THE LARGEST KNOWN PRIMES (Primes with 800,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Tue Feb 7 02:52:00 AM CST 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13f 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 14 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 15 202705*2^21320516+1 6418121 L5181 2021 16 2^20996011-1 6320430 G6 2003 Mersenne 40 17 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 18 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 19 7*2^20267500+1 6101127 L4965 2022 20 168451*2^19375200+1 5832522 L4676 2017 21 69*2^19374980-1 5832452 L4965 2022 22 3*2^18924988-1 5696990 L5530 2022 23 69*2^18831865-1 5668959 L4965 2021 24 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 25 3*2^18196595-1 5477722 L5461 2022 26 3*2^17748034-1 5342692 L5404 2021 27 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 28 3622*5^7558139-1 5282917 L4965 2022 29 7*6^6772401+1 5269954 L4965 2019 30b 2*3^10852677+1 5178044 L4965 2023 Divides phi 31 8508301*2^17016603-1 5122515 L4784 2018 Woodall 32 3*2^16819291-1 5063112 L5230 2021 33 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 34 69*2^15866556-1 4776312 L4965 2021 35 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 36b 11*2^15502315+1 4666663 L4965 2023 37d 37*2^15474010+1 4658143 L4965 2022 38d 93839*2^15337656-1 4617100 L4965 2022 39 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 40 6*5^6546983+1 4576146 L4965 2020 41 69*2^14977631-1 4508719 L4965 2021 42 192971*2^14773498-1 4447272 L4965 2021 43 4*5^6181673-1 4320805 L4965 2022 44 6962*31^2863120-1 4269952 L5410 2020 45 37*2^14166940+1 4264676 L4965 2022 46 99739*2^14019102+1 4220176 L5008 2019 47 69*2^13832885-1 4164116 L4965 2022 48 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 49f 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 50e 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 51 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 52 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 53 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 54e 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 55 2^13466917-1 4053946 G5 2001 Mersenne 39 56 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 57 206039*2^13104952-1 3944989 L4965 2021 58 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 59 19249*2^13018586+1 3918990 SB10 2007 60 2293*2^12918431-1 3888839 L4965 2021 61f 81*2^12804541+1 3854553 L4965 2022 62 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 63 69*2^12231580-1 3682075 L4965 2021 64 27*2^12184319+1 3667847 L4965 2021 65 3761*2^11978874-1 3606004 L4965 2022 66 3*2^11895718-1 3580969 L4159 2015 67 37*2^11855148+1 3568757 L4965 2022 68c 5897794^524288+1 3549792 x50 2022 Generalized Fermat 69 3*2^11731850-1 3531640 L4103 2015 70 69*2^11718455-1 3527609 L4965 2020 71 41*2^11676439+1 3514960 L4965 2022 72 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 73 81*2^11616017+1 3496772 L4965 2022 74 69*2^11604348-1 3493259 L4965 2020 75 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 76 3*2^11484018-1 3457035 L3993 2014 77 193997*2^11452891+1 3447670 L4398 2018 78 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 79 9221*2^11392194-1 3429397 L5267 2021 80 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 81 5*2^11355764-1 3418427 L4965 2021 82 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 83 146561*2^11280802-1 3395865 L5181 2020 84 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 85 6929*2^11255424-1 3388225 L4965 2022 86 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 87 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 88 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 89 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 90 9271*2^11134335-1 3351773 L4965 2021 91 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 92 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 93 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 94 27*2^10902757-1 3282059 L4965 2022 95 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 96 11*2^10803449+1 3252164 L4965 2022 97 11*2^10797109+1 3250255 L4965 2022 98 7*2^10612737-1 3194754 L4965 2022 99 37*2^10599476+1 3190762 L4965 2022 100 5*2^10495620-1 3159498 L4965 2021 101 5*2^10349000-1 3115361 L4965 2021 102 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 103 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 104 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 105 475856^524288+1 2976633 L3230 2012 Generalized Fermat 106c 2*3^6236772+1 2975697 L4965 2022 107 9*2^9778263+1 2943552 L4965 2020 108 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 109 356926^524288+1 2911151 L3209 2012 Generalized Fermat 110 341112^524288+1 2900832 L3184 2012 Generalized Fermat 111d 213988*5^4138363-1 2892597 L5621 2022 112 43*2^9596983-1 2888982 L4965 2022 113 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 114 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 115f 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 116 27653*2^9167433+1 2759677 SB8 2005 117 90527*2^9162167+1 2758093 L1460 2010 118 6795*2^9144320-1 2752719 L4965 2021 119 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 120 57*2^9075622-1 2732037 L4965 2022 121 63838*5^3887851-1 2717497 L5558 2022 122 13*2^8989858+1 2706219 L4965 2020 123 4159*2^8938471-1 2690752 L4965 2022 124 273809*2^8932416-1 2688931 L1056 2017 125 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 126 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 127 2038*366^1028507-1 2636562 L2054 2016 128 64598*5^3769854-1 2635020 L5427 2022 129 8*785^900325+1 2606325 L4786 2022 130 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 131 75898^524288+1 2558647 p334 2011 Generalized Fermat 132 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 133 39*2^8413422+1 2532694 L5232 2021 134 31*2^8348000+1 2513000 L5229 2021 135 27*2^8342438-1 2511326 L3483 2021 136 3687*2^8261084-1 2486838 L4965 2021 137 273662*5^3493296-1 2441715 L5444 2021 138f 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 139 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 140 102818*5^3440382-1 2404729 L5427 2021 141 11*2^7971110-1 2399545 L2484 2019 142 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 143 3177*2^7954621-1 2394584 L4965 2021 144 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 145 7*6^3072198+1 2390636 L4965 2019 146 3765*2^7904593-1 2379524 L4965 2021 147 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 148d 5113*2^7895471-1 2376778 L4965 2022 149 861*2^7895451-1 2376771 L4965 2021 150 28433*2^7830457+1 2357207 SB7 2004 151 2589*2^7803339-1 2349043 L4965 2022 152 5*2^7755002-1 2334489 L4965 2021 153d 2945*2^7753232-1 2333959 L4965 2022 154 2545*2^7732265-1 2327648 L4965 2021 155 5539*2^7730709-1 2327180 L4965 2021 156 4817*2^7719584-1 2323831 L4965 2021 157 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 158 9467*2^7680034-1 2311925 L4965 2022 159 45*2^7661004+1 2306194 L5200 2020 160 15*2^7619838+1 2293801 L5192 2020 161 3597*2^7580693-1 2282020 L4965 2021 162 7401*2^7523295-1 2264742 L4965 2021 163 45*2^7513661+1 2261839 L5179 2020 164 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 165 1875*2^7474308-1 2249995 L4965 2022 166 4*5^3189669-1 2229484 L4965 2022 167 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 168d 3197*2^7359542-1 2215447 L4965 2022 169 109838*5^3168862-1 2214945 L5129 2020 170 101*2^7345194-1 2211126 L1884 2019 171 15*2^7300254+1 2197597 L5167 2020 172 422429!+1 2193027 p425 2022 Factorial 173 1759*2^7284439-1 2192838 L4965 2021 174 737*2^7269322-1 2188287 L4665 2017 175 118568*5^3112069+1 2175248 L690 2020 176 6039*2^7207973-1 2169820 L4965 2021 177 502573*2^7181987-1 2162000 L3964 2014 178 402539*2^7173024-1 2159301 L3961 2014 179 3343*2^7166019-1 2157191 L1884 2016 180 161041*2^7107964+1 2139716 L4034 2015 181 27*2^7046834+1 2121310 L3483 2018 182 1759*2^7046791-1 2121299 L4965 2021 183 327*2^7044001-1 2120459 L4965 2021 184 5*2^7037188-1 2118406 L4965 2021 185 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 186 33661*2^7031232+1 2116617 SB11 2007 187 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 188 207494*5^3017502-1 2109149 L5083 2020 189 15*2^6993631-1 2105294 L4965 2021 190 8943501*2^6972593-1 2098967 L466 2022 191f 6020095*2^6972593-1 2098967 L466 2022 192 2^6972593-1 2098960 G4 1999 Mersenne 38 193d 273*2^6963847-1 2096330 L4965 2022 194 6219*2^6958945-1 2094855 L4965 2021 195 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 196 238694*5^2979422-1 2082532 L5081 2020 197 4*72^1119849-1 2079933 L4444 2016 198 33*2^6894190-1 2075360 L4965 2021 199 2345*2^6882320-1 2071789 L4965 2022 200 146264*5^2953282-1 2064261 L1056 2020 201 69*2^6838971-1 2058738 L5037 2020 202 35816*5^2945294-1 2058677 L5076 2020 203 127*2^6836153-1 2057890 L1862 2018 204 19*2^6833086+1 2056966 L5166 2020 205 40597*2^6808509-1 2049571 L3749 2013 206 283*2^6804731-1 2048431 L2484 2020 207 1861709*2^6789999+1 2044000 L5191 2020 208 5781*2^6789459-1 2043835 L4965 2021 209 8435*2^6786180-1 2042848 L4965 2021 210 51*2^6753404+1 2032979 L4965 2020 211 9995*2^6711008-1 2020219 L4965 2020 212 39*2^6684941+1 2012370 L5162 2020 213 6679881*2^6679881+1 2010852 L917 2009 Cullen 214 37*2^6660841-1 2005115 L3933 2014 215 39*2^6648997+1 2001550 L5161 2020 216 304207*2^6643565-1 1999918 L3547 2013 217 69*2^6639971-1 1998833 L5037 2020 218 6471*2^6631137-1 1996175 L4965 2021 219 1319*2^6506224-1 1958572 L4965 2021 220 322498*5^2800819-1 1957694 L4954 2019 221 88444*5^2799269-1 1956611 L3523 2019 222 13*2^6481780+1 1951212 L4965 2020 223 21*2^6468257-1 1947141 L4965 2021 224 138514*5^2771922+1 1937496 L4937 2019 225 33*2^6432160-1 1936275 L4965 2022 226 15*2^6429089-1 1935350 L4965 2021 227 398023*2^6418059-1 1932034 L3659 2013 228 631*2^6359347-1 1914357 L4965 2021 229e 4965*2^6356707-1 1913564 L4965 2022 230 1995*2^6333396-1 1906546 L4965 2021 231 1582137*2^6328550+1 1905090 L801 2009 Cullen 232c 18395930^262144+1 1904404 x50 2022 Generalized Fermat 233c 17191822^262144+1 1896697 x50 2022 Generalized Fermat 234d 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 235f 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 236 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 237 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 238 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 239 3303*2^6264946-1 1885941 L4965 2021 240 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 241 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 242 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 243 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 244 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 245 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 246 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 247 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 248 7*6^2396573+1 1864898 L4965 2019 249 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 250 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 251 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 252 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 253 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 254 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 255 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 256 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 257 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 258 194368*5^2638045-1 1843920 L690 2018 259 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 260 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 261 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 262 66916*5^2628609-1 1837324 L690 2018 263 3*2^6090515-1 1833429 L1353 2010 264 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 265 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 266 8349*2^6082397-1 1830988 L4965 2021 267 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 268 32*470^683151+1 1825448 L4064 2021 269 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 270 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 271 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 272 9999*2^6037057-1 1817340 L4965 2021 273 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 274 33*2^6019138-1 1811943 L4965 2022 275 1583*2^5989282-1 1802957 L4036 2015 276 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 277 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 278 327926*5^2542838-1 1777374 L4807 2018 279 81556*5^2539960+1 1775361 L4809 2018 280 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 281 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 282 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 283 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 284 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 285 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 286 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 287 7*2^5775996+1 1738749 L3325 2012 288 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 289 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 290 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 291 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 292 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 293 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 294 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 295 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 296 1243*2^5686715-1 1711875 L1828 2016 297 25*2^5658915-1 1703505 L1884 2021 298 41*2^5651731+1 1701343 L1204 2020 299 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 300 9*2^5642513+1 1698567 L3432 2013 301 10*3^3550446+1 1693995 L4965 2020 302 2622*11^1621920-1 1689060 L2054 2015 303 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 304 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 305 301562*5^2408646-1 1683577 L4675 2017 306 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 307 171362*5^2400996-1 1678230 L4669 2017 308 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 309 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 310 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 311 252191*2^5497878-1 1655032 L3183 2012 312 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 313 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 314 258317*2^5450519+1 1640776 g414 2008 315 7*6^2104746+1 1637812 L4965 2019 316 5*2^5429494-1 1634442 L3345 2017 317 43*2^5408183-1 1628027 L1884 2018 318 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 319 2*296598^296598-1 1623035 L4965 2022 320 1349*2^5385004-1 1621051 L1828 2017 321 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 322 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 323 45*2^5308037+1 1597881 L4761 2019 324d 5468*70^864479-1 1595053 L5410 2022 325 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 326 7*2^5229669-1 1574289 L4965 2021 327 180062*5^2249192-1 1572123 L4435 2016 328 124125*6^2018254+1 1570512 L4001 2019 329 27*2^5213635+1 1569462 L3760 2015 330 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 331 308084!+1 1557176 p425 2022 Factorial 332 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 333 25*2^5152151-1 1550954 L1884 2020 334 53546*5^2216664-1 1549387 L4398 2016 335 773620^262144+1 1543643 L3118 2012 Generalized Fermat 336 39*2^5119458+1 1541113 L1204 2019 337 607*26^1089034+1 1540957 L5410 2021 338 81*2^5115131+1 1539810 L4965 2022 339 223*2^5105835-1 1537012 L2484 2019 340 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 341 81*2^5100331+1 1535355 L4965 2022 342 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 343 51*2^5085142-1 1530782 L760 2014 344 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 345 676754^262144+1 1528413 L2975 2012 Generalized Fermat 346 296024*5^2185270-1 1527444 L671 2016 347 5359*2^5054502+1 1521561 SB6 2003 348 13*2^4998362+1 1504659 L3917 2014 349 525094^262144+1 1499526 p338 2012 Generalized Fermat 350 92158*5^2145024+1 1499313 L4348 2016 351 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 352 77072*5^2139921+1 1495746 L4340 2016 353 2*3^3123036+1 1490068 L5043 2020 354 519397*2^4908893-1 1477730 L5410 2022 355 306398*5^2112410-1 1476517 L4274 2016 356 265711*2^4858008+1 1462412 g414 2008 357 154222*5^2091432+1 1461854 L3523 2015 358 1271*2^4850526-1 1460157 L1828 2012 359 333*2^4846958-1 1459083 L5546 2022 360 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 361 361658^262144+1 1457075 p332 2011 Generalized Fermat 362 100186*5^2079747-1 1453686 L4197 2015 363 288465!+1 1449771 p3 2022 Factorial 364 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 365 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 366 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 367 653*10^1435026-1 1435029 p355 2014 368 197*2^4765318-1 1434506 L5175 2021 369b 1401*2^4759435-1 1432736 L4965 2023 370b 2169*2^4754343-1 1431204 L4965 2023 371 188*468^535963+1 1431156 L4832 2019 372c 1809*2^4752792-1 1430737 L4965 2022 373c 2427*2^4749044-1 1429609 L4965 2022 374c 2259*2^4746735-1 1428913 L4965 2022 375c 2223*2^4729304-1 1423666 L4965 2022 376c 1851*2^4727663-1 1423172 L4965 2022 377c 1725*2^4727375-1 1423085 L4965 2022 378c 1611*2^4724014-1 1422074 L4965 2022 379c 1383*2^4719270-1 1420645 L4965 2022 380c 1749*2^4717431-1 1420092 L4965 2022 381c 2325*2^4713991-1 1419057 L4965 2022 382 3267113#-1 1418398 p301 2021 Primorial 383 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 384c 2337*2^4705660-1 1416549 L4965 2022 385 1229*2^4703492-1 1415896 L1828 2018 386 144052*5^2018290+1 1410730 L4146 2015 387 195*2^4685711-1 1410542 L5175 2021 388 9*2^4683555-1 1409892 L1828 2012 389 31*2^4673544+1 1406879 L4990 2019 390 34*993^469245+1 1406305 L4806 2018 391 79*2^4658115-1 1402235 L1884 2018 392 39*2^4657951+1 1402185 L1823 2019 393 4*650^498101-1 1401116 L4294 2021 394 11*2^4643238-1 1397755 L2484 2014 395 68*995^465908-1 1396712 L4001 2017 396 7*6^1793775+1 1395830 L4965 2019 397 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 398 27*2^4583717-1 1379838 L2992 2014 399 121*2^4553899-1 1370863 L3023 2012 400 9473*2^4543680-1 1367788 L5037 2022 401 27*2^4542344-1 1367384 L1204 2014 402 29*2^4532463+1 1364409 L4988 2019 403 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 404 145310^262144+1 1353265 p314 2011 Generalized Fermat 405 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 406c 303*2^4471002-1 1345909 L5545 2022 407 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 408 36772*6^1723287-1 1340983 L1301 2014 409 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 410 151*2^4424321-1 1331856 L1884 2016 411 195*2^4373994-1 1316706 L5175 2020 412 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 413 49*2^4365175-1 1314051 L1959 2017 414 49*2^4360869-1 1312755 L1959 2017 415 13*2^4333087-1 1304391 L1862 2018 416 353159*2^4331116-1 1303802 L2408 2011 417 9959*2^4308760-1 1297071 L5037 2022 418 23*2^4300741+1 1294654 L4147 2019 419 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 420 141941*2^4299438-1 1294265 L689 2011 421 612749*2^4254500-1 1280738 L5410 2022 422 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 423 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 424 3*2^4235414-1 1274988 L606 2008 425 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 426 45*436^481613+1 1271213 L5410 2020 427 109208*5^1816285+1 1269534 L3523 2014 428 1091*2^4215518-1 1269001 L1828 2018 429 191*2^4203426-1 1265360 L2484 2012 430 1259*2^4196028-1 1263134 L1828 2016 431 325918*5^1803339-1 1260486 L3567 2014 432 133778*5^1785689+1 1248149 L3903 2014 433 81*2^4131975+1 1243851 L4965 2022 434 17*2^4107544-1 1236496 L4113 2015 435 24032*5^1768249+1 1235958 L3925 2014 436 172*159^561319-1 1235689 L4001 2017 437 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 438 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 439 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 440 64*425^467857-1 1229712 p268 2021 441 97*2^4066717-1 1224206 L2484 2019 442 1031*2^4054974-1 1220672 L1828 2017 443e 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 444 37*2^4046360+1 1218078 L2086 2019 445 39653*430^460397-1 1212446 L4187 2016 446e 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 447 40734^262144+1 1208473 p309 2011 Generalized Fermat 448 9*2^4005979-1 1205921 L1828 2012 449 12*68^656921+1 1203815 L4001 2016 450 67*688^423893+1 1202836 L4001 2017 451 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 452 (146^276995+1)^2-2 1199030 p405 2022 453 138172*5^1714207-1 1198185 L3904 2014 454 50*383^463313+1 1196832 L2012 2021 455 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 456 29*2^3964697+1 1193495 L1204 2019 457 39*2^3961129+1 1192421 L1486 2019 458 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 459f 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 460c P1174253 1174253 p414 2022 461a 417*2^3895404+1 1172637 L5600 2023 462a 539*2^3894953+1 1172501 L5285 2023 463a 645*2^3893849+1 1172169 L5600 2023 464 22478*5^1675150-1 1170884 L3903 2014 465 1199*2^3889576-1 1170883 L1828 2018 466 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 467 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 468a 711*2^3886480+1 1169950 L5320 2023 469b 375*2^3884634+1 1169394 L5600 2023 470 94*872^397354+1 1168428 L5410 2019 471b 269*2^3877485+1 1167242 L5649 2023 472b 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 473b 313*2^3869536+1 1164849 L5600 2023 474b 159*2^3860863+1 1162238 L5226 2023 475b 445*2^3860780+1 1162214 L5640 2023 476b 397*2^3859450+1 1161813 L5226 2023 477b 685*2^3856790+1 1161013 L5226 2023 478 27*2^3855094-1 1160501 L3033 2012 479c 537*2^3853860+1 1160131 L5636 2022 480 164*978^387920-1 1160015 L4700 2018 481c 175*2^3850344+1 1159072 L5226 2022 482c 685*2^3847268+1 1158146 L5226 2022 483c 655*2^3846352+1 1157871 L5282 2022 484c 583*2^3846196+1 1157824 L5226 2022 485c 615*2^3844151+1 1157208 L5226 2022 486d 14772*241^485468-1 1156398 L5410 2022 487c 525*2^3840963+1 1156248 L5613 2022 488c 313*2^3837304+1 1155147 L5298 2022 489 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 490c 431*2^3835247+1 1154528 L5161 2022 491c 97*2^3833722+1 1154068 L5226 2022 492 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 493 125*392^444161+1 1151839 L4832 2022 494d 255*2^3824348+1 1151246 L5226 2022 495 30*514^424652-1 1151218 L4001 2017 496d 569*2^3823191+1 1150898 L5226 2022 497 24518^262144+1 1150678 g413 2008 Generalized Fermat 498d 563*2^3819237+1 1149708 L5178 2022 499d 345*2^3817949+1 1149320 L5373 2022 500 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 501 241*2^3815727-1 1148651 L2484 2019 502d 351*2^3815467+1 1148573 L5226 2022 503 109*980^383669-1 1147643 L4001 2018 504d 427*2^3811610+1 1147412 L5614 2022 505d 569*2^3810475+1 1147071 L5610 2022 506e 213*2^3807864+1 1146284 L5609 2022 507e 87*2^3806438+1 1145854 L5607 2022 508e 369*2^3805321+1 1145519 L5541 2022 509 123547*2^3804809-1 1145367 L2371 2011 510 2564*75^610753+1 1145203 L3610 2014 511e 539*2^3801705+1 1144430 L5161 2022 512e 159*2^3801463+1 1144357 L5197 2022 513e 235*2^3801284+1 1144303 L5608 2022 514 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 515e 519*2^3800625+1 1144105 L5315 2022 516e 281*2^3798465+1 1143455 L5178 2022 517 166*443^432000+1 1143249 L5410 2020 518e 85*2^3797698+1 1143223 L5161 2022 519 326834*5^1634978-1 1142807 L3523 2014 520e 459*2^3795969+1 1142704 L5161 2022 521f 447*2^3780151+1 1137942 L5596 2022 522f 345*2^3779921+1 1137873 L5557 2022 523f 477*2^3779871+1 1137858 L5197 2022 524f 251*2^3774587+1 1136267 L5592 2022 525f 439*2^3773958+1 1136078 L5557 2022 526 43*182^502611-1 1135939 L4064 2020 527 415267*2^3771929-1 1135470 L2373 2011 528 11*2^3771821+1 1135433 p286 2013 529f 427*2^3768104+1 1134315 L5192 2022 530 1455*2^3768024-1 1134292 L1134 2022 531f 711*2^3767492+1 1134131 L5161 2022 532 265*2^3765189-1 1133438 L2484 2018 533f 297*2^3765140+1 1133423 L5197 2022 534f 381*2^3764189+1 1133137 L5589 2022 535f 115*2^3763650+1 1132974 L5554 2022 536f 411*2^3759067+1 1131595 L5589 2022 537f 405*2^3757192+1 1131031 L5590 2022 538 938237*2^3752950-1 1129757 L521 2007 Woodall 539 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 540 701*2^3744713+1 1127274 L5554 2022 541 207394*5^1612573-1 1127146 L3869 2014 542 684*10^1127118+1 1127121 L4036 2017 543 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 544 104944*5^1610735-1 1125861 L3849 2014 545 23451*2^3739388+1 1125673 L591 2015 546 615*2^3738023+1 1125260 L5161 2022 547 347*2^3737875+1 1125216 L5178 2022 548 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 549 375*2^3733510+1 1123902 L5584 2022 550 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 551 629*2^3731479+1 1123290 L5283 2022 552 113*2^3728113+1 1122276 L5161 2022 553 303*2^3725438+1 1121472 L5161 2022 554 187*2^3723972+1 1121030 L5178 2022 555 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 556 105*2^3720512+1 1119988 L5493 2022 557 447*2^3719024+1 1119541 L5493 2022 558 177*2^3717746+1 1119156 L5279 2022 559 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 560 123*2^3716758+1 1118858 L5563 2022 561 313*2^3716716+1 1118846 L5237 2022 562 367*2^3712952+1 1117713 L5264 2022 563 53*2^3709297+1 1116612 L5197 2022 564 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 565 395*2^3701693+1 1114324 L5536 2022 566 589*2^3699954+1 1113800 L5576 2022 567 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 568 119*2^3698412-1 1113336 L2484 2018 569 391*2^3693728+1 1111926 L5493 2022 570 485*2^3688111+1 1110235 L5237 2022 571 341*2^3686613+1 1109784 L5573 2022 572 87*2^3686558+1 1109767 L5573 2022 573 675*2^3682616+1 1108581 L5231 2022 574 569*2^3682167+1 1108446 L5488 2022 575 330286*5^1584399-1 1107453 L3523 2014 576 34*951^371834-1 1107391 L5410 2019 577 45*2^3677787+1 1107126 L1204 2019 578 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 579 13*2^3675223-1 1106354 L1862 2016 580 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 581 463*2^3671262+1 1105163 L5524 2022 582 735*2^3670991+1 1105082 L5575 2022 583 475*2^3670046+1 1104797 L5524 2022 584 15*2^3668194-1 1104238 L3665 2013 585 273*2^3665736+1 1103499 L5192 2022 586 13*2^3664703-1 1103187 L1862 2016 587 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 588 609*2^3662931+1 1102655 L5573 2022 589 118*892^373012+1 1100524 L5071 2020 590 33300*430^417849-1 1100397 L4393 2016 591 655*2^3653008+1 1099668 L5574 2022 592e 291*268^452750-1 1099341 L5410 2022 593 33*2^3649810+1 1098704 L4958 2019 594 295*2^3642206+1 1096416 L5161 2022 595 989*2^3640585+1 1095929 L5115 2020 596 567*2^3639287+1 1095538 L4959 2019 597 639*2^3635707+1 1094460 L1823 2019 598 753*2^3631472+1 1093185 L1823 2019 599 2*205731^205731-1 1093111 L4965 2022 600 65531*2^3629342-1 1092546 L2269 2011 601 1121*2^3629201+1 1092502 L4761 2019 602 215*2^3628962-1 1092429 L2484 2018 603 113*2^3628034-1 1092150 L2484 2014 604 1175*2^3627541+1 1092002 L4840 2019 605 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 606 951*2^3623185+1 1090691 L1823 2019 607 29*920^367810-1 1090113 L4064 2015 608 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 609 485*2^3618563+1 1089299 L3924 2019 610 95*2^3614033+1 1087935 L1474 2019 611 1005*2^3612300+1 1087414 L1823 2019 612 861*2^3611815+1 1087268 L1745 2019 613 1087*2^3611476+1 1087166 L4834 2019 614 485767*2^3609357-1 1086531 L622 2008 615 675*2^3606447+1 1085652 L3278 2019 616 669*2^3606266+1 1085598 L1675 2019 617 65077*2^3605944+1 1085503 L4685 2020 618 1365*2^3605491+1 1085365 L1134 2022 619 851*2^3604395+1 1085034 L2125 2019 620 1143*2^3602429+1 1084443 L4754 2019 621 1183*2^3601898+1 1084283 L1823 2019 622 189*2^3596375+1 1082620 L3760 2016 623 1089*2^3593267+1 1081685 L3035 2019 624 19581121*2^3589357-1 1080512 p49 2022 625 1101*2^3589103+1 1080431 L1823 2019 626 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 627 275*2^3585539+1 1079358 L3803 2016 628 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 629 651*2^3579843+1 1077643 L3035 2018 630 583*2^3578402+1 1077210 L3035 2018 631 309*2^3577339+1 1076889 L4406 2016 632 1185*2^3574583+1 1076060 L4851 2018 633 251*2^3574535+1 1076045 L3035 2016 634 1485*2^3574333+1 1075985 L1134 2022 635 1019*2^3571635+1 1075173 L1823 2018 636 119*2^3571416-1 1075106 L2484 2018 637 35*2^3570777+1 1074913 L2891 2014 638 33*2^3570132+1 1074719 L2552 2014 639 5*2^3569154-1 1074424 L503 2009 640 81*492^399095-1 1074352 L4001 2015 641 22934*5^1536762-1 1074155 L3789 2014 642 265*2^3564373-1 1072986 L2484 2018 643 771*2^3564109+1 1072907 L2125 2018 644 381*2^3563676+1 1072776 L4190 2016 645 555*2^3563328+1 1072672 L4850 2018 646 1183*2^3560584+1 1071846 L1823 2018 647 415*2^3559614+1 1071554 L3035 2016 648c 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 649 1103*2^3558176-1 1071121 L1828 2018 650 1379*2^3557072-1 1070789 L1828 2018 651 681*2^3553141+1 1069605 L3035 2018 652 599*2^3551793+1 1069200 L3824 2018 653 621*2^3551472+1 1069103 L4687 2018 654 773*2^3550373+1 1068772 L1808 2018 655a 142195844^131072+1 1068616 L5548 2023 656a 141636602^131072+1 1068391 L5639 2023 657a 141554190^131072+1 1068358 L4956 2023 658 1199*2^3548380-1 1068172 L1828 2018 659a 140928044^131072+1 1068106 L4870 2023 660 191*2^3548117+1 1068092 L4203 2015 661a 140859866^131072+1 1068078 L5011 2023 662a 140824516^131072+1 1068064 L4760 2023 663a 140649396^131072+1 1067993 L5578 2023 664 867*2^3547711+1 1067971 L4155 2018 665a 140473436^131072+1 1067922 L4210 2023 666a 140237690^131072+1 1067826 L5051 2023 667a 139941370^131072+1 1067706 L5671 2023 668 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 669a 139352402^131072+1 1067466 L5663 2023 670 351*2^3545752+1 1067381 L4082 2016 671a 138896860^131072+1 1067279 L4745 2023 672a 138894074^131072+1 1067278 L5041 2023 673a 138830036^131072+1 1067252 L5662 2023 674a 138626864^131072+1 1067169 L5663 2023 675a 138527284^131072+1 1067128 L5663 2023 676 93*2^3544744+1 1067077 L1728 2014 677b 138000006^131072+1 1066911 L5051 2023 678b 137900696^131072+1 1066870 L4249 2023 679b 137878102^131072+1 1066860 L5051 2023 680 1159*2^3543702+1 1066764 L1823 2018 681b 137521726^131072+1 1066713 L4672 2023 682b 137486564^131072+1 1066699 L5586 2023 683b 136227118^131072+1 1066175 L5416 2023 684b 136192168^131072+1 1066160 L5556 2023 685b 136124076^131072+1 1066132 L5041 2023 686b 136122686^131072+1 1066131 L5375 2023 687 178658*5^1525224-1 1066092 L3789 2014 688b 135744154^131072+1 1065973 L5068 2023 689b 135695350^131072+1 1065952 L4249 2023 690b 135623220^131072+1 1065922 L5657 2023 691b 135513092^131072+1 1065876 L5656 2023 692b 135497678^131072+1 1065869 L4387 2023 693b 135458028^131072+1 1065852 L5051 2023 694b 135332960^131072+1 1065800 L5655 2023 695b 135135930^131072+1 1065717 L4387 2023 696 1085*2^3539671+1 1065551 L3035 2018 697b 134706086^131072+1 1065536 L5378 2023 698b 134459616^131072+1 1065431 L5658 2023 699b 134447516^131072+1 1065426 L4387 2023 700b 134322272^131072+1 1065373 L4387 2023 701b 134206304^131072+1 1065324 L4684 2023 702b 134176868^131072+1 1065311 L5375 2023 703b 133954018^131072+1 1065217 L5088 2023 704b 133676500^131072+1 1065099 L4387 2023 705b 133569020^131072+1 1065053 L5277 2023 706b 133345154^131072+1 1064958 L4210 2023 707b 133180238^131072+1 1064887 L5586 2023 708b 133096042^131072+1 1064851 L4755 2023 709 465*2^3536871+1 1064707 L4459 2016 710 1019*2^3536312-1 1064539 L1828 2012 711b 131820886^131072+1 1064303 L5069 2023 712b 131412078^131072+1 1064126 L5653 2023 713b 131370186^131072+1 1064108 L5036 2023 714b 131309874^131072+1 1064082 L5069 2023 715b 131112524^131072+1 1063996 L4245 2023 716 1179*2^3534450+1 1063979 L3035 2018 717b 130907540^131072+1 1063907 L4526 2023 718b 130593462^131072+1 1063771 L4559 2023 719 447*2^3533656+1 1063740 L4457 2016 720b 130518578^131072+1 1063738 L5029 2023 721 1059*2^3533550+1 1063708 L1823 2018 722b 130198372^131072+1 1063598 L5416 2023 723b 130148002^131072+1 1063576 L4387 2023 724b 130128232^131072+1 1063567 L5029 2023 725b 130051980^131072+1 1063534 L5416 2023 726b 130048816^131072+1 1063533 L4245 2023 727 345*2^3532957+1 1063529 L4314 2016 728 553*2^3532758+1 1063469 L1823 2018 729b 129292212^131072+1 1063201 L4285 2023 730b 129159632^131072+1 1063142 L5051 2023 731b 128558886^131072+1 1062877 L5518 2023 732b 128520182^131072+1 1062860 L4745 2023 733 543131*2^3529754-1 1062568 L4925 2022 734b 127720948^131072+1 1062504 L5378 2023 735 141*2^3529287+1 1062424 L4185 2015 736b 127093036^131072+1 1062224 L4591 2023 737b 126611934^131072+1 1062008 L4776 2023 738b 126423276^131072+1 1061923 L4201 2023 739b 126334514^131072+1 1061883 L4249 2023 740 13*2^3527315-1 1061829 L1862 2016 741b 126199098^131072+1 1061822 L4591 2023 742b 126189358^131072+1 1061818 L4704 2023 743b 125966884^131072+1 1061717 L4747 2023 744b 125714084^131072+1 1061603 L4745 2023 745b 125141096^131072+1 1061343 L4559 2023 746 1393*2^3525571-1 1061306 L1828 2017 747b 125006494^131072+1 1061282 L5639 2023 748b 124877454^131072+1 1061223 L4245 2023 749b 124875502^131072+1 1061222 L4591 2023 750b 124749274^131072+1 1061164 L4591 2023 751b 124586054^131072+1 1061090 L4249 2023 752b 124582356^131072+1 1061088 L5606 2023 753b 124543852^131072+1 1061071 L4249 2023 754b 124393514^131072+1 1061002 L4774 2023 755b 124219534^131072+1 1060922 L4249 2023 756b 124133348^131072+1 1060883 L5088 2023 757b 124080788^131072+1 1060859 L5639 2023 758 1071*2^3523944+1 1060816 L1675 2018 759b 123910270^131072+1 1060780 L4249 2023 760b 123856592^131072+1 1060756 L4201 2023 761c 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 762b 123306230^131072+1 1060502 L5638 2023 763c 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 764c 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 765c 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 766c 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 767c 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 768c 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 769c 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 770c 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 771c 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 772 329*2^3518451+1 1059162 L1823 2016 773 135*2^3518338+1 1059128 L4045 2015 774c 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 775 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 776c 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 777 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 778c 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 779c 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 780c 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 781d 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 782d 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 783d 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 784 599*2^3515959+1 1058412 L1823 2018 785d 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 786d 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 787d 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 788d 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 789d 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 790d 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 791d 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 792d 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 793d 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 794d 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 795e 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 796 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 797e 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 798e 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 799e 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 800e 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 801 1135*2^3510890+1 1056887 L1823 2018 802e 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 803f 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 804f 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 805f 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 806f 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 807f 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 808 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 809 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 810 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 811 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 812 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 813 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 814 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 815 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 816 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 817 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 818 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 819 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 820 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 821 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 822 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 823 428639*2^3506452-1 1055553 L2046 2011 824 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 825 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 826 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 827 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 828 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 829 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 830 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 831 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 832 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 833 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 834 104*383^408249+1 1054591 L2012 2021 835 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 836 555*2^3502765+1 1054441 L1823 2018 837 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 838 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 839 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 840 643*2^3501974+1 1054203 L1823 2018 841 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 842 1159*2^3501490+1 1054057 L2125 2018 843 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 844 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 845 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 846 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 847 1189*2^3499042+1 1053320 L4724 2018 848 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 849 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 850 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 851 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 852 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 853 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 854 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 855 609*2^3497474+1 1052848 L1823 2018 856 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 857 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 858 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 859 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 860 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 861 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 862 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 863 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 864 87*2^3496188+1 1052460 L1576 2014 865 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 866 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 867 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 868 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 869 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 870 783*2^3494129+1 1051841 L3824 2018 871 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 872 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 873 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 874 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 875 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 876 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 877 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 878 51*2^3490971+1 1050889 L1823 2014 879 1485*2^3490746+1 1050823 L1134 2021 880 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 881 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 882 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 883 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 884 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 885 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 886 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 887 753*2^3488818+1 1050242 L1823 2018 888 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 889 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 890 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 891 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 892 699*2^3487253+1 1049771 L1204 2018 893 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 894 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 895 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 896 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 897 249*2^3486411+1 1049517 L4045 2015 898 195*2^3486379+1 1049507 L4108 2015 899 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 900 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 901 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 902 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 903 59912*5^1500861+1 1049062 L3772 2014 904 495*2^3484656+1 1048989 L3035 2016 905 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 906 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 907 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 908 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 909 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 910 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 911 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 912 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 913 323*2^3482789+1 1048427 L1204 2016 914 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 915 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 916 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 917 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 918 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 919 1149*2^3481694+1 1048098 L1823 2018 920 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 921 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 922 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 923 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 924 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 925 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 926 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 927 701*2^3479779+1 1047521 L2125 2018 928 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 929 813*2^3479728+1 1047506 L4724 2018 930 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 931 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 932 197*2^3477399+1 1046804 L2125 2015 933 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 934 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 935 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 936 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 937 95940796^131072+1 1046218 L4591 2021 Generalized Fermat 938 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 939 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 940 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 941 491*2^3473837+1 1045732 L4343 2016 942 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 943 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 944 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 945 1061*2^3471354-1 1044985 L1828 2017 946 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 947 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 948 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 949 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 950 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 951 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 952 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 953 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 954 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 955 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 956 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 957 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 958 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 959 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 960 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 961 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 962 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 963 641*2^3464061+1 1042790 L1444 2018 964 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 965 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 966 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 967 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 968 453*2^3461688+1 1042075 L3035 2016 969 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 970 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 971 571*2^3460216+1 1041632 L3035 2018 972 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 973 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 974 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 975 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 976 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 977 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 978 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 979 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 980 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 981 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 982 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 983 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 984 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 985 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 986 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 987 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 988 1155*2^3455254+1 1040139 L4711 2017 989 37292*5^1487989+1 1040065 L3553 2013 990 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 991a 6441*2^3453227+1 1039529 L5683 2023 992 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 993a 8339*2^3452667+1 1039361 L5651 2023 994 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 995a 5527*2^3452342+1 1039263 L5679 2023 996 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 997 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 998 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 999 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1000 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1001 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1002a 3719*2^3451667+1 1039059 L5294 2023 1003a 8407*2^3451334+1 1038959 L5524 2023 1004 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1005 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1006a 1623*2^3451109+1 1038891 L5308 2023 1007a 8895*2^3450982+1 1038854 L5666 2023 1008 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1009a 2899*2^3450542+1 1038721 L5600 2023 1010b 6337*2^3449506+1 1038409 L5197 2023 1011b 4381*2^3449456+1 1038394 L5392 2023 1012b 2727*2^3449326+1 1038355 L5421 2023 1013b 2877*2^3449311+1 1038350 L5517 2023 1014b 7507*2^3448920+1 1038233 L5284 2023 1015a 3629*2^3448919+1 1038232 L5192 2023 1016 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1017 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1018 1273*2^3448551-1 1038121 L1828 2012 1019b 1461*2^3448423+1 1038082 L4944 2023 1020b 3235*2^3448352+1 1038061 L5571 2023 1021b 4755*2^3448344+1 1038059 L5524 2023 1022b 5655*2^3448288+1 1038042 L5651 2023 1023b 4873*2^3448176+1 1038009 L5524 2023 1024 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1025b 8139*2^3447967+1 1037946 L5652 2023 1026 1065*2^3447906+1 1037927 L4664 2017 1027b 1717*2^3446756+1 1037581 L5517 2023 1028b 6357*2^3446434+1 1037484 L5284 2023 1029 1155*2^3446253+1 1037429 L3035 2017 1030b 9075*2^3446090+1 1037381 L5648 2023 1031 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1032 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1033b 1483*2^3445724+1 1037270 L5650 2023 1034 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1035b 2223*2^3445682+1 1037257 L5647 2023 1036b 8517*2^3445488+1 1037200 L5302 2023 1037b 2391*2^3445281+1 1037137 L5596 2023 1038b 6883*2^3444784+1 1036988 L5264 2023 1039 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1040 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1041b 8037*2^3443920+1 1036728 L5626 2023 1042b 1375*2^3443850+1 1036706 L5192 2023 1043 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1044 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1045 943*2^3442990+1 1036447 L4687 2017 1046b 7743*2^3442814+1 1036395 L5514 2023 1047c 5511*2^3442468+1 1036290 L5514 2022 1048 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1049c 6329*2^3441717+1 1036064 L5631 2022 1050c 3957*2^3441568+1 1036019 L5476 2022 1051 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1052c 4191*2^3441427+1 1035977 L5189 2022 1053c 2459*2^3441331+1 1035948 L5514 2022 1054c 4335*2^3441306+1 1035940 L5178 2022 1055c 2331*2^3441249+1 1035923 L5626 2022 1056 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1057 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1058 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1059c 2363*2^3440385+1 1035663 L5625 2022 1060c 5265*2^3440332+1 1035647 L5421 2022 1061c 6023*2^3440241+1 1035620 L5517 2022 1062 943*2^3440196+1 1035606 L1448 2017 1063c 6663*2^3439901+1 1035518 L5624 2022 1064 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1065 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1066 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1067d 5745*2^3439450+1 1035382 L5178 2022 1068 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1069d 5109*2^3439090+1 1035273 L5594 2022 1070 543*2^3438810+1 1035188 L3035 2017 1071 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1072d 3325*2^3438506+1 1035097 L5619 2022 1073 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1074 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1075 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1076d 4775*2^3438217+1 1035011 L5618 2022 1077 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1078d 6963*2^3437988+1 1034942 L5616 2022 1079 74*941^348034-1 1034913 L5410 2020 1080d 7423*2^3437856+1 1034902 L5192 2022 1081d 6701*2^3437801+1 1034886 L5615 2022 1082d 5741*2^3437773+1 1034877 L5517 2022 1083 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1084d 5601*2^3437259+1 1034722 L5612 2022 1085d 7737*2^3437192+1 1034702 L5611 2022 1086 113*2^3437145+1 1034686 L4045 2015 1087 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1088d 6387*2^3436719+1 1034560 L5613 2022 1089 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1090e 2921*2^3436299+1 1034433 L5231 2022 1091e 9739*2^3436242+1 1034416 L5178 2022 1092 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1093 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1094 1147*2^3435970+1 1034334 L3035 2017 1095e 4589*2^3435707+1 1034255 L5174 2022 1096e 7479*2^3435683+1 1034248 L5421 2022 1097e 2863*2^3435616+1 1034227 L5197 2022 1098 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1099e 9863*2^3434697+1 1033951 L5189 2022 1100e 4065*2^3434623+1 1033929 L5197 2022 1101 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1102f 9187*2^3434126+1 1033779 L5600 2022 1103e 9531*2^3434103+1 1033772 L5601 2022 1104f 1757*2^3433547+1 1033604 L5594 2022 1105f 1421*2^3433099+1 1033469 L5237 2022 1106f 3969*2^3433007+1 1033442 L5189 2022 1107f 6557*2^3433003+1 1033441 L5261 2022 1108f 7335*2^3432982+1 1033435 L5231 2022 1109f 7125*2^3432836+1 1033391 L5594 2022 1110f 2517*2^3432734+1 1033360 L5231 2022 1111 911*2^3432643+1 1033332 L1355 2017 1112f 5413*2^3432626+1 1033328 L5231 2022 1113 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1114f 3753*2^3432413+1 1033263 L5261 2022 1115f 2691*2^3432191+1 1033196 L5585 2022 1116f 3933*2^3432125+1 1033177 L5387 2022 1117 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1118 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1119 1435*2^3431284+1 1032923 L5587 2022 1120 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1121 6783*2^3430781+1 1032772 L5261 2022 1122 8079*2^3430683+1 1032743 L5585 2022 1123 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1124 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1125 6605*2^3430187+1 1032593 L5463 2022 1126 3761*2^3430057+1 1032554 L5582 2022 1127 6873*2^3429937+1 1032518 L5294 2022 1128 8067*2^3429891+1 1032504 L5581 2022 1129 3965*2^3429719+1 1032452 L5579 2022 1130 3577*2^3428812+1 1032179 L5401 2022 1131 8747*2^3428755+1 1032163 L5493 2022 1132 9147*2^3428638+1 1032127 L5493 2022 1133 3899*2^3428535+1 1032096 L5174 2022 1134 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1135 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1136 8891*2^3428303+1 1032026 L5532 2022 1137 2147*2^3427371+1 1031745 L5189 2022 1138 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1139 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1140 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1141 1127*2^3427219+1 1031699 L3035 2017 1142 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1143 3021*2^3427059+1 1031652 L5554 2022 1144 3255*2^3426983+1 1031629 L5231 2022 1145 1733*2^3426753+1 1031559 L5565 2022 1146 2339*2^3426599+1 1031513 L5237 2022 1147 4729*2^3426558+1 1031501 L5493 2022 1148 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1149 5445*2^3425839+1 1031285 L5237 2022 1150 159*2^3425766+1 1031261 L4045 2015 1151 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1152 3405*2^3425045+1 1031045 L5261 2022 1153 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1154 1695*2^3424517+1 1030886 L5387 2022 1155 4715*2^3424433+1 1030861 L5557 2022 1156 5525*2^3424423+1 1030858 L5387 2022 1157 8615*2^3424231+1 1030801 L5261 2022 1158 5805*2^3424200+1 1030791 L5237 2022 1159 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1160 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1161 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1162b 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1163 2109*2^3423797+1 1030669 L5197 2022 1164 4929*2^3423494+1 1030579 L5554 2022 1165 2987*2^3422911+1 1030403 L5226 2022 1166 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1167 4843*2^3422644+1 1030323 L5553 2022 1168 5559*2^3422566+1 1030299 L5555 2022 1169 7583*2^3422501+1 1030280 L5421 2022 1170 1119*2^3422189+1 1030185 L1355 2017 1171 2895*2^3422030+1 1030138 L5237 2022 1172b 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1173 2835*2^3421697+1 1030037 L5387 2022 1174 3363*2^3421353+1 1029934 L5226 2022 1175 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1176 9147*2^3421264+1 1029908 L5237 2022 1177 9705*2^3420915+1 1029803 L5540 2022 1178 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1179 8919*2^3420758+1 1029755 L5226 2022 1180 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1181 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1182 5489*2^3420137+1 1029568 L5174 2022 1183 9957*2^3420098+1 1029557 L5237 2022 1184 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1185 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1186 7213*2^3419370+1 1029337 L5421 2022 1187 7293*2^3419264+1 1029305 L5192 2022 1188 975*2^3419230+1 1029294 L3545 2017 1189 4191*2^3419227+1 1029294 L5421 2022 1190 2393*2^3418921+1 1029202 L5197 2022 1191 999*2^3418885+1 1029190 L3035 2017 1192 2925*2^3418543+1 1029088 L5174 2022 1193 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1194 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1195 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1196 7383*2^3418297+1 1029014 L5189 2022 1197 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1198 907*2^3417890+1 1028891 L3035 2017 1199 5071*2^3417884+1 1028890 L5237 2022 1200 3473*2^3417741+1 1028847 L5541 2022 1201 191249*2^3417696-1 1028835 L1949 2010 1202 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1203 3299*2^3417329+1 1028723 L5421 2022 1204 6947*2^3416979+1 1028618 L5540 2022 1205 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1206 8727*2^3416652+1 1028519 L5226 2022 1207 8789*2^3416543+1 1028486 L5197 2022 1208 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1209 7917*2^3415947+1 1028307 L5537 2022 1210 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1211 2055*2^3415873+1 1028284 L5535 2022 1212 4731*2^3415712+1 1028236 L5192 2022 1213 2219*2^3415687+1 1028228 L5178 2022 1214 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1215 5877*2^3415419+1 1028148 L5532 2022 1216 3551*2^3415275+1 1028104 L5231 2022 1217 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1218 2313*2^3415046+1 1028035 L5226 2022 1219 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1220 7637*2^3414875+1 1027984 L5507 2022 1221 2141*2^3414821+1 1027967 L5226 2022 1222 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1223 3667*2^3414686+1 1027927 L5226 2022 1224 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1225 6159*2^3414623+1 1027908 L5226 2022 1226 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1227 4577*2^3413539+1 1027582 L5387 2022 1228 5137*2^3413524+1 1027577 L5261 2022 1229 8937*2^3413364+1 1027529 L5527 2022 1230 8829*2^3413339+1 1027522 L5531 2022 1231 7617*2^3413315+1 1027515 L5197 2022 1232 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1233 3141*2^3413112+1 1027453 L5463 2022 1234 8831*2^3412931+1 1027399 L5310 2022 1235 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1236 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1237 5421*2^3412877+1 1027383 L5310 2022 1238 9187*2^3412700+1 1027330 L5337 2022 1239 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1240 8243*2^3412577+1 1027292 L5524 2022 1241 1751*2^3412565+1 1027288 L5523 2022 1242 9585*2^3412318+1 1027215 L5197 2022 1243 9647*2^3412247+1 1027193 L5178 2022 1244 3207*2^3412108+1 1027151 L5189 2022 1245 479*2^3411975+1 1027110 L2873 2016 1246 245*2^3411973+1 1027109 L1935 2015 1247 177*2^3411847+1 1027071 L4031 2015 1248 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1249 9963*2^3411566+1 1026988 L5237 2022 1250 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1251 9785*2^3411223+1 1026885 L5189 2022 1252 5401*2^3411136+1 1026858 L5261 2022 1253 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1254 9431*2^3411105+1 1026849 L5237 2022 1255 8227*2^3410878+1 1026781 L5316 2022 1256 4735*2^3410724+1 1026734 L5226 2022 1257 9515*2^3410707+1 1026730 L5237 2022 1258 6783*2^3410690+1 1026724 L5434 2022 1259 8773*2^3410558+1 1026685 L5261 2022 1260 4629*2^3410321+1 1026613 L5517 2022 1261 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1262 113*2^3409934-1 1026495 L2484 2014 1263 5721*2^3409839+1 1026468 L5226 2022 1264 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1265 6069*2^3409493+1 1026364 L5237 2022 1266 1981*910^346850+1 1026347 L1141 2021 1267 5317*2^3409236+1 1026287 L5471 2022 1268 7511*2^3408985+1 1026211 L5514 2022 1269 7851*2^3408909+1 1026188 L5176 2022 1270 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1271 6027*2^3408444+1 1026048 L5239 2022 1272 59*2^3408416-1 1026038 L426 2010 1273 2153*2^3408333+1 1026014 L5237 2022 1274 9831*2^3408056+1 1025932 L5233 2022 1275 3615*2^3408035+1 1025925 L5217 2022 1276 6343*2^3407950+1 1025899 L5226 2022 1277 8611*2^3407516+1 1025769 L5509 2022 1278 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1279 7111*2^3407452+1 1025750 L5508 2022 1280 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1281 6945*2^3407256+1 1025691 L5507 2022 1282 6465*2^3407229+1 1025682 L5301 2022 1283 1873*2^3407156+1 1025660 L5440 2022 1284 7133*2^3406377+1 1025426 L5279 2022 1285 7063*2^3406122+1 1025349 L5178 2022 1286 3105*2^3405800+1 1025252 L5502 2022 1287 953*2^3405729+1 1025230 L3035 2017 1288 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1289 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1290 373*2^3404702+1 1024921 L3924 2016 1291 7221*2^3404507+1 1024863 L5231 2022 1292 6641*2^3404259+1 1024788 L5501 2022 1293 9225*2^3404209+1 1024773 L5250 2022 1294 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1295 833*2^3403765+1 1024639 L3035 2017 1296 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1297 2601*2^3403459+1 1024547 L5350 2022 1298 8835*2^3403266+1 1024490 L5161 2022 1299 7755*2^3403010+1 1024412 L5161 2022 1300 3123*2^3402834+1 1024359 L5260 2022 1301 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1302 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1303 1417*2^3402246+1 1024182 L5497 2022 1304 5279*2^3402241+1 1024181 L5250 2022 1305 6651*2^3402137+1 1024150 L5476 2022 1306 1779*2^3401715+1 1024022 L5493 2022 1307 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1308 8397*2^3401502+1 1023959 L5476 2022 1309 4057*2^3401472+1 1023949 L5492 2022 1310 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1311 4095*2^3401174+1 1023860 L5418 2022 1312 5149*2^3400970+1 1023798 L5176 2022 1313 4665*2^3400922+1 1023784 L5308 2022 1314 24*414^391179+1 1023717 L4273 2016 1315 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1316 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1317 1725*2^3400371+1 1023617 L5197 2022 1318 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1319 9399*2^3400243+1 1023580 L5488 2022 1320 1241*2^3400127+1 1023544 L5279 2022 1321 1263*2^3399876+1 1023468 L5174 2022 1322 1167*2^3399748+1 1023430 L3545 2017 1323 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1324 7679*2^3398569+1 1023076 L5295 2022 1325 6447*2^3398499+1 1023054 L5302 2022 1326 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1327 2785*2^3398332+1 1023004 L5250 2022 1328 611*2^3398273+1 1022985 L3035 2017 1329 2145*2^3398034+1 1022914 L5302 2022 1330 3385*2^3397254+1 1022679 L5161 2022 1331 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1332 4463*2^3396657+1 1022500 L5476 2022 1333 2889*2^3396450+1 1022437 L5178 2022 1334 8523*2^3396448+1 1022437 L5231 2022 1335 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1336 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1337 3349*2^3396326+1 1022400 L5480 2022 1338 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1339 4477*2^3395786+1 1022238 L5161 2022 1340 3853*2^3395762+1 1022230 L5302 2022 1341 2693*2^3395725+1 1022219 L5284 2022 1342 8201*2^3395673+1 1022204 L5178 2022 1343 255*2^3395661+1 1022199 L3898 2014 1344 1049*2^3395647+1 1022195 L3035 2017 1345 9027*2^3395623+1 1022189 L5263 2022 1346 2523*2^3395549+1 1022166 L5472 2022 1347 3199*2^3395402+1 1022122 L5264 2022 1348 342924651*2^3394939-1 1021988 L4166 2017 1349 3825*2^3394947+1 1021985 L5471 2022 1350 1895*2^3394731+1 1021920 L5174 2022 1351 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1352 555*2^3393389+1 1021515 L2549 2017 1353 1865*2^3393387+1 1021515 L5237 2022 1354 4911*2^3393373+1 1021511 L5231 2022 1355 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1356 5229*2^3392587+1 1021275 L5463 2022 1357 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1358 609*2^3392301+1 1021188 L3035 2017 1359 9787*2^3392236+1 1021169 L5350 2022 1360 303*2^3391977+1 1021090 L2602 2016 1361 805*2^3391818+1 1021042 L4609 2017 1362 6475*2^3391496+1 1020946 L5174 2022 1363 67*2^3391385-1 1020911 L1959 2014 1364 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1365 4639*2^3390634+1 1020687 L5189 2022 1366 5265*2^3390581+1 1020671 L5456 2022 1367 663*2^3390469+1 1020636 L4316 2017 1368 6945*2^3390340+1 1020598 L5174 2021 1369 5871*2^3390268+1 1020577 L5231 2021 1370 7443*2^3390141+1 1020539 L5226 2021 1371 5383*2^3389924+1 1020473 L5350 2021 1372 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1373 9627*2^3389331+1 1020295 L5231 2021 1374 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1375 8253*2^3388624+1 1020082 L5226 2021 1376 3329*2^3388472-1 1020036 L4841 2020 1377 4695*2^3388393+1 1020012 L5237 2021 1378 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1379 7177*2^3388144+1 1019937 L5174 2021 1380 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1381 9611*2^3388059+1 1019912 L5435 2021 1382 1833*2^3387760+1 1019821 L5226 2021 1383 9003*2^3387528+1 1019752 L5189 2021 1384 3161*2^3387141+1 1019635 L5226 2021 1385 7585*2^3387110+1 1019626 L5189 2021 1386 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1387 453*2^3387048+1 1019606 L2602 2016 1388 5177*2^3386919+1 1019568 L5226 2021 1389 8739*2^3386813+1 1019537 L5226 2021 1390 2875*2^3386638+1 1019484 L5226 2021 1391 7197*2^3386526+1 1019450 L5178 2021 1392 1605*2^3386229+1 1019360 L5226 2021 1393 8615*2^3386181+1 1019346 L5442 2021 1394 3765*2^3386141+1 1019334 L5174 2021 1395 5379*2^3385806+1 1019233 L5237 2021 1396 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1397 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1398 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1399 173198*5^1457792-1 1018959 L3720 2013 1400 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1401 2109*2^3384733+1 1018910 L5261 2021 1402 7067*2^3384667+1 1018891 L5439 2021 1403 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1404 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1405 2077*2^3384472+1 1018831 L5237 2021 1406 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1407 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1408 9165*2^3383917+1 1018665 L5435 2021 1409 5579*2^3383209+1 1018452 L5434 2021 1410 8241*2^3383131+1 1018428 L5387 2021 1411 7409*2^3382869+1 1018349 L5161 2021 1412 4883*2^3382813+1 1018332 L5161 2021 1413 9783*2^3382792+1 1018326 L5189 2021 1414 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1415 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1416 8877*2^3381936+1 1018069 L5429 2021 1417 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1418 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1419 6675*2^3381688+1 1017994 L5197 2021 1420 2445*2^3381129+1 1017825 L5231 2021 1421 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1422 3381*2^3380585+1 1017662 L5237 2021 1423 7899*2^3380459+1 1017624 L5421 2021 1424 5945*2^3379933+1 1017465 L5418 2021 1425 1425*2^3379921+1 1017461 L1134 2020 1426 4975*2^3379420+1 1017311 L5161 2021 1427 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1428 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1429 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1430 9065*2^3378851+1 1017140 L5414 2021 1431 2369*2^3378761+1 1017112 L5197 2021 1432 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1433 621*2^3378148+1 1016927 L3035 2017 1434 7035*2^3378141+1 1016926 L5408 2021 1435 2067*2^3378115+1 1016918 L5405 2021 1436 1093*2^3378000+1 1016883 L4583 2017 1437 9577*2^3377612+1 1016767 L5406 2021 1438 861*2^3377601+1 1016763 L4582 2017 1439 5811*2^3377016+1 1016587 L5261 2021 1440 2285*2^3376911+1 1016555 L5261 2021 1441 4199*2^3376903+1 1016553 L5174 2021 1442 6405*2^3376890+1 1016549 L5269 2021 1443 1783*2^3376810+1 1016525 L5261 2021 1444 5401*2^3376768+1 1016513 L5174 2021 1445 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1446 2941*2^3376536+1 1016443 L5174 2021 1447 1841*2^3376379+1 1016395 L5401 2021 1448 6731*2^3376133+1 1016322 L5261 2021 1449 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1450 8121*2^3375933+1 1016262 L5356 2021 1451 5505*2^3375777+1 1016214 L5174 2021 1452 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1453 3207*2^3375314+1 1016075 L5237 2021 1454 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1455 5307*2^3374939+1 1015962 L5392 2021 1456 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1457 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1458 208003!-1 1015843 p394 2016 Factorial 1459 6219*2^3374198+1 1015739 L5393 2021 1460 3777*2^3374072+1 1015701 L5261 2021 1461 9347*2^3374055+1 1015696 L5387 2021 1462 1461*2^3373383+1 1015493 L5384 2021 1463 6395*2^3373135+1 1015419 L5382 2021 1464 7869*2^3373021+1 1015385 L5381 2021 1465 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1466 4905*2^3372216+1 1015142 L5261 2021 1467 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1468 2839*2^3372034+1 1015087 L5174 2021 1469 7347*2^3371803+1 1015018 L5217 2021 1470 9799*2^3371378+1 1014890 L5261 2021 1471 4329*2^3371201+1 1014837 L5197 2021 1472 3657*2^3371183+1 1014831 L5360 2021 1473 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1474 179*2^3371145+1 1014819 L3763 2014 1475 5155*2^3371016+1 1014781 L5237 2021 1476 7575*2^3371010+1 1014780 L5237 2021 1477 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1478 9195*2^3370798+1 1014716 L5178 2021 1479 1749*2^3370786+1 1014711 L5362 2021 1480 8421*2^3370599+1 1014656 L5174 2021 1481 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1482 4357*2^3369572+1 1014346 L5231 2021 1483 6073*2^3369544+1 1014338 L5358 2021 1484 839*2^3369383+1 1014289 L2891 2017 1485 65*2^3369359+1 1014280 L5236 2021 1486 8023*2^3369228+1 1014243 L5356 2021 1487 677*2^3369115+1 1014208 L2103 2017 1488 1437*2^3369083+1 1014199 L5282 2021 1489 9509*2^3368705+1 1014086 L5237 2021 1490 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1491 4851*2^3368668+1 1014074 L5307 2021 1492 7221*2^3368448+1 1014008 L5353 2021 1493 5549*2^3368437+1 1014005 L5217 2021 1494 715*2^3368210+1 1013936 L4527 2017 1495 617*2^3368119+1 1013908 L4552 2017 1496 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1497 1847*2^3367999+1 1013872 L5352 2021 1498 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1499 6497*2^3367743+1 1013796 L5285 2021 1500 2533*2^3367666+1 1013772 L5326 2021 1501 6001*2^3367552+1 1013738 L5350 2021 1502 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1503 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1504 777*2^3367372+1 1013683 L4408 2017 1505 9609*2^3367351+1 1013678 L5285 2021 1506 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1507 2529*2^3367317+1 1013667 L5237 2021 1508 5941*2^3366960+1 1013560 L5189 2021 1509 5845*2^3366956+1 1013559 L5197 2021 1510 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1511 9853*2^3366608+1 1013454 L5178 2021 1512 61*2^3366033-1 1013279 L4405 2017 1513 7665*2^3365896+1 1013240 L5345 2021 1514 8557*2^3365648+1 1013165 L5346 2021 1515 369*2^3365614+1 1013154 L4364 2016 1516 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1517 8201*2^3365283+1 1013056 L5345 2021 1518 9885*2^3365151+1 1013016 L5344 2021 1519 5173*2^3365096+1 1012999 L5285 2021 1520 8523*2^3364918+1 1012946 L5237 2021 1521 3985*2^3364776+1 1012903 L5178 2021 1522 9711*2^3364452+1 1012805 L5192 2021 1523 7003*2^3364172+1 1012721 L5217 2021 1524 6703*2^3364088+1 1012696 L5337 2021 1525 7187*2^3364011+1 1012673 L5217 2021 1526 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1527 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1528 2345*2^3363157+1 1012415 L5336 2021 1529 6527*2^3363135+1 1012409 L5167 2021 1530 9387*2^3363088+1 1012395 L5161 2021 1531 8989*2^3362986+1 1012364 L5161 2021 1532 533*2^3362857+1 1012324 L3171 2017 1533 619*2^3362814+1 1012311 L4527 2017 1534 2289*2^3362723+1 1012284 L5161 2021 1535 7529*2^3362565+1 1012237 L5161 2021 1536 7377*2^3362366+1 1012177 L5161 2021 1537 4509*2^3362311+1 1012161 L5324 2021 1538 7021*2^3362208+1 1012130 L5178 2021 1539 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1540 104*873^344135-1 1012108 L4700 2018 1541 4953*2^3362054+1 1012083 L5323 2021 1542 8575*2^3361798+1 1012006 L5237 2021 1543 2139*2^3361706+1 1011978 L5174 2021 1544 6939*2^3361203+1 1011827 L5217 2021 1545 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1546 3^2120580-3^623816-1 1011774 CH9 2019 1547 8185*2^3360896+1 1011735 L5189 2021 1548 2389*2^3360882+1 1011730 L5317 2021 1549 2787*2^3360631+1 1011655 L5197 2021 1550 6619*2^3360606+1 1011648 L5316 2021 1551 2755*2^3360526+1 1011623 L5174 2021 1552 1445*2^3360099+1 1011494 L5261 2021 1553 8757*2^3359788+1 1011401 L5197 2021 1554 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1555 5085*2^3359696+1 1011373 L5261 2021 1556 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1557 6459*2^3359457+1 1011302 L5310 2021 1558 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1559 6115*2^3358998+1 1011163 L5309 2021 1560 7605*2^3358929+1 1011143 L5308 2021 1561 2315*2^3358899+1 1011133 L5197 2021 1562 6603*2^3358525+1 1011021 L5307 2021 1563 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1564 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1565 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1566 5893*2^3357490+1 1010709 L5285 2021 1567 6947*2^3357075+1 1010585 L5302 2021 1568 4621*2^3357068+1 1010582 L5301 2021 1569 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1570 1479*2^3356275+1 1010343 L5178 2021 1571 3645*2^3356232+1 1010331 L5296 2021 1572 1259*2^3356215+1 1010325 L5298 2021 1573 2075*2^3356057+1 1010278 L5174 2021 1574 4281*2^3356051+1 1010276 L5295 2021 1575 1275*2^3356045+1 1010274 L5294 2021 1576 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1577 4365*2^3355770+1 1010192 L5261 2021 1578 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1579 2183*2^3355297+1 1010049 L5266 2021 1580 3087*2^3355000+1 1009960 L5226 2021 1581 8673*2^3354760+1 1009888 L5233 2021 1582 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1583 3015*2^3353943+1 1009641 L5290 2021 1584 6819*2^3353877+1 1009622 L5174 2021 1585 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1586 6393*2^3353366+1 1009468 L5287 2021 1587 3573*2^3353273+1 1009440 L5161 2021 1588 4047*2^3353222+1 1009425 L5286 2021 1589 1473*2^3353114+1 1009392 L5161 2021 1590 1183*2^3353058+1 1009375 L3824 2017 1591 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1592 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1593 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1594 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1595 7123*2^3352180+1 1009111 L5161 2021 1596 2757*2^3352180+1 1009111 L5285 2021 1597 9307*2^3352014+1 1009061 L5284 2021 1598 2217*2^3351732+1 1008976 L5283 2021 1599 543*2^3351686+1 1008961 L4198 2017 1600 4419*2^3351666+1 1008956 L5279 2021 1601 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1602 3059*2^3351379+1 1008870 L5278 2021 1603 7789*2^3351046+1 1008770 L5276 2021 1604 9501*2^3350668+1 1008656 L5272 2021 1605 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1606 9691*2^3349952+1 1008441 L5242 2021 1607 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1608 3209*2^3349719+1 1008370 L5269 2021 1609 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1610 393*2^3349525+1 1008311 L3101 2016 1611 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1612 5487*2^3349303+1 1008245 L5266 2021 1613 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1614 2511*2^3349104+1 1008185 L5264 2021 1615 1005*2^3349046-1 1008167 L4518 2021 1616 7659*2^3348894+1 1008122 L5263 2021 1617 9703*2^3348872+1 1008115 L5262 2021 1618 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1619 7935*2^3348578+1 1008027 L5161 2021 1620 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 1621 7821*2^3348400+1 1007973 L5260 2021 1622 7911*2^3347532+1 1007712 L5250 2021 1623 8295*2^3347031+1 1007561 L5249 2021 1624 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 1625 4029*2^3346729+1 1007470 L5239 2021 1626 9007*2^3346716+1 1007466 L5161 2021 1627 8865*2^3346499+1 1007401 L5238 2021 1628 6171*2^3346480+1 1007395 L5174 2021 1629 6815*2^3346045+1 1007264 L5235 2021 1630 5*326^400785+1 1007261 L4786 2019 1631 5951*2^3345977+1 1007244 L5233 2021 1632 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 1633 1257*2^3345843+1 1007203 L5192 2021 1634 4701*2^3345815+1 1007195 L5192 2021 1635 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 1636 7545*2^3345355+1 1007057 L5231 2021 1637 5559*2^3344826+1 1006897 L5223 2021 1638 6823*2^3344692+1 1006857 L5223 2021 1639 4839*2^3344453+1 1006785 L5188 2021 1640 7527*2^3344332+1 1006749 L5220 2021 1641 7555*2^3344240+1 1006721 L5188 2021 1642 6265*2^3344080+1 1006673 L5197 2021 1643 1299*2^3343943+1 1006631 L5217 2021 1644 2815*2^3343754+1 1006574 L5216 2021 1645 5349*2^3343734+1 1006568 L5174 2021 1646 2863*2^3342920+1 1006323 L5179 2020 1647 7387*2^3342848+1 1006302 L5208 2020 1648 9731*2^3342447+1 1006181 L5203 2020 1649 7725*2^3341708+1 1005959 L5195 2020 1650 7703*2^3341625+1 1005934 L5178 2020 1651 7047*2^3341482+1 1005891 L5194 2020 1652 4839*2^3341309+1 1005838 L5192 2020 1653 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 1654 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 1655 8989*2^3340866+1 1005705 L5189 2020 1656 6631*2^3340808+1 1005688 L5188 2020 1657 1341*2^3340681+1 1005649 L5188 2020 1658 733*2^3340464+1 1005583 L3035 2016 1659 2636*138^469911+1 1005557 L5410 2021 1660 3679815*2^3340001+1 1005448 L4922 2019 1661 57*2^3339932-1 1005422 L3519 2015 1662 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 1663 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 1664 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 1665 3651*2^3339341+1 1005246 L5177 2020 1666 3853*2^3339296+1 1005232 L5178 2020 1667 8015*2^3339267+1 1005224 L5176 2020 1668 3027*2^3339182+1 1005198 L5174 2020 1669 9517*2^3339002+1 1005144 L5172 2020 1670 4003*2^3338588+1 1005019 L3035 2020 1671 6841*2^3338336+1 1004944 L1474 2020 1672 2189*2^3338209+1 1004905 L5031 2020 1673 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 1674 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 1675 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 1676 2957*2^3337667+1 1004742 L5144 2020 1677 1515*2^3337389+1 1004658 L1474 2020 1678 7933*2^3337270+1 1004623 L4666 2020 1679 1251*2^3337116+1 1004576 L4893 2020 1680 651*2^3337101+1 1004571 L3260 2016 1681 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 1682 8397*2^3336654+1 1004437 L5125 2020 1683 8145*2^3336474+1 1004383 L5110 2020 1684 1087*2^3336385-1 1004355 L1828 2012 1685 5325*2^3336120+1 1004276 L2125 2020 1686 849*2^3335669+1 1004140 L3035 2016 1687 8913*2^3335216+1 1004005 L5079 2020 1688 7725*2^3335213+1 1004004 L3035 2020 1689 611*2^3334875+1 1003901 L3813 2016 1690 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 1691 403*2^3334410+1 1003761 L4293 2016 1692 5491*2^3334392+1 1003756 L4815 2020 1693 6035*2^3334341+1 1003741 L2125 2020 1694 1725*2^3334341+1 1003740 L2125 2020 1695 4001*2^3334031+1 1003647 L1203 2020 1696 2315*2^3333969+1 1003629 L2125 2020 1697 6219*2^3333810+1 1003581 L4582 2020 1698 8063*2^3333721+1 1003554 L1823 2020 1699 9051*2^3333677+1 1003541 L3924 2020 1700 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 1701 4091*2^3333153+1 1003383 L1474 2020 1702 9949*2^3332750+1 1003262 L5090 2020 1703 3509*2^3332649+1 1003231 L5085 2020 1704 3781*2^3332436+1 1003167 L1823 2020 1705 4425*2^3332394+1 1003155 L3431 2020 1706 6459*2^3332086+1 1003062 L2629 2020 1707 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 1708 5257*2^3331758+1 1002963 L1188 2020 1709 2939*2^3331393+1 1002853 L1823 2020 1710 6959*2^3331365+1 1002845 L1675 2020 1711 8815*2^3330748+1 1002660 L3329 2020 1712 4303*2^3330652+1 1002630 L4730 2020 1713 8595*2^3330649+1 1002630 L4723 2020 1714 673*2^3330436+1 1002564 L3035 2016 1715 8163*2^3330042+1 1002447 L3278 2020 1716 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 1717 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 1718 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 1719 2829*2^3329061+1 1002151 L4343 2020 1720 5775*2^3329034+1 1002143 L1188 2020 1721 7101*2^3328905+1 1002105 L4568 2020 1722 7667*2^3328807+1 1002075 L4087 2020 1723 129*2^3328805+1 1002073 L3859 2014 1724 7261*2^3328740+1 1002055 L2914 2020 1725 4395*2^3328588+1 1002009 L3924 2020 1726 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 1727 143183*2^3328297+1 1001923 L4504 2017 1728 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 1729 9681*2^3327987+1 1001828 L1204 2020 1730 2945*2^3327987+1 1001828 L2158 2020 1731 5085*2^3327789+1 1001769 L1823 2020 1732 8319*2^3327650+1 1001727 L1204 2020 1733 4581*2^3327644+1 1001725 L2142 2020 1734 655*2^3327518+1 1001686 L4490 2016 1735 8863*2^3327406+1 1001653 L1675 2020 1736 659*2^3327371+1 1001642 L3502 2016 1737 3411*2^3327343+1 1001634 L1675 2020 1738 4987*2^3327294+1 1001619 L3924 2020 1739 821*2^3327003+1 1001531 L3035 2016 1740 2435*2^3326969+1 1001521 L3035 2020 1741 1931*2^3326850-1 1001485 L4113 2022 1742 2277*2^3326794+1 1001469 L5014 2020 1743 6779*2^3326639+1 1001422 L3924 2020 1744 6195*2^3325993+1 1001228 L1474 2019 1745 555*2^3325925+1 1001206 L4414 2016 1746 9041*2^3325643+1 1001123 L3924 2019 1747 1965*2^3325639-1 1001121 L4113 2022 1748 1993*2^3325302+1 1001019 L3662 2019 1749 6179*2^3325027+1 1000937 L3048 2019 1750 4485*2^3324900+1 1000899 L1355 2019 1751 3559*2^3324650+1 1000823 L3035 2019 1752 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 1753 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 1754 6927*2^3324387+1 1000745 L3091 2019 1755 9575*2^3324287+1 1000715 L3824 2019 1756 1797*2^3324259+1 1000705 L3895 2019 1757 4483*2^3324048+1 1000642 L3035 2019 1758 791*2^3323995+1 1000626 L3035 2016 1759 6987*2^3323926+1 1000606 L4973 2019 1760 3937*2^3323886+1 1000593 L3035 2019 1761 2121*2^3323852+1 1000583 L1823 2019 1762 1571*2^3323493+1 1000475 L3035 2019 1763 2319*2^3323402+1 1000448 L4699 2019 1764 2829*2^3323341+1 1000429 L4754 2019 1765 4335*2^3323323+1 1000424 L1823 2019 1766 8485*2^3322938+1 1000308 L4858 2019 1767 6505*2^3322916+1 1000302 L4858 2019 1768 597*2^3322871+1 1000287 L3035 2016 1769 9485*2^3322811+1 1000270 L2603 2019 1770 8619*2^3322774+1 1000259 L3035 2019 1771 387*2^3322763+1 1000254 L1455 2016 1772 1965*2^3322579-1 1000200 L4113 2022 1773 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 1774 6366*745^348190-1 1000060 L4189 2022 1775 5553507*2^3322000+1 1000029 p391 2016 1776 5029159647*2^3321910-1 1000005 L4960 2021 1777 5009522505*2^3321910-1 1000005 L4960 2021 1778 4766298357*2^3321910-1 1000005 L4960 2021 1779 4759383915*2^3321910-1 1000005 L4960 2021 1780 4635733263*2^3321910-1 1000005 L4960 2021 1781 4603393047*2^3321910-1 1000005 L4960 2021 1782 4550053935*2^3321910-1 1000005 L4960 2021 1783 4288198767*2^3321910-1 1000005 L4960 2021 1784 4229494557*2^3321910-1 1000005 L4960 2021 1785 4110178197*2^3321910-1 1000005 L4960 2021 1786 4022490843*2^3321910-1 1000005 L4960 2021 1787 3936623697*2^3321910-1 1000005 L4960 2021 1788 3751145343*2^3321910-1 1000005 L4960 2021 1789 3715773735*2^3321910-1 1000005 L4960 2021 1790 3698976057*2^3321910-1 1000005 L4960 2021 1791 3659465685*2^3321910-1 1000005 L4960 2020 1792 3652932033*2^3321910-1 1000005 L4960 2020 1793 3603204333*2^3321910-1 1000005 L4960 2020 1794 3543733545*2^3321910-1 1000005 L4960 2020 1795 3191900133*2^3321910-1 1000005 L4960 2020 1796 3174957723*2^3321910-1 1000005 L4960 2020 1797 2973510903*2^3321910-1 1000005 L4960 2019 1798 2848144257*2^3321910-1 1000005 L4960 2019 1799 2820058827*2^3321910-1 1000005 L4960 2019 1800 2611553775*2^3321910-1 1000004 L4960 2020 1801 2601087525*2^3321910-1 1000004 L4960 2019 1802 2386538565*2^3321910-1 1000004 L4960 2019 1803 2272291887*2^3321910-1 1000004 L4960 2019 1804 2167709265*2^3321910-1 1000004 L4960 2019 1805 2087077797*2^3321910-1 1000004 L4960 2019 1806 1848133623*2^3321910-1 1000004 L4960 2019 1807 1825072257*2^3321910-1 1000004 L4960 2019 1808 1633473837*2^3321910-1 1000004 L4960 2019 1809 1228267623*2^3321910-1 1000004 L4808 2019 1810 1148781333*2^3321910-1 1000004 L4808 2019 1811 1065440787*2^3321910-1 1000004 L4808 2019 1812 1055109357*2^3321910-1 1000004 L4960 2019 1813 992309607*2^3321910-1 1000004 L4808 2019 1814 926102325*2^3321910-1 1000004 L4808 2019 1815 892610007*2^3321910-1 1000004 L4960 2019 1816 763076757*2^3321910-1 1000004 L4960 2019 1817 607766997*2^3321910-1 1000004 L4808 2019 1818 539679177*2^3321910-1 1000004 L4808 2019 1819 425521077*2^3321910-1 1000004 L4808 2019 1820 132940575*2^3321910-1 1000003 L4808 2019 1821 239378138685*2^3321891+1 1000001 L5104 2020 1822 464253*2^3321908-1 1000000 L466 2013 1823 3^2095902+3^647322-1 1000000 x44 2018 1824 191273*2^3321908-1 1000000 L466 2013 1825 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 1826 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 1827 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 1828 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 1829 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 1830 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 1831 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 1832 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 1833 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 1834 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 1835 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 1836 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 1837 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 1838 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 1839 10^999999+308267*10^292000+1 1000000 CH10 2021 1840 10^999999-1022306*10^287000-1 999999 CH13 2021 1841 10^999999-1087604*10^287000-1 999999 CH13 2021 1842 531631540026641*6^1285077+1 999999 L3494 2021 1843 3139*2^3321905-1 999997 L185 2008 1844 42550702^131072+1 999937 L4309 2022 Generalized Fermat 1845 42414020^131072+1 999753 L5030 2022 Generalized Fermat 1846 4847*2^3321063+1 999744 SB9 2005 1847 42254832^131072+1 999539 L5375 2022 Generalized Fermat 1848 42243204^131072+1 999524 L4898 2022 Generalized Fermat 1849 42230406^131072+1 999506 L5453 2022 Generalized Fermat 1850 42168978^131072+1 999424 L5462 2022 Generalized Fermat 1851 439*2^3318318+1 998916 L5573 2022 1852 41688706^131072+1 998772 L5270 2022 Generalized Fermat 1853 41364744^131072+1 998327 L5453 2022 Generalized Fermat 1854 41237116^131072+1 998152 L5459 2022 Generalized Fermat 1855 41102236^131072+1 997965 L4245 2022 Generalized Fermat 1856 41007562^131072+1 997834 L4210 2022 Generalized Fermat 1857 41001148^131072+1 997825 L4210 2022 Generalized Fermat 1858 975*2^3312951+1 997301 L5231 2022 1859 40550398^131072+1 997196 L4245 2022 Generalized Fermat 1860a 11796*46^599707+1 997172 L5670 2023 1861 40463598^131072+1 997074 L4591 2022 Generalized Fermat 1862 689*2^3311423+1 996841 L5226 2022 1863 40151896^131072+1 996633 L4245 2022 Generalized Fermat 1864 593*2^3309333+1 996212 L5572 2022 1865 383*2^3309321+1 996208 L5570 2022 1866 49*2^3309087-1 996137 L1959 2013 1867 39746366^131072+1 996056 L4201 2022 Generalized Fermat 1868 139413*6^1279992+1 996033 L4001 2015 1869 51*2^3308171+1 995861 L2840 2015 1870 719*2^3308127+1 995849 L5192 2022 1871 39597790^131072+1 995842 L4737 2022 Generalized Fermat 1872 39502358^131072+1 995705 L5453 2022 Generalized Fermat 1873 39324372^131072+1 995448 L5202 2022 Generalized Fermat 1874 245114*5^1424104-1 995412 L3686 2013 1875 39100746^131072+1 995123 L5441 2022 Generalized Fermat 1876 38824296^131072+1 994719 L4245 2021 Generalized Fermat 1877 38734748^131072+1 994588 L4249 2021 Generalized Fermat 1878 175124*5^1422646-1 994393 L3686 2013 1879 453*2^3303073+1 994327 L5568 2022 1880 38310998^131072+1 993962 L4737 2021 Generalized Fermat 1881 531*2^3301693+1 993912 L5226 2022 1882 38196496^131072+1 993791 L4861 2021 Generalized Fermat 1883 38152876^131072+1 993726 L4245 2021 Generalized Fermat 1884 195*2^3301018+1 993708 L5569 2022 1885 341*2^3300789+1 993640 L5192 2022 1886 37909914^131072+1 993363 L4249 2021 Generalized Fermat 1887 849*2^3296427+1 992327 L5571 2022 1888 1611*22^738988+1 992038 L4139 2015 1889 36531196^131072+1 991254 L4249 2021 Generalized Fermat 1890 2017*2^3292325-1 991092 L3345 2017 1891 36422846^131072+1 991085 L4245 2021 Generalized Fermat 1892 36416848^131072+1 991076 L5202 2021 Generalized Fermat 1893 885*2^3290927+1 990671 L5161 2022 1894 36038176^131072+1 990481 L4245 2021 Generalized Fermat 1895 35997532^131072+1 990416 L4245 2021 Generalized Fermat 1896 35957420^131072+1 990353 L4245 2021 Generalized Fermat 1897 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 1898 35391288^131072+1 989449 L5070 2021 Generalized Fermat 1899 35372304^131072+1 989419 L5443 2021 Generalized Fermat 1900 219*2^3286614+1 989372 L5567 2022 1901 61*2^3286535-1 989348 L4405 2016 1902 35327718^131072+1 989347 L4591 2021 Generalized Fermat 1903 35282096^131072+1 989274 L4245 2021 Generalized Fermat 1904 35141602^131072+1 989046 L4729 2021 Generalized Fermat 1905 35139782^131072+1 989043 L4245 2021 Generalized Fermat 1906 35047222^131072+1 988893 L4249 2021 Generalized Fermat 1907 531*2^3284944+1 988870 L5536 2022 1908 34957136^131072+1 988747 L5321 2021 Generalized Fermat 1909 301*2^3284232+1 988655 L5564 2022 1910 34871942^131072+1 988608 L4245 2021 Generalized Fermat 1911 34763644^131072+1 988431 L4737 2021 Generalized Fermat 1912 34585314^131072+1 988138 L4201 2021 Generalized Fermat 1913 311*2^3282455+1 988120 L5568 2022 1914 34530386^131072+1 988048 L5070 2021 Generalized Fermat 1915 833*2^3282181+1 988038 L5564 2022 1916 561*2^3281889+1 987950 L5477 2022 1917 34087952^131072+1 987314 L4764 2021 Generalized Fermat 1918 87*2^3279368+1 987191 L3458 2015 1919 965*2^3279151+1 987126 L5564 2022 1920 33732746^131072+1 986717 L4359 2021 Generalized Fermat 1921 33474284^131072+1 986279 L5051 2021 Generalized Fermat 1922 33395198^131072+1 986145 L4658 2021 Generalized Fermat 1923 427*2^3275606+1 986059 L5566 2022 1924 33191418^131072+1 985796 L4201 2021 Generalized Fermat 1925 337*2^3274106+1 985607 L5564 2022 1926 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 1927 1045*2^3273488+1 985422 L5192 2022 1928 32869172^131072+1 985241 L4285 2021 Generalized Fermat 1929 32792696^131072+1 985108 L5198 2021 Generalized Fermat 1930 1047*2^3272351+1 985079 L5563 2022 1931 32704348^131072+1 984955 L5312 2021 Generalized Fermat 1932 32608738^131072+1 984788 L5395 2021 Generalized Fermat 1933 933*2^3270993+1 984670 L5562 2022 1934 311*2^3270759+1 984600 L5560 2022 1935 32430486^131072+1 984476 L4245 2021 Generalized Fermat 1936 32417420^131072+1 984453 L4245 2021 Generalized Fermat 1937 65*2^3270127+1 984409 L3924 2015 1938 32348894^131072+1 984333 L4245 2021 Generalized Fermat 1939 579*2^3269850+1 984326 L5226 2022 1940 32286660^131072+1 984223 L5400 2021 Generalized Fermat 1941 32200644^131072+1 984071 L4387 2021 Generalized Fermat 1942 32137342^131072+1 983959 L4559 2021 Generalized Fermat 1943 32096608^131072+1 983887 L4559 2021 Generalized Fermat 1944 32055422^131072+1 983814 L4559 2021 Generalized Fermat 1945 31821360^131072+1 983397 L4861 2021 Generalized Fermat 1946 31768014^131072+1 983301 L4252 2021 Generalized Fermat 1947 335*2^3266237+1 983238 L5559 2022 1948 1031*2^3265915+1 983142 L5364 2022 1949 31469984^131072+1 982765 L5078 2021 Generalized Fermat 1950 5*2^3264650-1 982759 L384 2013 1951 223*2^3264459-1 982703 L1884 2012 1952 1101*2^3264400+1 982686 L5231 2022 1953 483*2^3264181+1 982620 L5174 2022 1954 525*2^3263227+1 982332 L5231 2022 1955 31145080^131072+1 982174 L4201 2021 Generalized Fermat 1956b 622*48^584089+1 981998 L5629 2023 1957 31044982^131072+1 981991 L5041 2021 Generalized Fermat 1958 683*2^3262037+1 981974 L5192 2022 1959 923*2^3261401+1 981783 L5477 2022 1960 30844300^131072+1 981622 L5102 2021 Generalized Fermat 1961 30819256^131072+1 981575 L4201 2021 Generalized Fermat 1962 9*2^3259381-1 981173 L1828 2011 1963 1059*2^3258751+1 980985 L5231 2022 1964 6*5^1403337+1 980892 L4965 2020 1965 30318724^131072+1 980643 L4309 2021 Generalized Fermat 1966 30315072^131072+1 980636 L5375 2021 Generalized Fermat 1967 30300414^131072+1 980609 L4755 2021 Generalized Fermat 1968 30225714^131072+1 980468 L4201 2021 Generalized Fermat 1969 875*2^3256589+1 980334 L5550 2022 1970 30059800^131072+1 980155 L4928 2021 Generalized Fermat 1971 30022816^131072+1 980085 L5273 2021 Generalized Fermat 1972 29959190^131072+1 979964 L4905 2021 Generalized Fermat 1973 29607314^131072+1 979292 L5378 2021 Generalized Fermat 1974 779*2^3253063+1 979273 L5192 2022 1975 29505368^131072+1 979095 L5378 2021 Generalized Fermat 1976 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 1977 29169314^131072+1 978443 L5380 2021 Generalized Fermat 1978 417*2^3248255+1 977825 L5178 2022 1979 28497098^131072+1 977116 L4308 2021 Generalized Fermat 1980 28398204^131072+1 976918 L5379 2021 Generalized Fermat 1981 28294666^131072+1 976710 L5375 2021 Generalized Fermat 1982 28175634^131072+1 976470 L5378 2021 Generalized Fermat 1983 33*2^3242126-1 975979 L3345 2014 1984 27822108^131072+1 975752 L4760 2021 Generalized Fermat 1985 39*2^3240990+1 975637 L3432 2014 1986 27758510^131072+1 975621 L4289 2021 Generalized Fermat 1987 27557876^131072+1 975208 L4245 2021 Generalized Fermat 1988 27544748^131072+1 975181 L4387 2021 Generalized Fermat 1989 27408050^131072+1 974898 L4210 2021 Generalized Fermat 1990 225*2^3236967+1 974427 L5529 2022 1991 27022768^131072+1 974092 L4309 2021 Generalized Fermat 1992 26896670^131072+1 973826 L5376 2021 Generalized Fermat 1993 1075*2^3234606+1 973717 L5192 2022 1994 26757382^131072+1 973530 L5375 2021 Generalized Fermat 1995 26599558^131072+1 973194 L4245 2021 Generalized Fermat 1996 6*5^1392287+1 973168 L4965 2020 1997 26500832^131072+1 972982 L4956 2021 Generalized Fermat 1998 325*2^3231474+1 972774 L5536 2022 1999 933*2^3231438+1 972763 L5197 2022 2000 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2001 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2002 697*2^3229518+1 972185 L5534 2022 2003 22598*745^338354-1 971810 L4189 2022 2004 385*2^3226814+1 971371 L5178 2022 2005 211195*2^3224974+1 970820 L2121 2013 2006 1173*2^3223546+1 970388 L5178 2022 2007 7*6^1246814+1 970211 L4965 2019 2008 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2009 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2010 1089*2^3221691+1 969829 L5178 2022 2011 35*832^332073-1 969696 L4001 2019 2012 600921*2^3219922-1 969299 g337 2018 2013 939*2^3219319+1 969115 L5178 2022 2014 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2015 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2016 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2017 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2018 129*2^3218214+1 968782 L5529 2022 2019 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2020 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2021 811*2^3216944+1 968400 L5233 2022 2022 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2023 1023*2^3214745+1 967738 L5178 2022 2024 187*2^3212152+1 966957 L5178 2022 2025 301*2^3211281-1 966695 L5545 2022 2026 6*409^369832+1 965900 L4001 2015 2027 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2028 1165*2^3207702+1 965618 L5178 2022 2029 94373*2^3206717+1 965323 L2785 2013 2030 2751*2^3206569-1 965277 L4036 2015 2031 761*2^3206341+1 965208 L5178 2022 2032 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2033 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2034 911*2^3205225+1 964872 L5364 2022 2035 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2036 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2037 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2038 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2039 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2040 113983*2^3201175-1 963655 L613 2008 2041 34*888^326732-1 963343 L4001 2017 2042 899*2^3198219+1 962763 L5503 2022 2043 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2044 4*3^2016951+1 962331 L4965 2020 2045 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2046 987*2^3195883+1 962060 L5282 2022 2047 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2048 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2049 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2050 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2051 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2052 671*2^3185411+1 958908 L5315 2022 2053 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2054 1027*2^3184540+1 958646 L5174 2022 2055 789*2^3183463+1 958321 L5482 2022 2056 855*2^3183158+1 958229 L5161 2022 2057 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2058 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2059 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2060 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2061 935*2^3180599+1 957459 L5477 2022 2062 573*2^3179293+1 957066 L5226 2022 2063 33*2^3176269+1 956154 L3432 2013 2064 81*2^3174353-1 955578 L3887 2022 2065 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2066 600921*2^3173683-1 955380 g337 2018 2067 587*2^3173567+1 955342 L5301 2022 2068 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2069 1414*95^482691-1 954633 L4877 2019 2070 305*2^3171039+1 954581 L5301 2022 2071 755*2^3170701+1 954479 L5302 2022 2072 775*2^3170580+1 954443 L5449 2022 2073 78*236^402022-1 953965 L5410 2020 2074 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2075 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2076 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2077 1087*2^3164677-1 952666 L1828 2012 2078 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2079 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2080 459*2^3163175+1 952214 L5178 2022 2081 15*2^3162659+1 952057 p286 2012 2082 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2083 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2084 849*2^3161727+1 951778 L5178 2022 2085 67*2^3161450+1 951694 L3223 2015 2086 119*2^3161195+1 951617 L5320 2022 2087 1759*2^3160863-1 951518 L4965 2021 2088 58*117^460033+1 951436 L5410 2020 2089 417*2^3160443+1 951391 L5302 2022 2090 9231*70^515544+1 951234 L5410 2021 2091 671*2^3159523+1 951115 L5188 2022 2092 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2093 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2094 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2095 19*2^3155009-1 949754 L1828 2012 2096 281*2^3151457+1 948686 L5316 2022 2097 179*2^3150265+1 948327 L5302 2021 2098 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2099 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2100 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2101 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2102 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2103 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2104 865*2^3147482+1 947490 L5178 2021 2105 963*2^3145753+1 946969 L5451 2021 2106 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2107 387*2^3144483+1 946587 L5450 2021 2108 1035*2^3144236+1 946513 L5449 2021 2109 1065*2^3143667+1 946342 L4944 2021 2110 193*2^3142150+1 945884 L5178 2021 2111 915*2^3141942+1 945822 L5448 2021 2112 939*2^3141397+1 945658 L5320 2021 2113 1063*2^3141350+1 945644 L5178 2021 2114 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2115 69*2^3140225-1 945304 L3764 2014 2116 3*2^3136255-1 944108 L256 2007 2117 417*2^3136187+1 944089 L5178 2021 2118 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2119 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2120 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2121 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2122 299*2^3130621+1 942414 L5178 2021 2123 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2124 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2125 571*2^3127388+1 941441 L5440 2021 2126 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2127 197*2^3126343+1 941126 L5178 2021 2128 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2129 1097*2^3124455+1 940558 L5178 2021 2130 3125*2^3124079+1 940445 L1160 2019 2131 495*2^3123624+1 940308 L5438 2021 2132 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2133 1041*2^3120649+1 939412 L5437 2021 2134 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2135 3317*2^3117162-1 938363 L5399 2021 2136 763*2^3115684+1 937918 L4944 2021 2137 581*2^3114611+1 937595 L5178 2021 2138 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2139 134*864^319246-1 937473 L5410 2020 2140 700057*2^3113753-1 937339 L5410 2022 2141 1197*2^3111838+1 936760 L5178 2021 2142 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2143 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2144 755*2^3110759+1 936435 L5320 2021 2145 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2146 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2147 628*80^491322+1 935033 L5410 2021 2148 761*2^3105087+1 934728 L5197 2021 2149 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2150 1019*2^3103680-1 934304 L1828 2012 2151 579*2^3102639+1 933991 L5315 2021 2152 99*2^3102401-1 933918 L1862 2017 2153 256612*5^1335485-1 933470 L1056 2013 2154 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2155 69*2^3097340-1 932395 L3764 2014 2156 153*2^3097277+1 932376 L4944 2021 2157 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2158 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2159 207*2^3095391+1 931808 L5178 2021 2160 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2161 45*2^3094632-1 931579 L1862 2018 2162 259*2^3094582+1 931565 L5214 2021 2163 553*2^3094072+1 931412 L4944 2021 2164 57*2^3093440-1 931220 L2484 2020 2165 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2166 513*2^3092705+1 931000 L4329 2016 2167 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2168 933*2^3091825+1 930736 L5178 2021 2169 38*875^316292-1 930536 L4001 2019 2170 5*2^3090860-1 930443 L1862 2012 2171 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2172 4*5^1330541-1 930009 L4965 2022 2173 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2174 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2175 297*2^3087543+1 929446 L5326 2021 2176 1149*2^3087514+1 929438 L5407 2021 2177 745*2^3087428+1 929412 L5178 2021 2178 373*520^342177+1 929357 L3610 2014 2179 19401*2^3086450-1 929119 L541 2015 2180 75*2^3086355+1 929088 L3760 2015 2181 65*2^3080952-1 927461 L2484 2020 2182 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2183 1139*2^3079783+1 927111 L5174 2021 2184 271*2^3079189-1 926931 L2484 2018 2185 766*33^610412+1 926923 L4001 2016 2186 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2187 555*2^3078792+1 926812 L5226 2021 2188 31*332^367560+1 926672 L4294 2018 2189 167*2^3077568-1 926443 L1862 2019 2190 10001*2^3075602-1 925853 L4405 2019 2191 116*107^455562-1 924513 L4064 2021 2192 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2193 14844*430^350980-1 924299 L4001 2016 2194 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2195 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2196 1105*2^3069884+1 924131 L5314 2021 2197 319*2^3069362+1 923973 L5377 2021 2198 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2199 973*2^3069092+1 923892 L5214 2021 2200 765*2^3068511+1 923717 L5174 2021 2201 60849*2^3067914+1 923539 L591 2014 2202 674*249^385359+1 923400 L5410 2019 2203 499*2^3066970+1 923253 L5373 2021 2204 553*2^3066838+1 923213 L5368 2021 2205 629*2^3066827+1 923210 L5226 2021 2206 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2207 261*2^3066009+1 922964 L5197 2021 2208 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2209 21*2^3065701+1 922870 p286 2012 2210 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2211 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2212 875*2^3063847+1 922313 L5364 2021 2213 43*2^3063674+1 922260 L3432 2013 2214 677*2^3063403+1 922180 L5346 2021 2215 8460*241^387047-1 921957 L5410 2019 2216 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2217 111*2^3060238-1 921226 L2484 2020 2218 1165*2^3060228+1 921224 L5360 2021 2219 5*2^3059698-1 921062 L503 2008 2220 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2221 453*2^3056181+1 920005 L5320 2021 2222 791*2^3055695+1 919859 L5177 2021 2223 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2224 582971*2^3053414-1 919175 L5410 2022 2225 123*2^3049038+1 917854 L4119 2015 2226 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2227 400*95^463883-1 917435 L4001 2019 2228 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2229 454*383^354814+1 916558 L2012 2020 2230 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2231 435*2^3041954+1 915723 L5320 2021 2232 639*2^3040438+1 915266 L5320 2021 2233 1045*2^3037988+1 914529 L5178 2021 2234 291*2^3037904+1 914503 L3545 2015 2235 311*2^3037565+1 914401 L5178 2021 2236 373*2^3036746+1 914155 L5178 2021 2237 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2238 801*2^3036045+1 913944 L5348 2021 2239 915*2^3033775+1 913261 L5178 2021 2240 38804*3^1913975+1 913203 L5410 2021 2241 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2242 869*2^3030655+1 912322 L5260 2021 2243 643*2^3030650+1 912320 L5320 2021 2244 99*2^3029959-1 912111 L1862 2020 2245 417*2^3029342+1 911926 L5178 2021 2246 345*2^3027769+1 911452 L5343 2021 2247 26*3^1910099+1 911351 L4799 2020 2248 355*2^3027372+1 911333 L5174 2021 2249 99*2^3026660-1 911118 L1862 2020 2250 417*2^3026492+1 911068 L5197 2021 2251 1065*2^3025527+1 910778 L5208 2021 2252 34202*3^1908800+1 910734 L5410 2021 2253 8343*42^560662+1 910099 L4444 2020 2254 699*2^3023263+1 910096 L5335 2021 2255 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2256 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2257 383731*2^3021377-1 909531 L466 2011 2258 46821*2^3021380-374567 909531 p363 2013 2259 2^3021377-1 909526 G3 1998 Mersenne 37 2260 615*2^3019445+1 908947 L5260 2021 2261 389*2^3019025+1 908820 L5178 2021 2262 875*2^3018175+1 908565 L5334 2021 2263 555*2^3016352+1 908016 L5178 2021 2264 7*2^3015762+1 907836 g279 2008 2265 759*2^3015314+1 907703 L5178 2021 2266 32582*3^1901790+1 907389 L5372 2021 2267 75*2^3012342+1 906808 L3941 2015 2268 459*2^3011814+1 906650 L5178 2021 2269 991*2^3010036+1 906115 L5326 2021 2270 583*2^3009698+1 906013 L5325 2021 2271 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2272 593*2^3006969+1 905191 L5178 2021 2273 367*2^3004536+1 904459 L5178 2021 2274 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2275 1003*2^3003756+1 904224 L5320 2021 2276 573*2^3002662+1 903895 L5319 2021 2277 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2278 329*2^3002295+1 903784 L5318 2021 2279 4*5^1292915-1 903710 L4965 2022 2280 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2281 268514*5^1292240-1 903243 L3562 2013 2282 7*10^902708+1 902709 p342 2013 2283 435*2^2997453+1 902326 L5167 2021 2284 583*2^2996526+1 902047 L5174 2021 2285 1037*2^2995695+1 901798 L5178 2021 2286 717*2^2995326+1 901686 L5178 2021 2287 885*2^2995274+1 901671 L5178 2021 2288 43*2^2994958+1 901574 L3222 2013 2289 1065*2^2994154+1 901334 L5315 2021 2290 561*2^2994132+1 901327 L5314 2021 2291 1095*2^2992587-1 900862 L1828 2011 2292 519*2^2991849+1 900640 L5311 2021 2293 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2294 459*2^2990134+1 900123 L5197 2021 2295 15*2^2988834+1 899730 p286 2012 2296 29*564^326765+1 899024 L4001 2017 2297 971*2^2982525+1 897833 L5197 2021 2298 1033*2^2980962+1 897362 L5305 2021 2299 39*2^2978894+1 896739 L2719 2013 2300 38*977^299737+1 896184 L5410 2021 2301 4348099*2^2976221-1 895939 L466 2008 2302 205833*2^2976222-411665 895938 L4667 2017 2303 18976*2^2976221-18975 895937 p373 2014 2304 2^2976221-1 895932 G2 1997 Mersenne 36 2305 1024*3^1877301+1 895704 p378 2014 2306 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2307 24704*3^1877135+1 895626 L5410 2021 2308 591*2^2975069+1 895588 L5299 2021 2309 249*2^2975002+1 895568 L2322 2015 2310 195*2^2972947+1 894949 L3234 2015 2311 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2312 391*2^2971600+1 894544 L5242 2021 2313 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2314 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2315 493*72^480933+1 893256 L3610 2014 2316 561*2^2964753+1 892483 L5161 2021 2317 1185*2^2964350+1 892362 L5161 2021 2318 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2319 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2320 21*2^2959789-1 890987 L5313 2021 2321 627*2^2959098+1 890781 L5197 2021 2322 45*2^2958002-1 890449 L1862 2017 2323 729*2^2955389+1 889664 L5282 2021 2324 198677*2^2950515+1 888199 L2121 2012 2325 88*985^296644+1 887987 L5410 2020 2326 303*2^2949403-1 887862 L1817 2022 2327 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2328 321*2^2946654-1 887034 L1817 2022 2329 17*2^2946584-1 887012 L3519 2013 2330 489*2^2944673+1 886438 L5167 2021 2331 141*2^2943065+1 885953 L3719 2015 2332 757*2^2942742+1 885857 L5261 2021 2333 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2334 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2335 33*2^2939063-1 884748 L3345 2013 2336 5903*2^2938744-1 884654 L4036 2015 2337 717*2^2937963+1 884418 L5256 2021 2338 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2339 243*2^2937316+1 884223 L4114 2015 2340 973*2^2937046+1 884142 L5253 2021 2341 61*2^2936967-1 884117 L2484 2017 2342 903*2^2934602+1 883407 L5246 2021 2343 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2344 188*228^374503+1 883056 L4786 2020 2345 53*248^368775+1 883016 L5196 2020 2346 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2347 17*326^350899+1 881887 L4786 2019 2348 855*2^2929550+1 881886 L5200 2021 2349 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2350 839*2^2928551+1 881585 L5242 2021 2351 7019*10^881309-1 881313 L3564 2013 2352 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2353 577*2^2925602+1 880697 L5201 2021 2354 97366*5^1259955-1 880676 L3567 2013 2355 973*2^2923062+1 879933 L5228 2021 2356 1126*177^391360+1 879770 L4955 2020 2357 243944*5^1258576-1 879713 L3566 2013 2358 693*2^2921528+1 879471 L5201 2021 2359 6*10^879313+1 879314 L5009 2019 2360 269*2^2918105+1 878440 L2715 2015 2361 331*2^2917844+1 878362 L5210 2021 2362 169*2^2917805-1 878350 L2484 2018 2363 1085*2^2916967+1 878098 L5174 2020 2364 389*2^2916499+1 877957 L5215 2020 2365 431*2^2916429+1 877936 L5214 2020 2366 1189*2^2916406+1 877929 L5174 2020 2367 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2368 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2369 465*2^2914079+1 877228 L5210 2020 2370 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2371 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2372 493*2^2912552+1 876769 L5192 2021 2373 143157*2^2911403+1 876425 L4504 2017 2374 567*2^2910402+1 876122 L5201 2020 2375 683*2^2909217+1 875765 L5199 2020 2376 674*249^365445+1 875682 L5410 2019 2377 475*2^2908802+1 875640 L5192 2021 2378 371*2^2907377+1 875211 L5197 2020 2379 207*2^2903535+1 874054 L3173 2015 2380 851*2^2902731+1 873813 L5177 2020 2381 777*2^2901907+1 873564 L5192 2020 2382 717*2^2900775+1 873224 L5185 2020 2383 99*2^2899303-1 872780 L1862 2017 2384 63*2^2898957+1 872675 L3262 2013 2385 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2386 747*2^2895307+1 871578 L5178 2020 2387 403*2^2894566+1 871354 L5180 2020 2388 629*2^2892961+1 870871 L5173 2020 2389 627*2^2891514+1 870436 L5168 2020 2390 325*2^2890955-1 870267 L5545 2022 2391 363*2^2890208+1 870042 L3261 2020 2392 471*2^2890148+1 870024 L5158 2020 2393 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2394 583*2^2889248+1 869754 L5139 2020 2395 955*2^2887934+1 869358 L4958 2020 2396 303*2^2887603-1 869258 L5184 2022 2397 937*2^2887130+1 869116 L5134 2020 2398 885*2^2886389+1 868893 L3924 2020 2399 763*2^2885928+1 868754 L2125 2020 2400 1071*2^2884844+1 868428 L3593 2020 2401 1181*2^2883981+1 868168 L3593 2020 2402 327*2^2881349-1 867375 L5545 2022 2403 51*2^2881227+1 867338 L3512 2013 2404 933*2^2879973+1 866962 L4951 2020 2405 261*2^2879941+1 866952 L4119 2015 2406 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2407 65*2^2876718-1 865981 L2484 2016 2408 21*948^290747-1 865500 L4985 2019 2409 4013*2^2873250-1 864939 L1959 2014 2410 41*2^2872058-1 864578 L2484 2013 2411 359*2^2870935+1 864241 L1300 2020 2412 165*2^2870868+1 864220 L4119 2015 2413 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2414 665*2^2869847+1 863913 L2885 2020 2415 283*2^2868750+1 863583 L3877 2015 2416 845*2^2868291+1 863445 L5100 2020 2417 3125*2^2867399+1 863177 L1754 2019 2418 701*2^2867141+1 863099 L1422 2020 2419 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2420d 119*954^289255+1 861852 L5410 2022 2421 307*2^2862962+1 861840 L4740 2020 2422 147*2^2862651+1 861746 L1741 2015 2423 1207*2^2861901-1 861522 L1828 2011 2424 231*2^2860725+1 861167 L2873 2015 2425 193*2^2858812+1 860591 L2997 2015 2426 629*2^2857891+1 860314 L3035 2020 2427 493*2^2857856+1 860304 L5087 2020 2428 241*2^2857313-1 860140 L2484 2018 2429 707*2^2856331+1 859845 L5084 2020 2430 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2431 949*2^2854946+1 859428 L2366 2020 2432 222361*2^2854840+1 859398 g403 2006 2433 725*2^2854661+1 859342 L5031 2020 2434 399*2^2851994+1 858539 L4099 2020 2435 225*2^2851959+1 858528 L3941 2015 2436 247*2^2851602+1 858421 L3865 2015 2437 183*2^2850321+1 858035 L2117 2015 2438 1191*2^2849315+1 857733 L1188 2020 2439 717*2^2848598+1 857517 L1204 2020 2440 795*2^2848360+1 857445 L4099 2020 2441 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2442 705*2^2846638+1 856927 L1808 2020 2443 369*2^2846547+1 856899 L4099 2020 2444 233*2^2846392-1 856852 L2484 2021 2445 955*2^2844974+1 856426 L1188 2020 2446 753*2^2844700+1 856343 L1204 2020 2447 11138*745^297992-1 855884 L4189 2019 2448 111*2^2841992+1 855527 L1792 2015 2449 44*744^297912-1 855478 L5410 2021 2450 649*2^2841318+1 855325 L4732 2020 2451 228*912^288954-1 855305 L5410 2022 2452 305*2^2840155+1 854975 L4907 2020 2453 1149*2^2839622+1 854815 L2042 2020 2454 95*2^2837909+1 854298 L3539 2013 2455 199*2^2835667-1 853624 L2484 2019 2456 595*2^2833406+1 852943 L4343 2020 2457 1101*2^2832061+1 852539 L4930 2020 2458 813*2^2831757+1 852447 L4951 2020 2459 435*2^2831709+1 852432 L4951 2020 2460 543*2^2828217+1 851381 L4746 2019 2461 704*249^354745+1 850043 L5410 2019 2462 1001*2^2822037+1 849521 L1209 2019 2463 84466*5^1215373-1 849515 L3562 2013 2464 97*2^2820650+1 849103 L2163 2013 2465 107*2^2819922-1 848884 L2484 2013 2466 84256*3^1778899+1 848756 L4789 2018 2467 45472*3^1778899-1 848756 L4789 2018 2468 14804*3^1778530+1 848579 L4064 2021 2469 497*2^2818787+1 848543 L4842 2019 2470 97*2^2818306+1 848397 L3262 2013 2471 313*2^2817751-1 848231 L802 2021 2472 177*2^2816050+1 847718 L129 2012 2473 553*2^2815596+1 847582 L4980 2019 2474 1071*2^2814469+1 847243 L3035 2019 2475 105*2^2813000+1 846800 L3200 2015 2476 1115*2^2812911+1 846774 L1125 2019 2477 96*10^846519-1 846521 L2425 2011 Near-repdigit 2478 763*2^2811726+1 846417 L3919 2019 2479 1125*2^2811598+1 846379 L4981 2019 2480 891*2^2810100+1 845928 L4981 2019 2481 441*2^2809881+1 845862 L4980 2019 2482 711*2^2808473+1 845438 L1502 2019 2483 1089*2^2808231+1 845365 L4687 2019 2484 63*2^2807130+1 845033 L3262 2013 2485 1083*2^2806536+1 844855 L3035 2019 2486 675*2^2805669+1 844594 L1932 2019 2487 819*2^2805389+1 844510 L3372 2019 2488 1027*2^2805222+1 844459 L3035 2019 2489 437*2^2803775+1 844024 L3168 2019 2490 4431*372^327835-1 842718 L5410 2019 2491 150344*5^1205508-1 842620 L3547 2013 2492 311*2^2798459+1 842423 L4970 2019 2493 81*2^2797443-1 842117 L3887 2021 2494 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2495 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2496 43*2^2795582+1 841556 L2842 2013 2497 1001*2^2794357+1 841189 L1675 2019 2498 117*2^2794014+1 841085 L1741 2015 2499 1057*2^2792700+1 840690 L1675 2019 2500 345*2^2792269+1 840560 L1754 2019 2501 711*2^2792072+1 840501 L4256 2019 2502 315*2^2791414-1 840302 L2235 2021 2503 973*2^2789516+1 839731 L3372 2019 2504 27602*3^1759590+1 839543 L4064 2021 2505 2187*2^2786802+1 838915 L1745 2019 2506 15*2^2785940+1 838653 p286 2012 2507 333*2^2785626-1 838560 L802 2021 2508 1337*2^2785444-1 838506 L4518 2017 2509 711*2^2784213+1 838135 L4687 2019 2510 58582*91^427818+1 838118 L5410 2020 2511 923*2^2783153+1 837816 L1675 2019 2512 1103*2^2783149+1 837815 L3784 2019 2513 485*2^2778151+1 836310 L1745 2019 2514 600921*2^2776014-1 835670 g337 2017 2515 1129*2^2774934+1 835342 L1774 2019 2516 750*1017^277556-1 834703 L4955 2021 2517 8700*241^350384-1 834625 L5410 2019 2518 1023*2^2772512+1 834613 L4724 2019 2519 656*249^348030+1 833953 L5410 2019 2520 92*10^833852-1 833854 L4789 2018 Near-repdigit 2521 437*2^2769299+1 833645 L3760 2019 2522 967*2^2768408+1 833377 L3760 2019 2523 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2524 1171*2^2768112+1 833288 L2676 2019 2525 57*2^2765963+1 832640 L3262 2013 2526 1323*2^2764024+1 832058 L1115 2019 2527 77*2^2762047+1 831461 L3430 2013 2528 745*2^2761514+1 831302 L1204 2019 2529 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2530 7*10^830865+1 830866 p342 2014 2531 893*2^2758841+1 830497 L4826 2019 2532 537*2^2755164+1 829390 L3035 2019 2533 579*2^2754370+1 829151 L1823 2019 2534 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2535 215*2^2751022-1 828143 L2484 2018 2536 337*2^2750860+1 828094 L4854 2019 2537 701*2^2750267+1 827916 L3784 2019 2538 467*2^2749195+1 827593 L1745 2019 2539 245*2^2748663+1 827433 L3173 2015 2540 591*2^2748315+1 827329 L3029 2019 2541 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2542d 1007*2^2747268-1 827014 L4518 2022 2543 1089*2^2746155+1 826679 L2583 2019 2544 707*2^2745815+1 826576 L3760 2019 2545 459*2^2742310+1 825521 L4582 2019 2546 777*2^2742196+1 825487 L3919 2019 2547 609*2^2741078+1 825150 L3091 2019 2548 684*157^375674+1 824946 L5112 2022 2549 639*2^2740186+1 824881 L4958 2019 2550 905*2^2739805+1 824767 L4958 2019 2551d 119*954^276761+1 824625 L5410 2022 2552 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2553 777*2^2737282+1 824007 L1823 2019 2554 765*2^2735232+1 823390 L1823 2019 2555 609*2^2735031+1 823330 L1823 2019 2556 305*2^2733989+1 823016 L1823 2019 2557 165*2^2732983+1 822713 L1741 2015 2558 1133*2^2731993+1 822415 L4687 2019 2559 251*2^2730917+1 822091 L3924 2015 2560 1185*2^2730620+1 822002 L4948 2019 2561 (10^410997+1)^2-2 821995 p405 2022 2562 173*2^2729905+1 821786 L3895 2015 2563 1981*2^2728877-1 821478 L1134 2018 2564 693*2^2728537+1 821375 L3035 2019 2565 501*2^2728224+1 821280 L3035 2019 2566 763*2^2727928+1 821192 L3924 2019 2567 10*743^285478+1 819606 L4955 2019 2568 17*2^2721830-1 819354 p279 2010 2569 1006*639^291952+1 819075 L4444 2021 2570 1101*2^2720091+1 818833 L4935 2019 2571 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2572 165*2^2717378-1 818015 L2055 2012 2573 68633*2^2715609+1 817485 L5105 2020 2574 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2575 9574*5^1169232+1 817263 L5410 2021 2576 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2577 133*2^2713410+1 816820 L3223 2015 2578 45*2^2711732+1 816315 L1349 2012 2579 569*2^2711451+1 816231 L4568 2019 2580 12830*3^1709456+1 815622 L5410 2021 2581 335*2^2708958-1 815481 L2235 2020 2582 93*2^2708718-1 815408 L1862 2016 2583 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2584 837*2^2708160+1 815241 L4314 2019 2585 1005*2^2707268+1 814972 L4687 2019 2586 13*458^306196+1 814748 L3610 2015 2587 253*2^2705844+1 814543 L4083 2015 2588 657*2^2705620+1 814476 L4907 2019 2589 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2590 303*2^2703864+1 813947 L1204 2019 2591 141*2^2702160+1 813434 L1741 2015 2592 753*2^2701925+1 813364 L4314 2019 2593 133*2^2701452+1 813221 L3173 2015 2594 521*2^2700095+1 812813 L4854 2019 2595 393*2^2698956+1 812470 L1823 2019 2596 417*2^2698652+1 812378 L3035 2019 2597 525*2^2698118+1 812218 L1823 2019 2598 3125*2^2697651+1 812078 L3924 2019 2599 153*2^2697173+1 811933 L3865 2015 2600 1560730^131072+1 811772 L4201 2015 Generalized Fermat 2601 26*3^1700041+1 811128 L4799 2020 2602 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 2603 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 2604 58*536^296735-1 809841 L5410 2021 2605 33016*3^1696980+1 809670 L5366 2021 2606 7335*2^2689080-1 809498 L4036 2015 2607 1049*2^2688749+1 809398 L4869 2018 2608 329*2^2688221+1 809238 L3035 2018 2609 865*2^2687434+1 809002 L4844 2018 2610 989*2^2686591+1 808748 L2805 2018 2611 136*904^273532+1 808609 L5410 2020 2612 243*2^2685873+1 808531 L3865 2015 2613 909*2^2685019+1 808275 L3431 2018 2614 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 2615 1455*2^2683953-1 807954 L1134 2020 2616 11210*241^339153-1 807873 L5410 2019 2617 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 2618 975*2^2681840+1 807318 L4155 2018 2619 999*2^2681353-1 807171 L4518 2022 2620 295*2^2680932+1 807044 L1741 2015 2621 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 2622 575*2^2679711+1 806677 L2125 2018 2623 2386*52^469972+1 806477 L4955 2019 2624 219*2^2676229+1 805628 L1792 2015 2625 637*2^2675976+1 805552 L3035 2018 2626 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 2627 951*2^2674564+1 805127 L1885 2018 2628 1372930^131072+1 804474 g236 2003 Generalized Fermat 2629 662*1009^267747-1 804286 L5410 2020 2630 261*2^2671677+1 804258 L3035 2015 2631 895*2^2671520+1 804211 L3035 2018 2632 1361244^131072+1 803988 g236 2004 Generalized Fermat 2633 789*2^2670409+1 803877 L3035 2018 2634 256*11^771408+1 803342 L3802 2014 Generalized Fermat 2635 503*2^2668529+1 803310 L4844 2018 2636 255*2^2668448+1 803286 L1129 2015 2637 4189*2^2666639-1 802742 L1959 2017 2638 539*2^2664603+1 802129 L4717 2018 2639f 3^1681130+3^445781+1 802103 CH9 2022 2640 26036*745^279261-1 802086 L4189 2020 2641 1396*5^1146713-1 801522 L3547 2013 2642 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 2643 51*892^271541+1 801147 L5410 2019 2644 297*2^2660048+1 800757 L3865 2015 2645 99*2^2658496-1 800290 L1862 2021 2646 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 2647 334310*211^334310-1 777037 p350 2012 Generalized Woodall 2648 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 2649 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 2650 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 2651 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 2652 1183953*2^2367907-1 712818 L447 2007 Woodall 2653 150209!+1 712355 p3 2011 Factorial 2654 147855!-1 700177 p362 2013 Factorial 2655 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 2656 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 2657 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 2658 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 2659 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 2660 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 2661 404882*43^404882-1 661368 p310 2011 Generalized Woodall 2662 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 2663 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 2664 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 2665 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 2666 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 2667 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 2668 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 2669 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 2670 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 2671 292402*159^292402+1 643699 g407 2012 Generalized Cullen 2672 93*10^642225-1 642227 L4789 2020 Near-repdigit 2673 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 2674 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 2675 563528*13^563528-1 627745 p262 2009 Generalized Woodall 2676 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 2677 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 2678 269328*211^269328+1 626000 p354 2012 Generalized Cullen 2679 8*10^608989-1 608990 p297 2011 Near-repdigit 2680 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 2681 251749*2^2013995-1 606279 L436 2007 Woodall 2682 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 2683 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 2684 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 2685 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 2686 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 2687 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 2688 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 2689 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 2690 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 2691 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 2692 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 2693 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 2694 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 2695 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 2696 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 2697 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 2698 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 2699 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 2700 110059!+1 507082 p312 2011 Factorial 2701 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 2702 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 2703 30981*14^433735-1 497121 p77 2015 Generalized Woodall 2704 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 2705 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 2706 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 2707 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 2708 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 2709 1098133#-1 476311 p346 2012 Primorial 2710 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 2711 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 2712 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 2713 103040!-1 471794 p301 2010 Factorial 2714 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 2715 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 2716 341351*22^341351-1 458243 p260 2017 Generalized Woodall 2717 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 2718 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 2719 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 2720 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 2721 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 2722 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 2723 176660*18^353320-1 443519 p325 2011 Generalized Woodall 2724 1467763*2^1467763-1 441847 L381 2007 Woodall 2725 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 2726 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 2727 94550!-1 429390 p290 2010 Factorial 2728 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 2729 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 2730 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 2731 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 2732 2^1398269-1 420921 G1 1996 Mersenne 35 2733 182402*14^364804-1 418118 p325 2011 Generalized Woodall 2734 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 2735 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 2736 338707*2^1354830+1 407850 L124 2005 Cullen 2737 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 2738 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 2739 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 2740 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 2741 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 2742 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 2743 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 2744 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 2745 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 2746 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 2747 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 2748 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 2749 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 2750 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 2751 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 2752 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 2753 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 2754 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 2755 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 2756 1268979*2^1268979-1 382007 L201 2007 Woodall 2757 2^1257787-1 378632 SG 1996 Mersenne 34 2758 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 2759 843301#-1 365851 p302 2010 Primorial 2760 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 2761 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 2762 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 2763 1195203*2^1195203-1 359799 L124 2005 Woodall 2764 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 2765 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 2766 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 2767 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 2768 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 2769 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 2770 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 2771 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 2772 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 2773 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 2774 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 2775 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 2776 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 2777 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 2778 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 2779 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 2780 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 2781 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 2782 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 2783 2^859433-1 258716 SG 1994 Mersenne 33 2784 2^756839-1 227832 SG 1992 Mersenne 32 2785 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 2786 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 2787 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 2788 667071*2^667071-1 200815 g55 2000 Woodall 2789 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 2790 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 2791 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 2792 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 2793 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 2794 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 2795 392113#+1 169966 p16 2001 Primorial 2796 366439#+1 158936 p16 2001 Primorial 2797 481899*2^481899+1 145072 gm 1998 Cullen 2798 34790!-1 142891 p85 2002 Factorial 2799 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 2800 361275*2^361275+1 108761 DS 1998 Cullen 2801 26951!+1 107707 p65 2002 Factorial 2802 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 2803 65516468355*2^333333-1 100355 L923 2009 Twin (p) 2804 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 2805 21480!-1 83727 p65 2001 Factorial 2806 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 2807 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 2808 262419*2^262419+1 79002 DS 1998 Cullen 2809 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 2810 160204065*2^262148-1 78923 L5115 2021 Twin (p) 2811 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 2812 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 2813 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2814 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 2815 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 2816 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 2817 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 2818 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 2819 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 2820 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 2821 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 2822 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 2823 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 2824 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 2825 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 2826 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 2827 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 2828 12770275971*2^222225-1 66907 L527 2017 Twin (p) 2829 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 2830 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 2831 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 2832 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 2833 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 2834 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 2835 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 2836 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 2837 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 2838 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 2839 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 2840 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 2841 145823#+1 63142 p21 2000 Primorial 2842 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 2843 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 2844 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 2845 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 2846 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 2847 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 2848 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 2849 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 2850 70965694293*2^200006-1 60219 L95 2016 Twin (p) 2851 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 2852 66444866235*2^200003-1 60218 L95 2016 Twin (p) 2853 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 2854 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 2855 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 2856 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 2857 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 2858 2003663613*2^195000-1 58711 L202 2007 Twin (p) 2859 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 2860f Ramanujan tau function at 199^4518 ECPP 57125 E3 2022 ECPP 2861 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 2862 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 2863 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 2864 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 2865 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 2866 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 2867 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 2868 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 2869 17976255129*2^183241-1 55172 p415 2021 Twin (p) 2870 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 2871 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 2872 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 2873 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 2874 191547657*2^173372-1 52199 L5116 2020 Twin (p) 2875 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 2876 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 2877 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 2878 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 2879 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 2880 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 2881 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 2882 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 2883 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 2884 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 2885 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 2886 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 2887 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 2888 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 2889 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 2890 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 2891 33218925*2^169690-1 51090 g259 2002 Twin (p) 2892 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 2893 10^50000+65859 50001 E3 2022 ECPP 2894 R(49081) 49081 c70 2022 Repunit, unique, ECPP 2895 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 2896 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 2897 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 2898 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 2899 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 2900 110427610*3^100003-1 47722 p415 2021 Twin (p) 2901 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 2902 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 2903 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 2904 3706785456*13^42069-1 46873 p412 2020 Twin (p) 2905 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 2906 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 2907 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 2908 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 2909 151023*2^151023-1 45468 g25 1998 Woodall 2910 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 2911 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 2912 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 2913 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 2914 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 2915 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 2916 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 2917 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 2918 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 2919 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 2920 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 2921 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 2922 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 2923 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 2924 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 2925 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 2926 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 2927 10^40000+14253 40001 E3 2022 ECPP 2928 p(1289844341) 40000 c84 2020 Partitions, ECPP 2929 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 2930 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 2931 tau(47^4176) 38404 E3 2022 ECPP 2932 3^78296+479975120078336 37357 E4 2022 ECPP 2933 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 2934 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 2935 p(1000007396) 35219 E4 2022 Partitions, ECPP 2936 2^116224-15905 34987 c87 2017 ECPP 2937 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 2938 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 2939 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 2940 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 2941 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 2942 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 2943 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 2944 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 2945 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 2946 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 2947 (18^25667-1)/17 32218 E5 2022 Generalized repunit, ECPP 2948 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 2949 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 2950 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 2951 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 2952 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 2953 V(148091) 30950 c81 2015 Lucas number, ECPP 2954 U(148091) 30949 x49 2021 Fibonacci number, ECPP 2955e Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 2956 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 2957f 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 2958 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 2959 2^99069+9814666761 29823 E4 2022 ECPP 2960 49363*2^98727-1 29725 Y 1997 Woodall 2961 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 2962 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 2963 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 2964 V(140057) 29271 c76 2014 Lucas number,ECPP 2965 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 2966 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 2967 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 2968 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 2969 primV(205011) 28552 x39 2009 Lucas primitive part 2970 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 2971 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 2972 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 2973 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 2974 90825*2^90825+1 27347 Y 1997 Cullen 2975 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 2976 U(130021) 27173 x48 2021 Fibonacci number, ECPP 2977 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 2978 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 2979 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 2980 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 2981 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 2982e (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 2983 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 2984 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 2985 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 2986 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 2987 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 2988 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 2989 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 2990 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 2991 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 2992 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 2993 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 2994 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 2995 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 2996 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 2997 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 2998 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 2999 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 3000 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 3001 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 3002 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 3003 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 3004 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 3005 6917!-1 23560 g1 1998 Factorial 3006 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 3007 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 3008 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 3009 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 3010 p(398256632) 22223 E1 2022 Partitions, ECPP 3011 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 3012 U(104911) 21925 c82 2015 Fibonacci number, ECPP 3013 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 3014 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 3015 6380!+1 21507 g1 1998 Factorial 3016 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 3017 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 3018 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 3019 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 3020 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 3021 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 3022 p(355646102) 21000 E1 2022 Partitions, ECPP 3023 p(350199893) 20838 E7 2022 Partitions, ECPP 3024 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 3025f primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 3026f primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 3027 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 3028 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 3029 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 3030 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 3031 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 3032 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 3033 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 3034 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 3035 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 3036 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 3037 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 3038 p(322610098) 20000 E1 2022 Partitions, ECPP 3039 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 3040 V(94823) 19817 c73 2014 Lucas number, ECPP 3041 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 3042 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 3043 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 3044 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 3045 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 3046 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 3047 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 3048 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 3049 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 3050 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 3051 V(89849) 18778 c70 2014 Lucas number, ECPP 3052 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 3053 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 3054 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 3055 Phi(18827,10) 18480 c47 2014 Unique, ECPP 3056 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3057 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 3058 42209#+1 18241 p8 1999 Primorial 3059 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 3060 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 3061 7457*2^59659+1 17964 Y 1997 Cullen 3062 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3063 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 3064 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 3065 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 3066 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 3067 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 3068 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 3069 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 3070 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 3071 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 3072 U(81839) 17103 p54 2001 Fibonacci number 3073 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 3074 V(81671) 17069 c66 2013 Lucas number, ECPP 3075 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 3076 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 3077 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 3078 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 3079 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 3080 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 3081 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 3082 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 3083 p(221444161) 16569 c77 2017 Partitions, ECPP 3084 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 3085 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3086 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 3087 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 3088 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 3089 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 3090 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 3091 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3092 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 3093 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 3094 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 3095 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 3096 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 3097 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 3098 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 3099 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 3100 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 3101 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3102 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 3103 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3104 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 3105 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 3106 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 3107 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 3108 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 3109 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3110 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 3111 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 3112 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 3113 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 3114 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 3115 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3116 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 3117 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 3118 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3119 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 3120 p(158375386) 14011 E1 2022 Partitions, ECPP 3121 p(158295265) 14007 E1 2022 Partitions, ECPP 3122 p(158221457) 14004 E1 2022 Partitions, ECPP 3123 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 3124 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 3125 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 3126 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 3127 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 3128 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 3129 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3130 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 3131 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 3132 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 3133 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 3134 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 3135 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 3136 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 3137 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 3138 p(141528106) 13244 E6 2022 Partitions, ECPP 3139 p(141513546) 13244 E6 2022 Partitions, ECPP 3140 p(141512238) 13244 E6 2022 Partitions, ECPP 3141 p(141255053) 13232 E6 2022 Partitions, ECPP 3142 p(141150528) 13227 E6 2022 Partitions, ECPP 3143 p(141112026) 13225 E6 2022 Partitions, ECPP 3144 p(141111278) 13225 E6 2022 Partitions, ECPP 3145 p(140859260) 13213 E6 2022 Partitions, ECPP 3146 p(140807155) 13211 E6 2022 Partitions, ECPP 3147 p(140791396) 13210 E6 2022 Partitions, ECPP 3148 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 3149 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3150 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 3151 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 3152 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 3153 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3154 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3155 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 3156 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 3157 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 3158 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 3159 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 3160 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 3161 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 3162 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 3163 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 3164 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 3165 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 3166 V(56003) 11704 p193 2006 Lucas number 3167 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 3168 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 3169 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 3170 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 3171 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 3172 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 3173 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 3174 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 3175 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 3176 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 3177 primU(67825) 11336 x23 2007 Fibonacci primitive part 3178 3610!-1 11277 C 1993 Factorial 3179 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 3180 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 3181 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 3182 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 3183 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 3184 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 3185 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 3186 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 3187 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 3188 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 3189 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 3190 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 3191 3507!-1 10912 C 1992 Factorial 3192 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 3193 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 3194 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 3195 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 3196 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 3197 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 3198 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 3199 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 3200 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 3201 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 3202 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 3203 V(51169) 10694 p54 2001 Lucas number 3204 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 3205 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 3206 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 3207 U(50833) 10624 CH4 2005 Fibonacci number 3208 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 3209 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 3210 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 3211 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 3212 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 3213 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 3214 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 3215 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 3216 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3217 24029#+1 10387 C 1993 Primorial 3218 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 3219 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 3220 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 3221 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 3222 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 3223 23801#+1 10273 C 1993 Primorial 3224 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 3225 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 3226 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 3227 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 3228 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 3229 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 3230 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 3231 32469*2^32469+1 9779 MM 1997 Cullen 3232 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 3233 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 3234 8073*2^32294+1 9726 MM 1997 Cullen 3235 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 3236 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 3237 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 3238 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3239 V(44507) 9302 CH3 2005 Lucas number 3240 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 3241 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 3242 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 3243 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 3244 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 3245 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3246 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 3247 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 3248 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 3249 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 3250 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 3251 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 3252 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 3253 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 3254 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3255 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 3256 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3257 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 3258 18523#+1 8002 D 1989 Primorial 3259 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 3260 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 3261 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 3262 U(37511) 7839 x13 2005 Fibonacci number 3263 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 3264 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 3265 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 3266 V(36779) 7687 CH3 2005 Lucas number 3267 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 3268 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 3269 V(35449) 7409 p12 2001 Lucas number 3270 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 3271 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 3272 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 3273 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 3274 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 3275 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 3276 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 3277 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 3278 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 3279 23005*2^23005-1 6930 Y 1997 Woodall 3280 22971*2^22971-1 6920 Y 1997 Woodall 3281 15877#-1 6845 CD 1992 Primorial 3282 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 3283 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 3284 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 3285 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 3286 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 3287 13649#+1 5862 D 1987 Primorial 3288 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 3289 18885*2^18885-1 5690 K 1987 Woodall 3290 1963!-1 5614 CD 1992 Factorial 3291 13033#-1 5610 CD 1992 Primorial 3292 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 3293 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 3294 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 3295 U(25561) 5342 p54 2001 Fibonacci number 3296 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 3297 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 3298 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 3299 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 3300 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 3301 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 3302 11549#+1 4951 D 1986 Primorial 3303 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 3304 7911*2^15823-1 4768 K 1987 Woodall 3305 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 3306 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 3307 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3308 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3309 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 3310 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 3311 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 3312 1477!+1 4042 D 1984 Factorial 3313 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 3314 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 3315 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 3316 12379*2^12379-1 3731 K 1984 Woodall 3317 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 3318 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 3319 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 3320 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 3321 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 3322 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 3323 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 3324 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 3325 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 3326 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 3327 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 3328 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 3329 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 3330 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 3331 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 3332 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 3333 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 3334 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3335 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 3336 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 3337 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 3338 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 3339 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 3340 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 3341 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 3342 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 3343 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 3344 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3345 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 3346 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 3347 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 3348 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 3349 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 3350 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 3351 V(14449) 3020 DK 1995 Lucas number 3352 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 3353 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 3354 U(14431) 3016 p54 2001 Fibonacci number 3355 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 3356 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3357 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3358 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3359 V(13963) 2919 c11 2002 Lucas number, ECPP 3360 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 3361 9531*2^9531-1 2874 K 1984 Woodall 3362 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 3363 6569#-1 2811 D 1992 Primorial 3364 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 3365 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 3366 V(12251) 2561 p54 2001 Lucas number 3367 974!-1 2490 CD 1992 Factorial 3368 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 3369 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 3370 7755*2^7755-1 2339 K 1984 Woodall 3371 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 3372 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 3373 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 3374 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 3375 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 3376 V(10691) 2235 DK 1995 Lucas number 3377 872!+1 2188 D 1983 Factorial 3378 -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 3379 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 3380 4787#+1 2038 D 1984 Primorial 3381 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 3382 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 3383 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 3384 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 3385 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 3386 U(9677) 2023 c2 2000 Fibonacci number, ECPP 3387 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 3388 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 3389 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 3390 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 3391 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 3392 6611*2^6611+1 1994 K 1984 Cullen 3393 4583#-1 1953 D 1992 Primorial 3394 U(9311) 1946 DK 1995 Fibonacci number 3395 4547#+1 1939 D 1984 Primorial 3396 4297#-1 1844 D 1992 Primorial 3397 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 3398 V(8467) 1770 c2 2000 Lucas number, ECPP 3399 4093#-1 1750 CD 1992 Primorial 3400 5795*2^5795+1 1749 K 1984 Cullen 3401 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 3402 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 3403 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 3404 V(7741) 1618 DK 1995 Lucas number 3405 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 3406 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 3407 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 3408 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 3409 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 3410 83*2^5318-1 1603 K 1984 Woodall 3411 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 3412 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 3413 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 3414 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 3415 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 3416 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3417 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 3418 4713*2^4713+1 1423 K 1984 Cullen 3419 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3420 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 3421 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3422 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 3423 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 3424 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 3425 V(5851) 1223 DK 1995 Lucas number 3426 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 3427 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 3428 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 3429 U(5387) 1126 WM 1990 Fibonacci number 3430 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 3431 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 3432 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 3433 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 3434 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 3435 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 3436 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 3437 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 3438 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 3439 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 3440 R(1031) 1031 WD 1985 Repunit 3441 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 3442 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 3443 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 3444 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 3445 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 3446 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 3447 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 3448 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 3449 V(4793) 1002 DK 1995 Lucas number 3450 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 3451 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 3452 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 3453 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 3454 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 3455 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe gm Morii, Proth.exe K Keller L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5389 Doornink, TwinGen, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young