 1000005 L4960 2020 955 3174957723*2^3321910-1 1000005 L4960 2020 956 2973510903*2^3321910-1 1000005 L4960 2019 957 2848144257*2^3321910-1 1000005 L4960 2019 958 2820058827*2^3321910-1 1000005 L4960 2019 959 2611553775*2^3321910-1 1000004 L4960 2020 960 2601087525*2^3321910-1 1000004 L4960 2019 961 2386538565*2^3321910-1 1000004 L4960 2019 962 2272291887*2^3321910-1 1000004 L4960 2019 963 2167709265*2^3321910-1 1000004 L4960 2019 964 2087077797*2^3321910-1 1000004 L4960 2019 965 1848133623*2^3321910-1 1000004 L4960 2019 966 1825072257*2^3321910-1 1000004 L4960 2019 967 1633473837*2^3321910-1 1000004 L4960 2019 968 1228267623*2^3321910-1 1000004 L4808 2019 969 1148781333*2^3321910-1 1000004 L4808 2019 970 1065440787*2^3321910-1 1000004 L4808 2019 971 1055109357*2^3321910-1 1000004 L4960 2019 972 992309607*2^3321910-1 1000004 L4808 2019 973 926102325*2^3321910-1 1000004 L4808 2019 974 892610007*2^3321910-1 1000004 L4960 2019 975 763076757*2^3321910-1 1000004 L4960 2019 976 607766997*2^3321910-1 1000004 L4808 2019 977 539679177*2^3321910-1 1000004 L4808 2019 978 425521077*2^3321910-1 1000004 L4808 2019 979 132940575*2^3321910-1 1000003 L4808 2019 980 239378138685*2^3321891+1 1000001 L5104 2020 981 464253*2^3321908-1 1000000 L466 2013 982 3^2095902+3^647322-1 1000000 x44 2018 983 191273*2^3321908-1 1000000 L466 2013 984 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 985 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 986 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 987 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 988e 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 989e 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 990a 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 991c 10^999999+308267*10^292000+1 1000000 CH10 2021 992 3139*2^3321905-1 999997 L185 2008 993 4847*2^3321063+1 999744 SB9 2005 994 49*2^3309087-1 996137 L1959 2013 995 139413*6^1279992+1 996033 L4001 2015 996 51*2^3308171+1 995861 L2840 2015 997 245114*5^1424104-1 995412 L3686 2013 998 175124*5^1422646-1 994393 L3686 2013 999 1611*22^738988+1 992038 L4139 2015 1000 2017*2^3292325-1 991092 L3345 2017 1001 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1002 61*2^3286535-1 989348 L4405 2016 1003 87*2^3279368+1 987191 L3458 2015 1004 65*2^3270127+1 984409 L3924 2015 1005 5*2^3264650-1 982759 L384 2013 1006 223*2^3264459-1 982703 L1884 2012 1007 9*2^3259381-1 981173 L1828 2011 1008 6*5^1403337+1 980892 L4965 2020 1009 33*2^3242126-1 975979 L3345 2014 1010 39*2^3240990+1 975637 L3432 2014 1011 6*5^1392287+1 973168 L4965 2020 1012 211195*2^3224974+1 970820 L2121 2013 1013 7*6^1246814+1 970211 L4965 2019 1014 35*832^332073-1 969696 L4001 2019 1015 600921*2^3219922-1 969299 g337 2018 1016 6*409^369832+1 965900 L4001 2015 1017c 23363426^131072+1 965809 L5033 2021 Generalized Fermat 1018 94373*2^3206717+1 965323 L2785 2013 1019 2751*2^3206569-1 965277 L4036 2015 1020c 23045178^131072+1 965029 L5023 2021 Generalized Fermat 1021c 23011666^131072+1 964946 L5273 2021 Generalized Fermat 1022c 22980158^131072+1 964868 L4201 2021 Generalized Fermat 1023c 22901508^131072+1 964673 L4743 2021 Generalized Fermat 1024c 22808110^131072+1 964440 L5248 2021 Generalized Fermat 1025c 22718284^131072+1 964215 L5254 2021 Generalized Fermat 1026c 22705306^131072+1 964183 L5248 2021 Generalized Fermat 1027 113983*2^3201175-1 963655 L613 2008 1028 34*888^326732-1 963343 L4001 2017 1029e 22007146^131072+1 962405 L4245 2020 Generalized Fermat 1030 4*3^2016951+1 962331 L4965 2020 1031e 21917442^131072+1 962173 L4622 2020 Generalized Fermat 1032e 21869554^131072+1 962048 L5061 2020 Generalized Fermat 1033f 21757066^131072+1 961754 L4773 2020 Generalized Fermat 1034f 21582550^131072+1 961296 L5068 2020 Generalized Fermat 1035f 21517658^131072+1 961125 L5126 2020 Generalized Fermat 1036 20968936^131072+1 959654 L4245 2020 Generalized Fermat 1037 20674450^131072+1 958849 L4245 2020 Generalized Fermat 1038 20234282^131072+1 957624 L4942 2020 Generalized Fermat 1039 20227142^131072+1 957604 L4677 2020 Generalized Fermat 1040 20185276^131072+1 957486 L4201 2020 Generalized Fermat 1041 33*2^3176269+1 956154 L3432 2013 1042 19464034^131072+1 955415 L4956 2020 Generalized Fermat 1043 600921*2^3173683-1 955380 g337 2018 1044 19216648^131072+1 954687 L5024 2020 Generalized Fermat 1045 1414*95^482691-1 954633 L4877 2019 1046 78*236^402022-1 953965 L4944 2020 1047 18968126^131072+1 953946 L5011 2020 Generalized Fermat 1048 18813106^131072+1 953479 L4201 2020 Generalized Fermat 1049 18608780^131072+1 952857 L4488 2020 Generalized Fermat 1050 1087*2^3164677-1 952666 L1828 2012 1051 18509226^131072+1 952552 L4884 2020 Generalized Fermat 1052 18501600^131072+1 952528 L4875 2020 Generalized Fermat 1053 15*2^3162659+1 952057 p286 2012 1054 18309468^131072+1 951934 L4928 2020 Generalized Fermat 1055 18298534^131072+1 951900 L4201 2020 Generalized Fermat 1056 67*2^3161450+1 951694 L3223 2015 1057 58*117^460033+1 951436 L4944 2020 1058 17958952^131072+1 950834 L4201 2020 Generalized Fermat 1059 17814792^131072+1 950375 L4752 2020 Generalized Fermat 1060 17643330^131072+1 949824 L4201 2020 Generalized Fermat 1061 19*2^3155009-1 949754 L1828 2012 1062 17141888^131072+1 948183 L4963 2019 Generalized Fermat 1063 17138628^131072+1 948172 L4963 2019 Generalized Fermat 1064 17119936^131072+1 948110 L4963 2019 Generalized Fermat 1065 17052490^131072+1 947885 L4715 2019 Generalized Fermat 1066 17025822^131072+1 947796 L4870 2019 Generalized Fermat 1067 16985784^131072+1 947662 L4295 2019 Generalized Fermat 1068 16741226^131072+1 946837 L4201 2019 Generalized Fermat 1069 16329572^131072+1 945420 L4201 2019 Generalized Fermat 1070 69*2^3140225-1 945304 L3764 2014 1071 3*2^3136255-1 944108 L256 2007 1072 15731520^131072+1 943296 L4245 2019 Generalized Fermat 1073 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 1074 15667716^131072+1 943064 L4387 2019 Generalized Fermat 1075 15567144^131072+1 942698 L4918 2019 Generalized Fermat 1076 15342502^131072+1 941870 L4245 2019 Generalized Fermat 1077 15237960^131072+1 941481 L4898 2019 Generalized Fermat 1078 15147290^131072+1 941141 L4861 2019 Generalized Fermat 1079 15091270^131072+1 940930 L4760 2019 Generalized Fermat 1080 3125*2^3124079+1 940445 L1160 2019 1081 14790404^131072+1 939784 L4871 2019 Generalized Fermat 1082 14613898^131072+1 939101 L4926 2019 Generalized Fermat 1083 14217182^131072+1 937534 L4387 2019 Generalized Fermat 1084 134*864^319246-1 937473 L4944 2020 1085 14020004^131072+1 936739 L4249 2019 Generalized Fermat 1086 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 1087 13800346^131072+1 935840 L4880 2019 Generalized Fermat 1088 13613070^131072+1 935062 L4245 2019 Generalized Fermat 1089c 628*80^491322+1 935033 L4944 2021 1090 13433028^131072+1 934305 L4868 2018 Generalized Fermat 1091 1019*2^3103680-1 934304 L1828 2012 1092 99*2^3102401-1 933918 L1862 2017 1093 256612*5^1335485-1 933470 L1056 2013 1094 13083418^131072+1 932803 L4747 2018 Generalized Fermat 1095 69*2^3097340-1 932395 L3764 2014 1096 12978952^131072+1 932347 L4849 2018 Generalized Fermat 1097 12961862^131072+1 932272 L4245 2018 Generalized Fermat 1098 12851074^131072+1 931783 L4670 2018 Generalized Fermat 1099 45*2^3094632-1 931579 L1862 2018 1100f 57*2^3093440-1 931220 L2484 2020 1101 12687374^131072+1 931054 L4289 2018 Generalized Fermat 1102 513*2^3092705+1 931000 L4329 2016 1103 12661786^131072+1 930939 L4819 2018 Generalized Fermat 1104 38*875^316292-1 930536 L4001 2019 1105 5*2^3090860-1 930443 L1862 2012 1106 12512992^131072+1 930266 L4814 2018 Generalized Fermat 1107 12357518^131072+1 929554 L4295 2018 Generalized Fermat 1108 12343130^131072+1 929488 L4720 2018 Generalized Fermat 1109 373*520^342177+1 929357 L3610 2014 1110 19401*2^3086450-1 929119 L541 2015 1111 75*2^3086355+1 929088 L3760 2015 1112f 65*2^3080952-1 927461 L2484 2020 1113 11876066^131072+1 927292 L4737 2018 Generalized Fermat 1114 271*2^3079189-1 926931 L2484 2018 1115 766*33^610412+1 926923 L4001 2016 1116 11778792^131072+1 926824 L4672 2018 Generalized Fermat 1117 31*332^367560+1 926672 L4294 2018 1118 167*2^3077568-1 926443 L1862 2019 1119 10001*2^3075602-1 925853 L4405 2019 1120d 116*107^455562-1 924513 L4064 2021 1121 11292782^131072+1 924425 L4672 2018 Generalized Fermat 1122 14844*430^350980-1 924299 L4001 2016 1123 11267296^131072+1 924297 L4654 2017 Generalized Fermat 1124 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 1125 11195602^131072+1 923933 L4706 2017 Generalized Fermat 1126 60849*2^3067914+1 923539 L591 2014 1127 674*249^385359+1 923400 L4944 2019 1128 11036888^131072+1 923120 L4660 2017 Generalized Fermat 1129 10994460^131072+1 922901 L4704 2017 Generalized Fermat 1130 21*2^3065701+1 922870 p286 2012 1131 10962066^131072+1 922733 L4702 2017 Generalized Fermat 1132 10921162^131072+1 922520 L4559 2017 Generalized Fermat 1133 43*2^3063674+1 922260 L3432 2013 1134 8460*241^387047-1 921957 L4944 2019 1135 10765720^131072+1 921704 L4695 2017 Generalized Fermat 1136f 111*2^3060238-1 921226 L2484 2020 1137 5*2^3059698-1 921062 L503 2008 1138 10453790^131072+1 920031 L4694 2017 Generalized Fermat 1139 10368632^131072+1 919565 L4692 2017 Generalized Fermat 1140 123*2^3049038+1 917854 L4119 2015 1141 10037266^131072+1 917716 L4691 2017 Generalized Fermat 1142 400*95^463883-1 917435 L4001 2019 1143 9907326^131072+1 916975 L4690 2017 Generalized Fermat 1144 454*383^354814+1 916558 L2012 2020 1145 9785844^131072+1 916272 L4326 2017 Generalized Fermat 1146 291*2^3037904+1 914503 L3545 2015 1147 9419976^131072+1 914103 L4591 2017 Generalized Fermat 1148 9240606^131072+1 913009 L4591 2017 Generalized Fermat 1149 99*2^3029959-1 912111 L1862 2020 1150 26*3^1910099+1 911351 L4799 2020 1151 99*2^3026660-1 911118 L1862 2020 1152 8343*42^560662+1 910099 L4444 2020 1153 8770526^131072+1 910037 L4245 2017 Generalized Fermat 1154 8704114^131072+1 909604 L4670 2017 Generalized Fermat 1155 383731*2^3021377-1 909531 L466 2011 1156 46821*2^3021380-374567 909531 p363 2013 1157 2^3021377-1 909526 G3 1998 Mersenne 37 1158 7*2^3015762+1 907836 g279 2008 1159 75*2^3012342+1 906808 L3941 2015 1160 8150484^131072+1 905863 L4249 2017 Generalized Fermat 1161a 593*2^3006969+1 905191 L5178 2021 1162a 367*2^3004536+1 904459 L5178 2021 1163 7926326^131072+1 904276 L4249 2017 Generalized Fermat 1164a 1003*2^3003756+1 904224 L5320 2021 1165a 573*2^3002662+1 903895 L5319 2021 1166 7858180^131072+1 903784 L4201 2017 Generalized Fermat 1167a 329*2^3002295+1 903784 L5318 2021 1168 7832704^131072+1 903599 L4249 2017 Generalized Fermat 1169 268514*5^1292240-1 903243 L3562 2013 1170 7*10^902708+1 902709 p342 2013 1171b 435*2^2997453+1 902326 L5167 2021 1172b 583*2^2996526+1 902047 L5174 2021 1173b 1037*2^2995695+1 901798 L5178 2021 1174b 717*2^2995326+1 901686 L5178 2021 1175b 885*2^2995274+1 901671 L5178 2021 1176 43*2^2994958+1 901574 L3222 2013 1177b 1065*2^2994154+1 901334 L5315 2021 1178b 561*2^2994132+1 901327 L5314 2021 1179 1095*2^2992587-1 900862 L1828 2011 1180b 519*2^2991849+1 900640 L5311 2021 1181 7379442^131072+1 900206 L4201 2017 Generalized Fermat 1182b 459*2^2990134+1 900123 L5197 2021 1183 15*2^2988834+1 899730 p286 2012 1184 29*564^326765+1 899024 L4001 2017 1185b 971*2^2982525+1 897833 L5197 2021 1186b 1033*2^2980962+1 897362 L5305 2021 1187 39*2^2978894+1 896739 L2719 2013 1188 4348099*2^2976221-1 895939 L466 2008 1189 205833*2^2976222-411665 895938 L4667 2017 1190 18976*2^2976221-18975 895937 p373 2014 1191 2^2976221-1 895932 G2 1997 Mersenne 36 1192 1024*3^1877301+1 895704 p378 2014 1193c 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 1194c 591*2^2975069+1 895588 L5299 2021 1195 249*2^2975002+1 895568 L2322 2015 1196 195*2^2972947+1 894949 L3234 2015 1197 6705932^131072+1 894758 L4201 2017 Generalized Fermat 1198c 391*2^2971600+1 894544 L5242 2021 1199 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 1200c 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 1201 493*72^480933+1 893256 L3610 2014 1202c 561*2^2964753+1 892483 L5161 2021 1203c 1185*2^2964350+1 892362 L5161 2021 1204 6403134^131072+1 892128 L4510 2016 Generalized Fermat 1205 6391936^131072+1 892028 L4511 2016 Generalized Fermat 1206c 627*2^2959098+1 890781 L5197 2021 1207 45*2^2958002-1 890449 L1862 2017 1208c 729*2^2955389+1 889664 L5282 2021 1209 198677*2^2950515+1 888199 L2121 2012 1210 88*985^296644+1 887987 L4944 2020 1211 5877582^131072+1 887253 L4245 2016 Generalized Fermat 1212 17*2^2946584-1 887012 L3519 2013 1213c 489*2^2944673+1 886438 L5167 2021 1214 141*2^2943065+1 885953 L3719 2015 1215c 757*2^2942742+1 885857 L5261 2021 1216 5734100^131072+1 885846 L4477 2016 Generalized Fermat 1217 33*2^2939063-1 884748 L3345 2013 1218 5903*2^2938744-1 884654 L4036 2015 1219c 717*2^2937963+1 884418 L5256 2021 1220 5586416^131072+1 884361 L4454 2016 Generalized Fermat 1221 243*2^2937316+1 884223 L4114 2015 1222c 973*2^2937046+1 884142 L5253 2021 1223 61*2^2936967-1 884117 L2484 2017 1224c 903*2^2934602+1 883407 L5246 2021 1225 5471814^131072+1 883181 L4362 2016 Generalized Fermat 1226 188*228^374503+1 883056 L4786 2020 1227e 53*248^368775+1 883016 L5196 2020 1228 5400728^131072+1 882436 L4201 2016 Generalized Fermat 1229 17*326^350899+1 881887 L4786 2019 1230d 855*2^2929550+1 881886 L5200 2021 1231 5326454^131072+1 881648 L4201 2016 Generalized Fermat 1232c 839*2^2928551+1 881585 L5242 2021 1233 7019*10^881309-1 881313 L3564 2013 1234 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 1235d 577*2^2925602+1 880697 L5201 2021 1236 97366*5^1259955-1 880676 L3567 2013 1237d 973*2^2923062+1 879933 L5228 2021 1238 1126*177^391360+1 879770 L4955 2020 1239 243944*5^1258576-1 879713 L3566 2013 1240d 693*2^2921528+1 879471 L5201 2021 1241 6*10^879313+1 879314 L5009 2019 1242 269*2^2918105+1 878440 L2715 2015 1243d 331*2^2917844+1 878362 L5210 2021 1244 169*2^2917805-1 878350 L2484 2018 1245e 1085*2^2916967+1 878098 L5174 2020 1246e 389*2^2916499+1 877957 L5215 2020 1247e 431*2^2916429+1 877936 L5214 2020 1248e 1189*2^2916406+1 877929 L5174 2020 1249 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 1250 4974408^131072+1 877756 L4380 2016 Generalized Fermat 1251e 465*2^2914079+1 877228 L5210 2020 1252 427194*113^427194+1 877069 p310 2012 Generalized Cullen 1253 4893072^131072+1 876817 L4303 2016 Generalized Fermat 1254d 493*2^2912552+1 876769 L5192 2021 1255 143157*2^2911403+1 876425 L4504 2017 1256e 567*2^2910402+1 876122 L5201 2020 1257e 683*2^2909217+1 875765 L5199 2020 1258 674*249^365445+1 875682 L4944 2019 1259d 475*2^2908802+1 875640 L5192 2021 1260e 371*2^2907377+1 875211 L5197 2020 1261 207*2^2903535+1 874054 L3173 2015 1262f 851*2^2902731+1 873813 L5177 2020 1263e 777*2^2901907+1 873564 L5192 2020 1264f 717*2^2900775+1 873224 L5185 2020 1265 99*2^2899303-1 872780 L1862 2017 1266 63*2^2898957+1 872675 L3262 2013 1267 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 1268f 747*2^2895307+1 871578 L5178 2020 1269f 403*2^2894566+1 871354 L5180 2020 1270f 629*2^2892961+1 870871 L5173 2020 1271 627*2^2891514+1 870436 L5168 2020 1272 363*2^2890208+1 870042 L3261 2020 1273 471*2^2890148+1 870024 L5158 2020 1274 4329134^131072+1 869847 L4395 2016 Generalized Fermat 1275 583*2^2889248+1 869754 L5139 2020 1276 955*2^2887934+1 869358 L4958 2020 1277 937*2^2887130+1 869116 L5134 2020 1278 885*2^2886389+1 868893 L3924 2020 1279 763*2^2885928+1 868754 L2125 2020 1280 1071*2^2884844+1 868428 L3593 2020 1281 1181*2^2883981+1 868168 L3593 2020 1282 51*2^2881227+1 867338 L3512 2013 1283 933*2^2879973+1 866962 L4951 2020 1284 261*2^2879941+1 866952 L4119 2015 1285 4085818^131072+1 866554 L4201 2016 Generalized Fermat 1286 65*2^2876718-1 865981 L2484 2016 1287 21*948^290747-1 865500 L4985 2019 1288 4013*2^2873250-1 864939 L1959 2014 1289 41*2^2872058-1 864578 L2484 2013 1290 359*2^2870935+1 864241 L1300 2020 1291 165*2^2870868+1 864220 L4119 2015 1292 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 1293 665*2^2869847+1 863913 L2885 2020 1294 283*2^2868750+1 863583 L3877 2015 1295 845*2^2868291+1 863445 L5100 2020 1296 3125*2^2867399+1 863177 L1754 2019 1297 701*2^2867141+1 863099 L1422 2020 1298 3814944^131072+1 862649 L4201 2016 Generalized Fermat 1299 307*2^2862962+1 861840 L4740 2020 1300 147*2^2862651+1 861746 L1741 2015 1301 1207*2^2861901-1 861522 L1828 2011 1302 231*2^2860725+1 861167 L2873 2015 1303 193*2^2858812+1 860591 L2997 2015 1304 629*2^2857891+1 860314 L3035 2020 1305 493*2^2857856+1 860304 L5087 2020 1306 241*2^2857313-1 860140 L2484 2018 1307 707*2^2856331+1 859845 L5084 2020 1308 3615210^131072+1 859588 L4201 2016 Generalized Fermat 1309 949*2^2854946+1 859428 L2366 2020 1310 222361*2^2854840+1 859398 g403 2006 1311 725*2^2854661+1 859342 L5031 2020 1312 399*2^2851994+1 858539 L4099 2020 1313 225*2^2851959+1 858528 L3941 2015 1314 247*2^2851602+1 858421 L3865 2015 1315 183*2^2850321+1 858035 L2117 2015 1316 1191*2^2849315+1 857733 L1188 2020 1317 717*2^2848598+1 857517 L1204 2020 1318 795*2^2848360+1 857445 L4099 2020 1319 3450080^131072+1 856927 L4201 2016 Generalized Fermat 1320 705*2^2846638+1 856927 L1808 2020 1321 369*2^2846547+1 856899 L4099 2020 1322 955*2^2844974+1 856426 L1188 2020 1323 753*2^2844700+1 856343 L1204 2020 1324 11138*745^297992-1 855884 L4189 2019 1325 111*2^2841992+1 855527 L1792 2015 1326 649*2^2841318+1 855325 L4732 2020 1327 305*2^2840155+1 854975 L4907 2020 1328 1149*2^2839622+1 854815 L2042 2020 1329 95*2^2837909+1 854298 L3539 2013 1330 199*2^2835667-1 853624 L2484 2019 1331 595*2^2833406+1 852943 L4343 2020 1332 1101*2^2832061+1 852539 L4930 2020 1333 813*2^2831757+1 852447 L4951 2020 1334 435*2^2831709+1 852432 L4951 2020 1335 543*2^2828217+1 851381 L4746 2019 1336 704*249^354745+1 850043 L4944 2019 1337 1001*2^2822037+1 849521 L1209 2019 1338 84466*5^1215373-1 849515 L3562 2013 1339 97*2^2820650+1 849103 L2163 2013 1340 107*2^2819922-1 848884 L2484 2013 1341 84256*3^1778899+1 848756 L4789 2018 1342 45472*3^1778899-1 848756 L4789 2018 1343 497*2^2818787+1 848543 L4842 2019 1344 97*2^2818306+1 848397 L3262 2013 1345 177*2^2816050+1 847718 L129 2012 1346 553*2^2815596+1 847582 L4980 2019 1347 1071*2^2814469+1 847243 L3035 2019 1348 105*2^2813000+1 846800 L3200 2015 1349 1115*2^2812911+1 846774 L1125 2019 1350 96*10^846519-1 846521 L2425 2011 Near-repdigit 1351 763*2^2811726+1 846417 L3919 2019 1352 1125*2^2811598+1 846379 L4981 2019 1353 891*2^2810100+1 845928 L4981 2019 1354 441*2^2809881+1 845862 L4980 2019 1355 711*2^2808473+1 845438 L1502 2019 1356 1089*2^2808231+1 845365 L4687 2019 1357 63*2^2807130+1 845033 L3262 2013 1358 1083*2^2806536+1 844855 L3035 2019 1359 675*2^2805669+1 844594 L1932 2019 1360 819*2^2805389+1 844510 L3372 2019 1361 1027*2^2805222+1 844459 L3035 2019 1362 437*2^2803775+1 844024 L3168 2019 1363 4431*372^327835-1 842718 L4944 2019 1364 150344*5^1205508-1 842620 L3547 2013 1365 311*2^2798459+1 842423 L4970 2019 1366 400254*127^400254+1 842062 g407 2013 Generalized Cullen 1367 2639850^131072+1 841690 L4249 2016 Generalized Fermat 1368 43*2^2795582+1 841556 L2842 2013 1369 1001*2^2794357+1 841189 L1675 2019 1370 117*2^2794014+1 841085 L1741 2015 1371 1057*2^2792700+1 840690 L1675 2019 1372 345*2^2792269+1 840560 L1754 2019 1373 711*2^2792072+1 840501 L4256 2019 1374 973*2^2789516+1 839731 L3372 2019 1375 2187*2^2786802+1 838915 L1745 2019 1376 15*2^2785940+1 838653 p286 2012 1377 1337*2^2785444-1 838506 L4518 2017 1378 711*2^2784213+1 838135 L4687 2019 1379 58582*91^427818+1 838118 L4944 2020 1380 923*2^2783153+1 837816 L1675 2019 1381 1103*2^2783149+1 837815 L3784 2019 1382 485*2^2778151+1 836310 L1745 2019 1383 600921*2^2776014-1 835670 g337 2017 1384 1129*2^2774934+1 835342 L1774 2019 1385 8700*241^350384-1 834625 L4944 2019 1386 1023*2^2772512+1 834613 L4724 2019 1387 656*249^348030+1 833953 L4944 2019 1388 92*10^833852-1 833854 L4789 2018 Near-repdigit 1389 437*2^2769299+1 833645 L3760 2019 1390 967*2^2768408+1 833377 L3760 2019 1391 2280466^131072+1 833359 L4201 2016 Generalized Fermat 1392 1171*2^2768112+1 833288 L2676 2019 1393 57*2^2765963+1 832640 L3262 2013 1394 1323*2^2764024+1 832058 L1115 2019 1395 77*2^2762047+1 831461 L3430 2013 1396 745*2^2761514+1 831302 L1204 2019 1397 2194180^131072+1 831164 L4276 2016 Generalized Fermat 1398 7*10^830865+1 830866 p342 2014 1399 893*2^2758841+1 830497 L4826 2019 1400 537*2^2755164+1 829390 L3035 2019 1401 579*2^2754370+1 829151 L1823 2019 1402 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 1403 215*2^2751022-1 828143 L2484 2018 1404 337*2^2750860+1 828094 L4854 2019 1405 701*2^2750267+1 827916 L3784 2019 1406 467*2^2749195+1 827593 L1745 2019 1407 245*2^2748663+1 827433 L3173 2015 1408 591*2^2748315+1 827329 L3029 2019 1409 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 1410 1089*2^2746155+1 826679 L2583 2019 1411 707*2^2745815+1 826576 L3760 2019 1412 459*2^2742310+1 825521 L4582 2019 1413 777*2^2742196+1 825487 L3919 2019 1414 609*2^2741078+1 825150 L3091 2019 1415 639*2^2740186+1 824881 L4958 2019 1416 905*2^2739805+1 824767 L4958 2019 1417 1955556^131072+1 824610 L4250 2015 Generalized Fermat 1418 777*2^2737282+1 824007 L1823 2019 1419 765*2^2735232+1 823390 L1823 2019 1420 609*2^2735031+1 823330 L1823 2019 1421 305*2^2733989+1 823016 L1823 2019 1422 165*2^2732983+1 822713 L1741 2015 1423 1133*2^2731993+1 822415 L4687 2019 1424 251*2^2730917+1 822091 L3924 2015 1425 1185*2^2730620+1 822002 L4948 2019 1426 173*2^2729905+1 821786 L3895 2015 1427 1981*2^2728877-1 821478 L1134 2018 1428 693*2^2728537+1 821375 L3035 2019 1429 501*2^2728224+1 821280 L3035 2019 1430 763*2^2727928+1 821192 L3924 2019 1431 10*743^285478+1 819606 L4955 2019 1432 17*2^2721830-1 819354 p279 2010 1433 1101*2^2720091+1 818833 L4935 2019 1434 1766192^131072+1 818812 L4231 2015 Generalized Fermat 1435 165*2^2717378-1 818015 L2055 2012 1436 68633*2^2715609+1 817485 L5105 2020 1437 1722230^131072+1 817377 L4210 2015 Generalized Fermat 1438 1717162^131072+1 817210 L4226 2015 Generalized Fermat 1439 133*2^2713410+1 816820 L3223 2015 1440 45*2^2711732+1 816315 L1349 2012 1441 569*2^2711451+1 816231 L4568 2019 1442 335*2^2708958-1 815481 L2235 2020 1443 93*2^2708718-1 815408 L1862 2016 1444 1660830^131072+1 815311 L4207 2015 Generalized Fermat 1445 837*2^2708160+1 815241 L4314 2019 1446 1005*2^2707268+1 814972 L4687 2019 1447 13*458^306196+1 814748 L3610 2015 1448 253*2^2705844+1 814543 L4083 2015 1449 657*2^2705620+1 814476 L4907 2019 1450 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 1451 303*2^2703864+1 813947 L1204 2019 1452 141*2^2702160+1 813434 L1741 2015 1453 753*2^2701925+1 813364 L4314 2019 1454 133*2^2701452+1 813221 L3173 2015 1455 521*2^2700095+1 812813 L4854 2019 1456 393*2^2698956+1 812470 L1823 2019 1457 417*2^2698652+1 812378 L3035 2019 1458 525*2^2698118+1 812218 L1823 2019 1459 3125*2^2697651+1 812078 L3924 2019 1460 153*2^2697173+1 811933 L3865 2015 1461 1560730^131072+1 811772 L4201 2015 Generalized Fermat 1462 26*3^1700041+1 811128 L4799 2020 1463 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 1464 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 1465 7335*2^2689080-1 809498 L4036 2015 1466 1049*2^2688749+1 809398 L4869 2018 1467 329*2^2688221+1 809238 L3035 2018 1468 865*2^2687434+1 809002 L4844 2018 1469 989*2^2686591+1 808748 L2805 2018 1470 136*904^273532+1 808609 L4944 2020 1471 243*2^2685873+1 808531 L3865 2015 1472 909*2^2685019+1 808275 L3431 2018 1473e 1455*2^2683953-1 807954 L1134 2020 1474 11210*241^339153-1 807873 L4944 2019 1475 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 1476 975*2^2681840+1 807318 L4155 2018 1477 295*2^2680932+1 807044 L1741 2015 1478 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 1479 575*2^2679711+1 806677 L2125 2018 1480 2386*52^469972+1 806477 L4955 2019 1481 219*2^2676229+1 805628 L1792 2015 1482 637*2^2675976+1 805552 L3035 2018 1483 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 1484 951*2^2674564+1 805127 L1885 2018 1485 1372930^131072+1 804474 g236 2003 Generalized Fermat 1486 662*1009^267747-1 804286 L4944 2020 1487 261*2^2671677+1 804258 L3035 2015 1488 895*2^2671520+1 804211 L3035 2018 1489 1361244^131072+1 803988 g236 2004 Generalized Fermat 1490 789*2^2670409+1 803877 L3035 2018 1491 256*11^771408+1 803342 L3802 2014 Generalized Fermat 1492 503*2^2668529+1 803310 L4844 2018 1493 255*2^2668448+1 803286 L1129 2015 1494 4189*2^2666639-1 802742 L1959 2017 1495 539*2^2664603+1 802129 L4717 2018 1496 26036*745^279261-1 802086 L4189 2020 1497 1396*5^1146713-1 801522 L3547 2013 1498 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 1499 51*892^271541+1 801147 L4944 2019 1500 297*2^2660048+1 800757 L3865 2015 1501a 99*2^2658496-1 800290 L1862 2021 1502 851*2^2656411+1 799663 L4717 2018 1503 487*2^2655008+1 799240 L3760 2018 1504 371*2^2651663+1 798233 L3760 2018 1505 69*2^2649939-1 797713 L3764 2014 1506 207*2^2649810+1 797675 L1204 2015 1507 505*2^2649496+1 797581 L3760 2018 1508 993*2^2649256+1 797509 L3760 2018 1509 517*2^2648698+1 797341 L3760 2018 1510 340*703^280035+1 797250 L4001 2018 1511 441*2^2648307+1 797223 L3760 2018 1512 1129*2^2646590+1 796707 L3760 2018 1513 128*518^293315+1 796156 L4001 2019 1514 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 1515 1176694^131072+1 795695 g236 2003 Generalized Fermat 1516 13*2^2642943-1 795607 L1862 2012 1517 119*410^304307+1 795091 L4294 2019 1518 501*2^2641052+1 795039 L3035 2018 1519 879*2^2639962+1 794711 L3760 2018 1520 57*2^2639528-1 794579 L2484 2016 1521 342673*2^2639439-1 794556 L53 2007 1522 813*2^2639092+1 794449 L2158 2018 1523 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 1524 1027*2^2638186+1 794177 L3760 2018 1525 889*2^2637834+1 794071 L3545 2018 1526 92182*5^1135262+1 793520 L3547 2013 1527 741*2^2634385+1 793032 L1204 2018 1528 465*2^2630496+1 791861 L1444 2018 1529 189*2^2630487+1 791858 L3035 2015 1530 87*2^2630468+1 791852 L3262 2013 1531 1131*2^2629345+1 791515 L4826 2018 1532 967*2^2629344+1 791515 L3760 2018 1533 267*2^2629210+1 791474 L3035 2015 1534 154*883^268602+1 791294 L4944 2020 1535 819*2^2627529+1 790968 L1387 2018 1536 17152*5^1131205-1 790683 L3552 2013 1537 183*2^2626442+1 790641 L3035 2015 1538 813*2^2626224+1 790576 L4830 2018 1539 807*2^2625044+1 790220 L1412 2018 1540 1063730^131072+1 789949 g260 2013 Generalized Fermat 1541 1243*2^2623707-1 789818 L1828 2011 1542 693*2^2623557+1 789773 L3278 2018 1543 981*2^2622032+1 789314 L1448 2018 1544 145*2^2621020+1 789008 L3035 2015 1545 541*2^2614676+1 787099 L4824 2018 1546 1061*268^323645-1 785857 L4944 2019 1547 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 1548 1071*2^2609316+1 785486 L3760 2018 1549 87*2^2609046+1 785404 L2520 2013 1550a 18922*111^383954+1 785315 L4944 2021 1551 543*2^2608129+1 785128 L4822 2018 1552 329584*5^1122935-1 784904 L3553 2013 1553 10*311^314806+1 784737 L3610 2014 1554 1019*2^2606525+1 784646 L1201 2018 1555 977*2^2606211+1 784551 L4746 2018 1556 13*2^2606075-1 784508 L1862 2011 1557 693*2^2605905+1 784459 L4821 2018 1558 147*2^2604275+1 783968 L1741 2015 1559 105*2^2603631+1 783774 L3459 2015 1560 93*2^2602483-1 783428 L1862 2016 1561 155*2^2602213+1 783347 L2719 2015 1562 303*2^2601525+1 783140 L4816 2018 1563 711*2^2600535+1 782842 L4815 2018 1564 1133*2^2599345+1 782484 L4796 2018 1565 397*2^2598796+1 782319 L3877 2018 1566 1536*177^347600+1 781399 L4944 2020 1567 1171*2^2595736+1 781398 L3035 2018 1568 909548^131072+1 781036 p387 2015 Generalized Fermat 1569 2*218^333925+1 780870 L4683 2017 1570 1149*2^2593359+1 780682 L1125 2018 1571 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 1572 333*2^2591874-1 780235 L2017 2019 1573 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 1574 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 1575 703*2^2586728+1 778686 L4256 2018 1576 2642*372^302825-1 778429 L4944 2019 1577 120*825^266904+1 778416 L4001 2018 1578 337*2^2585660+1 778364 L2873 2018 1579 393*2^2584957+1 778153 L4600 2018 1580 151*2^2584480+1 778009 L4043 2015 1581 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 1582 385*2^2584280+1 777949 L4600 2018 1583 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 1584 65*2^2583720-1 777780 L2484 2015 1585 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 1586 82*920^262409-1 777727 L4064 2015 1587 1041*2^2582112+1 777297 L1456 2018 1588 334310*211^334310-1 777037 p350 2012 Generalized Woodall 1589 229*2^2581111-1 776995 L1862 2017 1590 61*2^2580689-1 776867 L2484 2015 1591 1113*2^2580205+1 776723 L4724 2018 1592 51*2^2578652+1 776254 L3262 2013 1593 173*2^2578197+1 776117 L3035 2015 1594 833*2^2578029+1 776067 L4724 2018 1595 80*394^298731-1 775358 L541 2020 1596 460*628^276994+1 775021 L4944 2020 1597 459*2^2573899+1 774824 L1204 2018 1598 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 1599 627*2^2567718+1 772963 L3803 2018 1600 933*2^2567598+1 772927 L4724 2018 1601 757*2^2566468+1 772587 L2606 2018 1602 231*2^2565263+1 772224 L3035 2015 1603 4*737^269302+1 772216 L4294 2016 Generalized Fermat 1604 941*2^2564867+1 772105 L4724 2018 1605 923*2^2563709+1 771757 L1823 2018 1606 151*596^278054+1 771671 L4876 2019 1607 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 1608 303*2^2562423-1 771369 L2017 2018 1609 75*2^2562382-1 771356 L2055 2011 1610 147559*2^2562218+1 771310 L764 2012 1611d 117*412^294963+1 771300 p268 2021 1612 829*2^2561730+1 771161 L1823 2018 1613 404*12^714558+1 771141 L1471 2011 1614 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 1615c 295*80^404886+1 770537 L4944 2021 1616 1193*2^2559453+1 770476 L2030 2018 1617 19*984^257291+1 770072 L4944 2020 1618 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 1619 65*752^267180-1 768470 L4944 2020 1620 419*2^2552363+1 768341 L4713 2018 1621 34*759^266676-1 768093 L4001 2019 1622 315*2^2550412+1 767754 L4712 2017 1623 415*2^2549590+1 767506 L4710 2017 1624 693*2^2547752+1 766953 L4600 2017 1625 673*2^2547226+1 766795 L2873 2017 1626 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 1627 183*2^2545116+1 766159 L3035 2015 1628 311*2^2544778-1 766058 L2017 2018 1629 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 1630 67*446^288982+1 765612 L4273 2020 1631 663*2^2542990+1 765520 L4703 2017 1632 705*2^2542464+1 765361 L2873 2017 1633 689186^131072+1 765243 g429 2013 Generalized Fermat 1634 745*2^2540726+1 764838 L4696 2017 1635 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 1636 64*177^340147-1 764644 L3610 2015 1637 421*2^2539336+1 764419 L4148 2017 1638 123287*2^2538167+1 764070 L3054 2012 1639 305716*5^1093095-1 764047 L3547 2013 1640 223*2^2538080+1 764041 L2125 2015 1641 83*2^2537641+1 763908 L1300 2013 1642 645*2^2532811+1 762455 L4600 2017 1643 953*2^2531601+1 762091 L4404 2017 1644 545*2^2528179+1 761061 L1502 2017 1645 203*2^2526505+1 760557 L3910 2015 1646 967*2^2526276+1 760488 L1204 2017 1647 241*2^2522801-1 759442 L2484 2018 1648 360307*6^975466-1 759066 p255 2017 1649c 326*80^398799+1 758953 L4444 2021 1650 749*2^2519457+1 758436 L1823 2017 1651 199*2^2518871-1 758259 L2484 2018 1652 6*10^758068+1 758069 L5009 2019 1653 87*2^2518122-1 758033 L2484 2014 1654 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 1655 711*2^2516187+1 757451 L3035 2017 1656 967*2^2514698+1 757003 L4600 2017 1657 33*2^2513872-1 756753 L3345 2013 1658 973*2^2511920+1 756167 L1823 2017 1659 679*2^2511814+1 756135 L4598 2017 1660 1093*2^2511384+1 756005 L1823 2017 1661 38*875^256892-1 755780 L4001 2019 1662 45*2^2507894+1 754953 L1349 2012 1663 130484*5^1080012-1 754902 L3547 2013 1664 572186^131072+1 754652 g0 2004 Generalized Fermat 1665 242*501^279492-1 754586 L4911 2019 1666 883*2^2506382+1 754500 L1823 2017 1667 847*2^2505540+1 754246 L4600 2017 1668 191*2^2504121+1 753818 L3035 2015 1669 783*2^2500912+1 752853 L1823 2017 1670 165*2^2500130-1 752617 L2055 2011 1671 33*2^2499883-1 752542 L3345 2013 1672 319*2^2498685-1 752182 L2017 2018 1673 321*2^2496594-1 751553 L2235 2018 1674 365*2^2494991+1 751070 L3035 2017 1675 213*2^2493004-1 750472 L1863 2017 1676 777*2^2492560+1 750339 L3035 2017 1677 57*2^2492031+1 750178 L1230 2013 1678 879*2^2491342+1 749972 L4600 2017 1679 14*152^343720-1 749945 L3610 2015 1680 231*2^2489083+1 749292 L3035 2015 1681 255*2^2488562+1 749135 L3035 2015 1682 221*780^258841-1 748596 L4001 2018 1683 303*2^2486629+1 748553 L3035 2017 1684 6*433^283918-1 748548 L3610 2015 1685 617*2^2485919+1 748339 L1885 2017 1686 515*2^2484885+1 748028 L3035 2017 1687 1095*2^2484828+1 748011 L3035 2017 1688 1113*2^2484125+1 747800 L3035 2017 1689 607*2^2483616+1 747646 L3035 2017 1690 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 1691 723*2^2482064+1 747179 L3035 2017 1692 26*3^1565545+1 746957 L4799 2020 1693 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 1694 1071*2^2477584+1 745831 L3035 2017 1695 22*30^504814-1 745673 p355 2014 1696 11*2^2476839+1 745604 L2691 2011 1697 825*2^2474996+1 745051 L1300 2017 1698 1061*2^2474282-1 744837 L1828 2012 1699 435*2^2473905+1 744723 L3035 2017 1700 1121*2^2473401+1 744571 L3924 2017 1701 325*2^2473267-1 744531 L2017 2018 1702 889*2^2471082+1 743873 L1300 2017 1703 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 1704 883*2^2469268+1 743327 L4593 2017 1705 5754*313^297824-1 743237 L5089 2020 1706 81*2^2468789+1 743182 g418 2009 1707 55154*5^1063213+1 743159 L3543 2013 1708 119*2^2468556-1 743112 L2484 2018 1709b 2136*396^285974+1 742877 L4944 2021 1710 525*2^2467658+1 742842 L3035 2017 1711 715*2^2465640+1 742235 L3035 2017 1712 26773*2^2465343-1 742147 L197 2006 1713 581*550^270707-1 741839 L4944 2020 1714 993*2^2464082+1 741766 L3035 2017 1715 1179*2^2463746+1 741665 L3035 2017 1716 857*2^2463411+1 741564 L3662 2017 1717 103*2^2462567-1 741309 L2484 2014 1718 12587*2^2462524-1 741298 L2012 2017 1719 5*2^2460482-1 740680 L503 2008 1720 763*2^2458592+1 740113 L1823 2017 1721 453*2^2458461+1 740074 L3035 2017 1722 519*2^2458058+1 739952 L3803 2017 1723 137*2^2457639+1 739826 L4021 2014 1724 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 1725 133*2^2455666+1 739232 L2322 2014 1726 99*2^2455541-1 739194 L1862 2015 1727 377*2^2452639+1 738321 L3035 2017 1728e 2189*138^345010+1 738284 L4944 2020 1729 1129*2^2452294+1 738218 L3035 2017 1730 1103*2^2451133+1 737868 L4531 2017 1731 65*2^2450614-1 737711 L2074 2014 1732 549*2^2450523+1 737684 L3035 2017 1733 4*789^254595+1 737582 L4955 2019 1734 3942*55^423771-1 737519 L4955 2019 1735 765*2^2448660+1 737123 L4412 2017 1736 607*2^2447836+1 736875 L4523 2017 1737 1005*2^2446722+1 736540 L4522 2017 1738 703*2^2446472+1 736465 L2805 2017 1739 75*2^2446050+1 736337 L3035 2013 1740 115*26^520277-1 736181 L1471 2014 1741 114986*5^1052966-1 735997 L3528 2013 1742 1029*2^2444707+1 735934 L3035 2017 1743 1035*2^2443369+1 735531 L3173 2017 1744 1017*2^2442723+1 735336 L4417 2017 1745 1065*2^2441132+1 734857 L1823 2017 1746 393*2^2436849+1 733568 L3035 2016 1747f 1425*2^2435607-1 733194 L1134 2020 1748 386892^131072+1 732377 p259 2009 Generalized Fermat 1749 465*2^2431455+1 731944 L3035 2016 1750 905*2^2430509+1 731660 L4408 2016 1751 223*2^2430490+1 731653 L4016 2014 1752 8*410^279991+1 731557 L4700 2019 1753 69*2^2428251-1 730979 L384 2014 1754 233*2^2426512-1 730456 L2484 2020 1755 645*2^2426494+1 730451 L3035 2016 1756 665*2^2425789+1 730239 L3173 2016 1757 23*2^2425641+1 730193 L2675 2011 1758 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 1759 753*2^2422914+1 729373 L3035 2016 1760 5619*52^424922+1 729172 L4944 2019 1761 105*2^2422105+1 729129 L2520 2014 1762c 3338*396^280633+1 729003 L4944 2021 1763 201*2^2421514-1 728951 L1862 2016 1764 239*2^2421404-1 728918 L2484 2018 1765 577*2^2420868+1 728757 L4489 2016 1766 929*2^2417767+1 727824 L3924 2016 1767 4075*2^2417579-1 727768 L1959 2017 1768 303*2^2417452-1 727729 L2235 2018 1769 895*2^2417396+1 727712 L3035 2016 1770 1764*327^289322+1 727518 L4944 2020 Generalized Fermat 1771 5724*313^291243-1 726814 L4444 2020 1772 1081*2^2412780+1 726323 L1203 2016 1773 333*2^2412735-1 726309 L2017 2018 1774 6891*52^423132+1 726100 L4944 2019 1775 83*2^2411962-1 726075 L1959 2018 1776 69*2^2410035-1 725495 L2074 2013 1777 12362*1027^240890-1 725462 L4444 2018 1778 143157*2^2409056+1 725204 L4504 2016 1779 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 1780 339*2^2408337+1 724985 L3029 2016 1781 811*2^2408096+1 724913 L2526 2016 1782 157*2^2407958+1 724870 L1741 2014 1783 243686*5^1036954-1 724806 L3549 2013 1784 3660*163^327506+1 724509 L4955 2019 1785 303*2^2406433+1 724411 L4425 2016 1786 345*2^2405701+1 724191 L3035 2016 1787 921*2^2405056+1 723997 L2805 2016 1788 673*2^2403606+1 723561 L3035 2016 1789 475*2^2403220+1 723444 L4445 2016 1790 837*2^2402798+1 723318 L3372 2016 1791 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 1792 231*2^2402748+1 723302 L3995 2014 1793 375*2^2401881+1 723041 L2805 2016 1794 107*2^2401731+1 722996 L3998 2014 1795 1023*2^2398601+1 722054 L4414 2016 1796 539*2^2398227+1 721941 L4061 2016 1797 659*2^2397567+1 721743 L4441 2016 1798 40*844^246524+1 721416 L4001 2017 1799 465*2^2395133+1 721010 L4088 2016 1800 56*318^288096+1 720941 L1471 2019 1801 667*2^2394430+1 720799 L4408 2016 1802 15*2^2393365+1 720476 L1349 2010 1803 1642*273^295670+1 720304 L4944 2019 1804 633*2^2391222+1 719833 L3743 2016 1805 273*2^2388104+1 718894 L3668 2014 1806 118*558^261698+1 718791 L4877 2019 1807 1485*2^2386037-1 718272 L1134 2017 1808 399*2^2384115+1 717693 L4412 2016 1809 99*2^2383846+1 717612 L1780 2013 1810 737*2^2382804-1 717299 L191 2007 1811 111*2^2382772+1 717288 L3810 2014 1812 61*2^2381887-1 717022 L2432 2012 1813 202*249^299162+1 716855 L4944 2019 1814 321*2^2378535-1 716013 L2017 2018 1815 435*2^2378522+1 716010 L1218 2016 1816 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 1817 147*2^2375995+1 715248 L1130 2014 1818 915*2^2375923+1 715228 L1741 2016 1819 1981*2^2375591-1 715128 L1134 2017 1820 1129*2^2374562+1 714818 L3035 2016 1821 97*2^2374485-1 714794 L2484 2018 1822 1117*2^2373977-1 714642 L1828 2012 1823 949*2^2372902+1 714318 L4408 2016 1824 659*2^2372657+1 714244 L3035 2016 1825 1365*2^2372586+1 714223 L1134 2016 1826 509*2^2370721+1 713661 L1792 2016 1827 99*2^2370390+1 713561 L1204 2013 1828 959*2^2370077+1 713468 L1502 2016 1829 1135*2^2369808+1 713387 L2520 2016 1830 125*2^2369461+1 713281 L3035 2014 1831 1183953*2^2367907-1 712818 L447 2007 Woodall 1832 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 1833 119878*5^1019645-1 712707 L3528 2013 1834 453*2^2367388+1 712658 L3035 2016 1835 150209!+1 712355 p3 2011 Factorial 1836 281*2^2363327+1 711435 L1741 2014 1837 2683*2^2360743-1 710658 L1959 2012 1838 409*2^2360166+1 710484 L1199 2016 1839 305*2^2358854-1 710089 L2017 2018 1840d 1706*123^339764+1 710078 L4944 2021 1841 403*2^2357572+1 709703 L3029 2016 1842 155*2^2357111+1 709564 L3975 2014 1843 365*2^2355607+1 709111 L2117 2016 1844 33706*6^910462+1 708482 L587 2014 1845 1087*2^2352830+1 708276 L1492 2016 1846 152*1002^235971+1 708120 L4944 2019 1847 179*2^2352291+1 708113 L1741 2014 1848 559*2^2351894+1 707994 L3924 2016 1849 24573*2^2350824+1 707673 p168 2018 1850 1035*2^2350388+1 707541 L2526 2016 1851 433*2^2348252+1 706897 L2322 2016 1852 329*2^2348105+1 706853 L3029 2016 1853 45*2^2347187+1 706576 L1349 2012 1854 7675*46^424840+1 706410 L4944 2019 1855 127*2^2346377-1 706332 L282 2009 1856 933*2^2345893+1 706188 L3035 2016 1857 903*2^2345013+1 705923 L2006 2016 1858 33*2^2345001+1 705918 L2322 2013 1859 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 1860 627*2^2343140+1 705359 L3125 2016 1861 83*2^2342345+1 705119 L2626 2013 1862 61*380^273136+1 704634 L4944 2019 1863 277*2^2340182+1 704468 L1158 2014 1864 159*2^2339566+1 704282 L3035 2014 1865 335*2^2338972-1 704104 L2235 2017 1866 22*422^268038+1 703685 L4955 2019 1867 9602*241^295318-1 703457 L4944 2019 1868 1149*2^2336638+1 703402 L4388 2016 1869 339*2^2336421-1 703336 L2519 2017 1870 231*2^2335281-1 702992 L1862 2019 1871 275293*2^2335007-1 702913 L193 2006 1872 105*2^2334755-1 702834 L1959 2018 1873 228188^131072+1 702323 g124 2010 Generalized Fermat 1874 809*2^2333017+1 702312 L2675 2016 1875 795*2^2332488+1 702152 L3029 2016 1876 3^1471170-3^529291+1 701927 p269 2019 1877 118*761^243458+1 701499 L4944 2019 1878 435*2^2329948+1 701387 L2322 2016 1879 585*2^2329350+1 701207 L2707 2016 1880 213*2^2328530-1 700960 L1863 2017 1881 1482*327^278686+1 700773 L4944 2020 1882 26472*91^357645+1 700646 L4944 2020 1883 1107*2^2327472+1 700642 L3601 2016 1884 435*2^2327152+1 700546 L2337 2016 1885 4161*2^2326875-1 700463 L1959 2016 1886 427*2^2326288+1 700286 L2719 2016 1887 438*19^547574-1 700215 L4944 2020 1888 147855!-1 700177 p362 2013 Factorial 1889 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 1890 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 1891 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 1892 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 1893 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 1894 404882*43^404882-1 661368 p310 2011 Generalized Woodall 1895 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 1896 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 1897 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 1898 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 1899 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 1900 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 1901 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 1902 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 1903 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 1904 292402*159^292402+1 643699 g407 2012 Generalized Cullen 1905 93*10^642225-1 642227 L4789 2020 Near-repdigit 1906 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 1907 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 1908 563528*13^563528-1 627745 p262 2009 Generalized Woodall 1909 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 1910 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 1911 269328*211^269328+1 626000 p354 2012 Generalized Cullen 1912 8*10^608989-1 608990 p297 2011 Near-repdigit 1913 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 1914 251749*2^2013995-1 606279 L436 2007 Woodall 1915 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 1916 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 1917 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 1918 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 1919 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 1920 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 1921 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 1922 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 1923 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 1924 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 1925 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 1926 92*10^544905-1 544907 L3735 2015 Near-repdigit 1927 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 1928 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 1929 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 1930 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 1931 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 1932 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 1933 5*10^511056-1 511057 p297 2011 Near-repdigit 1934 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 1935 110059!+1 507082 p312 2011 Factorial 1936 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 1937 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 1938 30981*14^433735-1 497121 p77 2015 Generalized Woodall 1939 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 1940 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 1941 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 1942 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 1943 1098133#-1 476311 p346 2012 Primorial 1944 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 1945 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 1946 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 1947 103040!-1 471794 p301 2010 Factorial 1948 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 1949 95*10^466002-1 466004 L3735 2014 Near-repdigit 1950 5*10^464843-1 464844 p297 2011 Near-repdigit 1951 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 1952 341351*22^341351-1 458243 p260 2017 Generalized Woodall 1953 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 1954 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 1955 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 1956 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 1957 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 1958 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 1959 5*10^445773-1 445774 p297 2011 Near-repdigit 1960 176660*18^353320-1 443519 p325 2011 Generalized Woodall 1961 1467763*2^1467763-1 441847 L381 2007 Woodall 1962 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 1963 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 1964 94550!-1 429390 p290 2010 Factorial 1965 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 1966 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 1967 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 1968 2985*2^1404275-770527213395*2^1290000-1 422733 p199 2017 Arithmetic progression (3,d=2985*2^1404274-770527213395*2^1290000) 1969 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 1970 2^1398269-1 420921 G1 1996 Mersenne 35 1971 999999998*10^419343-1 419352 L1958 2019 Near-repdigit 1972 182402*14^364804-1 418118 p325 2011 Generalized Woodall 1973 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 1974 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 1975 338707*2^1354830+1 407850 L124 2005 Cullen 1976 11*2^1343347+1 404389 p169 2005 Divides GF(1343346,6) 1977 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 1978 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 1979 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 1980 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 1981 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 1982 9422094211005*2^1290000-1 388342 L3494 2020 Arithmetic progression (3,d=2227792035315*2^1290001) 1983 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 1984 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 1985 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 1986 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 1987 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 1988 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 1989 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 1990 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 1991 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 1992 1489088842587*2^1290000-1 388341 L2511 2014 Arithmetic progression (1,d=2415*2^1413627-1489088842587*2^1290000) [p199] 1993 1188581180295*2^1290000-1 388341 L3765 2014 Arithmetic progression (1,d=160128309135*2^1290001) [L3494] 1994 1957*2^1284992+1 386825 L3913 2014 Divides GF(1284991,6) 1995 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 1996 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 1997 1268979*2^1268979-1 382007 L201 2007 Woodall 1998 2^1257787-1 378632 SG 1996 Mersenne 34 1999 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 2000 259738*3^779214+1 371785 L2777 2011 Generalized Cullen 2001 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 2002 843301#-1 365851 p302 2010 Primorial 2003 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 2004 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 2005 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 2006 1195203*2^1195203-1 359799 L124 2005 Woodall 2007 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 2008 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 2009 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 2010 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 2011 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 2012 93*2^1087202+1 327283 L669 2010 Divides GF(1087199,12) 2013 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 2014 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 2015 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 2016 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 2017 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 2018 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 2019 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 2020 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 2021 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 2022 3*2^916773+1 275977 g245 2001 Divides GF(916771,3), GF(916772,10) 2023 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 2024 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 2025 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 2026 2^859433-1 258716 SG 1994 Mersenne 33 2027 2^756839-1 227832 SG 1992 Mersenne 32 2028 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 2029 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 2030 10^219113-535*10^109555-1 219113 p363 2016 Palindrome 2031 10^216091-7*(10^37627-1)/9*10^89232-1 216091 p413 2020 Palindrome 2032 10^214575-20002*10^107285-1 214575 p363 2016 Palindrome 2033 10^214479-535*10^107238-1 214479 p363 2016 Palindrome 2034 Phi(3,10^104279)+(137*10^104280+731*10^93395)*(10^10884-1)/999 208559 p44 2014 Palindrome 2035 Phi(3,10^104276)+(137*10^104277+731*10^99683)*(10^4593-1)/999 208553 p44 2014 Palindrome 2036 Phi(3,10^104257)+(137*10^104258+731*10^99193)*(10^5064-1)/999 208515 p44 2014 Palindrome 2037 Phi(3,10^103289)+(137*10^103290+731*10^90449)*(10^12840-1)/999 206579 p44 2014 Palindrome 2038 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 2039 667071*2^667071-1 200815 g55 2000 Woodall 2040 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 2041 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 2042 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 2043 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 2044 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 2045 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 2046 392113#+1 169966 p16 2001 Primorial 2047 366439#+1 158936 p16 2001 Primorial 2048 481899*2^481899+1 145072 gm 1998 Cullen 2049 34790!-1 142891 p85 2002 Factorial 2050 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 2051 361275*2^361275+1 108761 DS 1998 Cullen 2052 26951!+1 107707 p65 2002 Factorial 2053 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 2054 65516468355*2^333333-1 100355 L923 2009 Twin (p) 2055 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 2056 21480!-1 83727 p65 2001 Factorial 2057 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 2058 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 2059 262419*2^262419+1 79002 DS 1998 Cullen 2060 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 2061 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 2062 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2063 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2064 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 2065 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 2066 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 2067 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 2068 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 2069 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 2070 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 2071 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 2072 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 2073 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 2074 (27987^15313-1)/27986 68092 CH13 2020 Generalized repunit 2075 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 2076 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 2077 12770275971*2^222225-1 66907 L527 2017 Twin (p) 2078 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 2079 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 2080 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 2081 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 2082 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 2083 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 2084 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 2085 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 2086 145823#+1 63142 p21 2000 Primorial 2087 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 2088 (28507^13831-1)/28506 61612 CH13 2020 Generalized repunit 2089 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 2090 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 2091 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 2092 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 2093 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 2094 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 2095 70965694293*2^200006-1 60219 L95 2016 Twin (p) 2096 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 2097 66444866235*2^200003-1 60218 L95 2016 Twin (p) 2098 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 2099 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 2100 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 2101 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 2102 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 2103 2003663613*2^195000-1 58711 L202 2007 Twin (p) 2104 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 2105 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 2106 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 2107 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 2108 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 2109 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 2110 191547657*2^173372-1 52199 L5116 2020 Twin (p) 2111 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 2112 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 2113 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 2114 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 2115 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 2116 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 2117 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 2118 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 2119 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 2120 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 2121 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 2122 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 2123 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 2124 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 2125 33218925*2^169690-1 51090 g259 2002 Twin (p) 2126 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 2127 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 2128 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 2129 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 2130 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 2131c 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 2132c 110427610*3^100003-1 47722 p415 2021 Twin (p) 2133 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 2134 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 2135 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 2136 3706785456*13^42069-1 46873 p412 2020 Twin (p) 2137 22835841624*7^54321+1 45917 p296 2010 Twin (p+2) 2138 22835841624*7^54321-1 45917 p296 2010 Twin (p) 2139 1679081223*2^151618+1 45651 L527 2012 Twin (p+2) 2140 1679081223*2^151618-1 45651 L527 2012 Twin (p) 2141 9606632571*2^151515+1 45621 p282 2014 Twin (p+2) 2142 9606632571*2^151515-1 45621 p282 2014 Twin (p) 2143 151023*2^151023-1 45468 g25 1998 Woodall 2144d 773985*2^150559+1 45329 L5115 2021 Twin (p+2) 2145 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 2146 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 2147 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 2148 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 2149 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 2150 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 2151 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 2152 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 2153 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 2154 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 2155 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 2156 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 2157 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 2158 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 2159 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 2160 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 2161 84966861*2^140219-1 42219 L3121 2012 Twin (p) 2162 31737014565*2^140004-1 42156 L95 2010 Sophie Germain (2p+1) 2163 31737014565*2^140003-1 42156 L95 2010 Sophie Germain (p) 2164 14962863771*2^140002-1 42155 L95 2010 Sophie Germain (2p+1) 2165 14962863771*2^140001-1 42155 L95 2010 Sophie Germain (p) 2166 13375563435*2^137137-1 41293 p364 2018 Sophie Germain (2p+1) 2167 13375563435*2^137136-1 41293 p364 2018 Sophie Germain (p) 2168 10429091973*2^135136-1 40691 p364 2018 Sophie Germain (2p+1) 2169 10429091973*2^135135-1 40690 p364 2018 Sophie Germain (p) 2170 73378515705*2^133148-1 40093 L167 2018 Sophie Germain (2p+1) 2171 73378515705*2^133147-1 40093 L167 2018 Sophie Germain (p) 2172 p(1289844341) 40000 c84 2020 Partitions, ECPP 2173 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 2174 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 2175 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 2176 2^116224-15905 34987 c87 2017 ECPP 2177 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 2178 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 2179 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 2180 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 2181 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 2182 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 2183 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 2184 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 2185 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 2186 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 2187 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 2188 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 2189 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 2190 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 2191 V(148091) 30950 c81 2015 Lucas number, ECPP 2192 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 2193 49363*2^98727-1 29725 Y 1997 Woodall 2194 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 2195 -τ(331^2128) 29492 c80 2015 ECPP 2196 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 2197 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 2198 V(140057) 29271 c76 2014 Lucas number,ECPP 2199 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 2200 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 2201 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 2202 primV(205011) 28552 x39 2009 Lucas primitive part 2203 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 2204 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 2205 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 2206c (10^27669+7)/8313493832818655929448065598763458531111 27630 c96 2021 ECPP 2207 90825*2^90825+1 27347 Y 1997 Cullen 2208 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 2209 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 2210 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 2211d 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 2212 tau(157^2206) 26643 FE1 2011 ECPP 2213 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 2214 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 2215 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 2216 1036053977*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10664254*60013#) 2217 1027676400*60013#+1 25992 p155 2019 Arithmetic progression (4,d=6813491*60013#) 2218 1025139165*60013#+1 25992 p115 2019 Arithmetic progression (4,d=6205834*60013#) 2219 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 2220 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 2221 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 2222 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 2223 10^25333-2*10^5182-3 25333 c95 2020 ECPP 2224 Phi(12345,7176)/31531760245313526865033921 25331 c54 2017 ECPP 2225 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 2226 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 2227 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 2228 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 2229 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 2230 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 2231 6753^5122+5122^6753 25050 FE1 2010 ECPP 2232c (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 2233 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 2234 floor((3/2)^137752)+13566 24257 c35 2015 ECPP 2235 -tau(691^1522) 23770 c65 2014 ECPP 2236 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 2237d 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 2238 6917!-1 23560 g1 1998 Factorial 2239 primV(67,-1,13081)/65419672274940815357 23451 c84 2019 ECPP 2240 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 2241 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 2242 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 2243 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 2244 U(104911) 21925 c82 2015 Fibonacci number, ECPP 2245 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 2246 6380!+1 21507 g1 1998 Factorial 2247 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 2248e -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 2249f Phi(39855,-10) 21248 c95 2020 Unique, ECPP 2250 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 2251 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 2252 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 2253 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 2254 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 2255 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 2256 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 2257 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 2258 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 2259 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 2260 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 2261 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 2262 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 2263 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 2264 V(94823) 19817 c73 2014 Lucas number, ECPP 2265 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 2266 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 2267 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 2268 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 2269 V(89849) 18778 c70 2014 Lucas number, ECPP 2270 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 2271 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 2272 Phi(18827,10) 18480 c47 2014 Unique, ECPP 2273 42209#+1 18241 p8 1999 Primorial 2274 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 2275 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 2276 7457*2^59659+1 17964 Y 1997 Cullen 2277 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 2278 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 2279 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 2280 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 2281 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 2282 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 2283 U(81839) 17103 p54 2001 Fibonacci number 2284 V(81671) 17069 c66 2013 Lucas number, ECPP 2285 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 2286 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 2287 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 2288 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 2289 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 2290c primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 2291 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 2292 p(221444161) 16569 c77 2017 Partitions, ECPP 2293 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 2294 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 2295 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 2296 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 2297 U(2554,-1,4751) 16185 CH3 2005 Generalized Lucas number 2298 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 2299 U(1599,-1,5039) 16141 x23 2007 Generalized Lucas number 2300 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 2301 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 2302 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 2303 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 2304 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 2305 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 2306 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 2307 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 2308 (V(824,1,5277)-1)/(V(824,1,3)-1) 15379 x25 2013 Lehmer primitive part 2309 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2310 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 2311 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2312 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 2313 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 2314 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2315 (V(42995,1,3231)+1)/(V(42995,1,9)+1) 14929 x25 2012 Lehmer primitive part 2316 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 2317 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 2318 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 2319 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 2320 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 2321 (V(8003,1,3771)+1)/(V(8003,1,9)+1) 14685 x25 2013 Lehmer primitive part 2322 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2323 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 2324 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 2325 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2326 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 2327 (V(5111,1,3789)+1)/(V(5111,1,9)+1) 14019 x25 2013 Lehmer primitive part 2328 (V(5763,1,3753)+1)/(V(5763,1,27)+1) 14013 x25 2011 Lehmer primitive part 2329 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 2330 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 2331 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 2332 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 2333 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 2334 (V(5132,1,3753)+1)/(V(5132,1,27)+1) 13825 x25 2011 Lehmer primitive part 2335 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 2336 (V(4527,1,3771)+1)/(V(4527,1,9)+1) 13754 x25 2013 Lehmer primitive part 2337 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2338 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 2339 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 2340 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 2341 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 2342 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 2343 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2344 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 2345 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 2346 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 2347 p(131328565) 12758 c77 2017 Partitions, ECPP 2348 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2349 p(130249452) 12705 c85 2017 Partitions, ECPP 2350 p(130243561) 12705 c85 2017 Partitions, ECPP 2351 p(130242827) 12705 c85 2017 Partitions, ECPP 2352 p(130232271) 12705 c85 2017 Partitions, ECPP 2353 p(130201087) 12703 c85 2017 Partitions, ECPP 2354 p(130168020) 12701 c85 2017 Partitions, ECPP 2355 p(130142600) 12700 c85 2017 Partitions, ECPP 2356 p(130123073) 12699 c85 2017 Partitions, ECPP 2357 p(130086648) 12697 c85 2017 Partitions, ECPP 2358 p(130085878) 12697 c85 2017 Partitions, ECPP 2359 p(130060601) 12696 c85 2016 Partitions, ECPP 2360 p(130000231) 12693 c59 2016 Partitions, ECPP 2361 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2362 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 2363 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 2364 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 2365 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 2366 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 2367 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 2368 p(122110618) 12302 c77 2015 Partitions, ECPP 2369 p(120052058) 12198 c59 2012 Partitions, ECPP 2370 p(120037981) 12197 c59 2014 Partitions, ECPP 2371 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 2372 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 2373 primV(57724) 12063 p54 2001 Lucas primitive part, cyclotomy 2374 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 2375 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 2376 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 2377 primV(59018) 11789 c74 2015 Lucas primitive part, ECPP 2378 V(56003) 11704 p193 2006 Lucas number 2379 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 2380 p(110030755) 11677 c59 2014 Partitions, ECPP 2381 primV(77231) 11637 c74 2015 Lucas primitive part, ECPP 2382 primV(83481) 11631 c74 2015 Lucas primitive part, ECPP 2383 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 2384 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 2385 primV(64652) 11577 c74 2015 Lucas primitive part, ECPP 2386 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 2387 primV(56356) 11557 c74 2015 Lucas primitive part, ECPP 2388 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 2389 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 2390 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 2391 primU(67825) 11336 x23 2007 Fibonacci primitive part 2392 3610!-1 11277 C 1993 Factorial 2393 p(100115477) 11138 c59 2016 Partitions, ECPP 2394 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 2395 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 2396 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 2397 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 2398 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 2399 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 2400 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 2401 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 2402 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 2403 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 2404 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 2405 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 2406 3507!-1 10912 C 1992 Factorial 2407 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 2408 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 2409 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 2410 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 2411 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 2412 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 2413 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 2414 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 2415 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 2416 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 2417 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 2418 V(51169) 10694 p54 2001 Lucas number 2419 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 2420 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 2421 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 2422 U(50833) 10624 CH4 2005 Fibonacci number 2423 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 2424 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 2425 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 2426 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 2427 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 2428 1213266377*2^35000+2429 10546 c4 2014 ECPP, consecutive primes arithmetic progression (2,d=2430) 2429 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 2430 1043085905*2^35000+18197 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=18198) 2431 1043085905*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (2,d=18198) 2432 1043085905*2^35000-18199 10546 c4 2014 ECPP, consecutive primes arithmetic progression (1,d=18198) 2433 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 2434 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 2435 3221449497221499*2^34567+5 10422 c58 2015 Triplet (3), ECPP 2436 3221449497221499*2^34567+1 10422 p296 2015 Triplet (2) 2437 3221449497221499*2^34567-1 10422 p296 2015 Triplet (1) 2438 1288726869465789*2^34567+1 10421 p296 2014 Triplet (3) 2439 1288726869465789*2^34567-1 10421 p296 2014 Triplet (2) 2440 1288726869465789*2^34567-5 10421 c58 2014 ECPP, Triplet (1) 2441 24029#+1 10387 C 1993 Primorial 2442 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 2443 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 2444 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 2445 195262026*24001#+1 10377 p155 2018 Arithmetic progression (5,d=10601738*24001#) 2446 184591880*24001#+1 10377 p155 2018 Arithmetic progression (5,d=17881715*24001#) 2447 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 2448 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 2449 23801#+1 10273 C 1993 Primorial 2450 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 2451 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 2452 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 2453 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 2454 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 2455 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 2456 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 2457 32469*2^32469+1 9779 MM 1997 Cullen 2458 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 2459 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 2460 8073*2^32294+1 9726 MM 1997 Cullen 2461 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 2462 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 2463 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 2464 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 2465 V(44507) 9302 CH3 2005 Lucas number 2466 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 2467 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 2468 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 2469 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 2470 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 2471 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2472 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 2473 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 2474 (2^28759-1)/226160777 8649 c60 2012 Mersenne cofactor, ECPP 2475 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 2476 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 2477 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 2478 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 2479 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 2480 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 2481 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2482 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 2483 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2484 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 2485 primB(119945) 8165 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2486 primB(99835) 8126 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2487 primB(96545) 8070 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2488 (2^26903-1)/1113285395642134415541632833178044793 8063 c55 2011 Mersenne cofactor, ECPP 2489 18523#+1 8002 D 1989 Primorial 2490 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 2491 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 2492 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 2493 U(37511) 7839 x13 2005 Fibonacci number 2494 primB(145545) 7824 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2495 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 2496 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 2497 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 2498 (2^25933-1)/1343522383641330719274248287/55891374030173104216060503792\ 56829183569 7740 c86 2017 Mersenne cofactor 2499 V(36779) 7687 CH3 2005 Lucas number 2500 (2^25243-1)/252431/403889/43014073/449245236879223161338352589831 7551 c84 2016 Mersenne cofactor, ECPP 2501 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 2502 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 2503 V(35449) 7409 p12 2001 Lucas number 2504 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 2505 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 2506 V(34759)/27112021 7257 c33 2005 Lucas cofactor, ECPP 2507 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 2508 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 2509 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 2510 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP 2511 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 2512 U(33997)/8119544695419968014626314520991088099382355441843013 7053 c8 2013 Fibonacci cofactor, ECPP 2513 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 2514 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 2515 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 2516 V(33353)/279902102741094707003083072429 6941 c8 2013 Lucas cofactor, ECPP 2517 23005*2^23005-1 6930 Y 1997 Woodall 2518 22971*2^22971-1 6920 Y 1997 Woodall 2519 Phi(2405,-10000) 6912 c47 2009 Unique, ECPP 2520 15877#-1 6845 CD 1992 Primorial 2521 Phi(10887,10) 6841 c33 2005 Unique, ECPP 2522 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 2523 primU(40295) 6737 p12 2001 Fibonacci primitive part 2524 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 2525 (2^22193-1)/1482314857/335842152520679489/5501204091835435410769069847\ 32919 6622 c90 2018 Mersenne cofactor 2526 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 2527 Phi(7357,-10) 6301 c33 2004 Unique, ECPP 2528 Phi(6437,10) 6240 c47 2008 Unique, ECPP 2529 primU(43653) 6082 CH7 2010 Fibonacci primitive part 2530 primU(70455) 6019 c8 2013 Fibonacci primitive part, ECPP 2531 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 2532 primU(43359) 5939 c8 2013 Fibonacci primitive part, ECPP 2533 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 2534 13649#+1 5862 D 1987 Primorial 2535 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 2536 18885*2^18885-1 5690 K 1987 Woodall 2537 1963!-1 5614 CD 1992 Factorial 2538 13033#-1 5610 CD 1992 Primorial 2539 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 2540 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 2541 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 2542 U(25561) 5342 p54 2001 Fibonacci number 2543 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 2544 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 2545 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 2546 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 2547 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 2548 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 2549 11549#+1 4951 D 1986 Primorial 2550 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 2551 7911*2^15823-1 4768 K 1987 Woodall 2552 Phi(6685,-10) 4560 c8 2003 Unique, ECPP 2553 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 2554 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 2555 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 2556 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 2557 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 2558 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 2559 1477!+1 4042 D 1984 Factorial 2560 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 2561 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 2562 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 2563 12379*2^12379-1 3731 K 1984 Woodall 2564 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 2565 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 2566 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 2567 642*Bern(1802)/15720728189 3641 c8 2003 Irregular, ECPP 2568 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 2569 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 2570 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 2571 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 2572 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 2573 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 2574 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 2575 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 2576 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 2577 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 2578 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 2579 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 2580 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 2581 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 2582 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 2583 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 2584 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 2585 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 2586 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 2587 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 2588 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 2589 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2590 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2591 26997933312*7001#+7811555753 3020 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2592 25506692100*7001#+7811555783 3020 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2593 V(14449) 3020 DK 1995 Lucas number 2594 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 2595 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 2596 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 2597 2915000572*7001#+1 3019 p155 2012 Arithmetic progression (6,d=3093612*7001#) 2598 U(14431) 3016 p54 2001 Fibonacci number 2599 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 2600 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2601 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2602 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2603 V(13963) 2919 c11 2002 Lucas number, ECPP 2604 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 2605 9531*2^9531-1 2874 K 1984 Woodall 2606 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 2607 6569#-1 2811 D 1992 Primorial 2608 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 2609 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 2610 V(12251) 2561 p54 2001 Lucas number 2611 974!-1 2490 CD 1992 Factorial 2612 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 2613 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 2614 7755*2^7755-1 2339 K 1984 Woodall 2615 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 2616 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 2617 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 2618 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 2619 115624080541*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10462990078*5303#) 2620 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 2621 V(10691) 2235 DK 1995 Lucas number 2622 872!+1 2188 D 1983 Factorial 2623e -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 2624 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 2625 -E(886)/68689 2051 c4 2002 Euler irregular, ECPP 2626 4787#+1 2038 D 1984 Primorial 2627e 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 2628e 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 2629e 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 2630e 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 2631e 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 2632 U(9677) 2023 c2 2000 Fibonacci number, ECPP 2633f 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 2634f 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 2635f 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 2636f 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 2637f 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 2638 6611*2^6611+1 1994 K 1984 Cullen 2639 4583#-1 1953 D 1992 Primorial 2640 U(9311) 1946 DK 1995 Fibonacci number 2641 4547#+1 1939 D 1984 Primorial 2642 4297#-1 1844 D 1992 Primorial 2643 V(8467) 1770 c2 2000 Lucas number, ECPP 2644 4093#-1 1750 CD 1992 Primorial 2645 5795*2^5795+1 1749 K 1984 Cullen 2646 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 2647 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 2648 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 2649 V(7741) 1618 DK 1995 Lucas number 2650 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 2651 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 2652 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 2653 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 2654 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 2655 83*2^5318-1 1603 K 1984 Woodall 2656 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 2657 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 2658 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 2659 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 2660 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 2661 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 2662 163252711105*3371#/2+4 1443 c67 2014 Quintuplet (5) 2663 163252711105*3371#/2+2 1443 c67 2014 Quintuplet (4) 2664 163252711105*3371#/2-2 1443 c67 2014 Quintuplet (3) 2665 163252711105*3371#/2-4 1443 c67 2014 Quintuplet (2) 2666 163252711105*3371#/2-8 1443 c67 2014 Quintuplet (1) 2667 4713*2^4713+1 1423 K 1984 Cullen 2668 3229#+1 1368 D 1984 Primorial 2669 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 2670 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 2671 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 2672 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 2673 546!-1 1260 D 1992 Factorial 2674 V(5851) 1223 DK 1995 Lucas number 2675 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2676 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 2677 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 2678 U(5387) 1126 WM 1990 Fibonacci number 2679 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 2680 993530619517*2503#+1633050373 1073 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2681 495690450643*2503#+1633050403 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2682 150822742857*2503#+1633050373 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2683 94807777362*2503#+1633050373 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2684 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 2685 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 2686 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 2687 469!-1 1051 BC 1981 Factorial 2688 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 2689 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 2690 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 2691 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 2692 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 2693 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 2694 R(1031) 1031 WD 1985 Repunit 2695 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 2696 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 2697 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 2698 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 2699 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 2700 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 2701 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 2702 V(4793) 1002 DK 1995 Lucas number 2703d 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 2704d 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 2705d 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 2706d 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 2707d 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 2708 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): BC Penk, Crandall, Buhler C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Water, Broadhurst, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c35 Cami, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c65 Lygeros, Rozier, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Dubner, Underwood, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Lifchitz, Underwood, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Underwood, Water, Primo c77 Batalov, Primo c79 Batalov, Water, Broadhurst, Primo c80 Lygeros, Rozier, Anonymous, Primo c81 Underwood, Water, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c85 Lasher, Broadhurst, Primo c86 Polzer, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Underwood, Broadhurst, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c96 Reich2, Primo CD Dubner, Caldwell, Cruncher CH10 Batalov, Primo, OpenPFGW, CHG CH12 Propper, Batalov, Primo, OpenPFGW, CHG CH13 Propper, Batalov, Primo, OpenPFGW, CHG CH2 Wu_T, Primo, OpenPFGW, CHG CH3 Water, Broadhurst, Primo, OpenPFGW, CHG CH4 Irvine, Water, Broadhurst, Primo, OpenPFGW, CHG CH7 Broadhurst, OpenPFGW, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Keller, Dubner, Cruncher DS Smith_Darren, Proth.exe FE1 Morain, FastECPP FE8 Oakes, Morain, Water, Broadhurst, FastECPP FE9 Morain, Water, Broadhurst, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L167 Curtis, NewPGen, Rieselprime, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L282 Curtis, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L669 Harvey, Srsieve, PrimeGrid, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1958 DUrso, Srsieve, NewPGen, OpenPFGW, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2511 Johnson6, TwinGen, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3121 Kwok, NewPGen, TPS, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3765 Ruch, TwinGen, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3913 Kadohara, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 SRBase, Srsieve, CRUS, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p54 Water, Broadhurst, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Underwood, Frind, OpenPFGW p115 DavisK, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p169 Eaton, NewPGen, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p269 Zhou, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p282 Rajala, NewPGen, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Gage, Slowinski WD Dubner, Williams, Cruncher WM Williams, Morain x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Water, Broadhurst x23 Renze, Water, Broadhurst, Primo, OpenPFGW x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Water, Broadhurst, Primo, OpenPFGW x28 Iskra x33 Carmody, Renze, Water, Broadhurst, Primo, OpenPFGW x36 Irvine, Carmody, Renze, Water, Broadhurst, Primo, OpenPFGW x38 Broadhurst, Primo, OpenPFGW x39 Keller, Dubner, Broadhurst, Primo, OpenPFGW x44 Zhou, Unknown x45 Batalov, Primo, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown Y Young