THE LARGEST KNOWN PRIMES (Primes with 700,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell (Sun Jan 17 03:51:03 CST 2021) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: http://primes.utm.edu/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: http://primes.utm.edu/primes/ See the last pages for information about the provers. Professor Chris K. Caldwell Mathematics and Statistics caldwell@utm.edu University of Tennessee at Martin http://www.utm.edu/~caldwell/ Martin, TN 38238, USA The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48? 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7 2^37156667-1 11185272 G11 2008 Mersenne 45 8 2^32582657-1 9808358 G9 2006 Mersenne 44 9 10223*2^31172165+1 9383761 SB12 2016 10 2^30402457-1 9152052 G9 2005 Mersenne 43 11 2^25964951-1 7816230 G8 2005 Mersenne 42 12 2^24036583-1 7235733 G7 2004 Mersenne 41 13 2^20996011-1 6320430 G6 2003 Mersenne 40 14 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 15 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 16 168451*2^19375200+1 5832522 L4676 2017 17d 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 18 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 19 7*6^6772401+1 5269954 L4965 2019 20 8508301*2^17016603-1 5122515 L4784 2018 Woodall 21d 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 22 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 23 6*5^6546983+1 4576146 L4965 2020 24 6962*31^2863120-1 4269952 L4944 2020 25 99739*2^14019102+1 4220176 L5008 2019 26 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 27 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 28 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 29 2^13466917-1 4053946 G5 2001 Mersenne 39 30 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 31 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 32 19249*2^13018586+1 3918990 SB10 2007 33 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 34 3*2^11895718-1 3580969 L4159 2015 35 3*2^11731850-1 3531640 L4103 2015 36b 69*2^11718455-1 3527609 L4965 2020 37b 69*2^11604348-1 3493259 L4965 2020 38 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 39 3*2^11484018-1 3457035 L3993 2014 40 193997*2^11452891+1 3447670 L4398 2018 41 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 42 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 43 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 44c 146561*2^11280802-1 3395865 L5181 2020 45 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 46 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 47 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 48 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 49 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 50 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 51 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 52 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 53 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 54 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 55 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 56 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 57 475856^524288+1 2976633 L3230 2012 Generalized Fermat 58f 9*2^9778263+1 2943552 L4965 2020 59 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 60 356926^524288+1 2911151 L3209 2012 Generalized Fermat 61 341112^524288+1 2900832 L3184 2012 Generalized Fermat 62c 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 63 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 64 27653*2^9167433+1 2759677 SB8 2005 65 90527*2^9162167+1 2758093 L1460 2010 66 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 67 13*2^8989858+1 2706219 L4965 2020 68 273809*2^8932416-1 2688931 L1056 2017 69 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 70 2038*366^1028507-1 2636562 L2054 2016 71 75898^524288+1 2558647 p334 2011 Generalized Fermat 72 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 73 11*2^7971110-1 2399545 L2484 2019 74a 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 75a 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 76 7*6^3072198+1 2390636 L4965 2019 77a 3765*2^7904593-1 2379524 L4965 2021 78a 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 79 28433*2^7830457+1 2357207 SB7 2004 80a 2545*2^7732265-1 2327648 L4965 2021 81a 5539*2^7730709-1 2327180 L4965 2021 82 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 83b 45*2^7661004+1 2306194 L5200 2020 84b 15*2^7619838+1 2293801 L5192 2020 85a 3597*2^7580693-1 2282020 L4965 2021 86c 45*2^7513661+1 2261839 L5179 2020 87 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 88d 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 89f 109838*5^3168862-1 2214945 L5129 2020 90 101*2^7345194-1 2211126 L1884 2019 91d 15*2^7300254+1 2197597 L5167 2020 92 737*2^7269322-1 2188287 L4665 2017 93 118568*5^3112069+1 2175248 L690 2020 94 502573*2^7181987-1 2162000 L3964 2014 95 402539*2^7173024-1 2159301 L3961 2014 96 3343*2^7166019-1 2157191 L1884 2016 97 161041*2^7107964+1 2139716 L4034 2015 98 27*2^7046834+1 2121310 L3483 2018 99a 327*2^7044001-1 2120459 L4965 2021 100 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 101 33661*2^7031232+1 2116617 SB11 2007 102 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 103 207494*5^3017502-1 2109149 L5083 2020 104 2^6972593-1 2098960 G4 1999 Mersenne 38 105a 6219*2^6958945-1 2094855 L4965 2021 106 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 107 238694*5^2979422-1 2082532 L5081 2020 108 4*72^1119849-1 2079933 L4444 2016 109 146264*5^2953282-1 2064261 L1056 2020 110 69*2^6838971-1 2058738 L5037 2020 111 35816*5^2945294-1 2058677 L5076 2020 112 127*2^6836153-1 2057890 L1862 2018 113d 19*2^6833086+1 2056966 L5166 2020 114 40597*2^6808509-1 2049571 L3749 2013 115 283*2^6804731-1 2048431 L2484 2020 116b 1861709*2^6789999+1 2044000 L5191 2020 117a 5781*2^6789459-1 2043835 L4965 2021 118a 8435*2^6786180-1 2042848 L4965 2021 119 51*2^6753404+1 2032979 L4965 2020 120b 9995*2^6711008-1 2020219 L4965 2020 121d 39*2^6684941+1 2012370 L5162 2020 122 6679881*2^6679881+1 2010852 L917 2009 Cullen 123 37*2^6660841-1 2005115 L3933 2014 124d 39*2^6648997+1 2001550 L5161 2020 125 304207*2^6643565-1 1999918 L3547 2013 126 69*2^6639971-1 1998833 L5037 2020 127a 1319*2^6506224-1 1958572 L4965 2021 128 322498*5^2800819-1 1957694 L4954 2019 129 88444*5^2799269-1 1956611 L3523 2019 130 13*2^6481780+1 1951212 L4965 2020 131 138514*5^2771922+1 1937496 L4937 2019 132 398023*2^6418059-1 1932034 L3659 2013 133 1582137*2^6328550+1 1905090 L801 2009 Cullen 134a 3303*2^6264946-1 1885941 L4965 2021 135 7*6^2396573+1 1864898 L4965 2019 136a 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 137b 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 138b 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 139b 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 140f 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 141e 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 142f 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 143 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 144 194368*5^2638045-1 1843920 L690 2018 145 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 146 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 147 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 148 66916*5^2628609-1 1837324 L690 2018 149 3*2^6090515-1 1833429 L1353 2010 150 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 151 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 152 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 153 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 154 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 155 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 156a 9999*2^6037057-1 1817340 L4965 2021 157 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 158 1583*2^5989282-1 1802957 L4036 2015 159 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 160 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 161 327926*5^2542838-1 1777374 L4807 2018 162 81556*5^2539960+1 1775361 L4809 2018 163 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 164 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 165f 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 166 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 167 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 168 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 169 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 170 7*2^5775996+1 1738749 L3325 2012 171 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 172 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 173 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 174 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 175 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 176 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 177f 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 178 1243*2^5686715-1 1711875 L1828 2016 179 41*2^5651731+1 1701343 L1204 2020 180 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 181 9*2^5642513+1 1698567 L3432 2013 182e 10*3^3550446+1 1693995 L4965 2020 183 2622*11^1621920-1 1689060 L2054 2015 184 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 185 301562*5^2408646-1 1683577 L4675 2017 186 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 187 171362*5^2400996-1 1678230 L4669 2017 188 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 189 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 190 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 191 252191*2^5497878-1 1655032 L3183 2012 192 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 193 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 194 258317*2^5450519+1 1640776 g414 2008 195 7*6^2104746+1 1637812 L4965 2019 196 5*2^5429494-1 1634442 L3345 2017 197 43*2^5408183-1 1628027 L1884 2018 198 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 199 1349*2^5385004-1 1621051 L1828 2017 200 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 201 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 202 45*2^5308037+1 1597881 L4761 2019 203 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 204 180062*5^2249192-1 1572123 L4435 2016 205 124125*6^2018254+1 1570512 L4001 2019 206 27*2^5213635+1 1569462 L3760 2015 207f 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 208 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 209 25*2^5152151-1 1550954 L1884 2020 210 53546*5^2216664-1 1549387 L4398 2016 211 773620^262144+1 1543643 L3118 2012 Generalized Fermat 212 39*2^5119458+1 1541113 L1204 2019 213 223*2^5105835-1 1537012 L2484 2019 214 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 215 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 216 51*2^5085142-1 1530782 L760 2014 217 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 218 676754^262144+1 1528413 L2975 2012 Generalized Fermat 219 296024*5^2185270-1 1527444 L671 2016 220 5359*2^5054502+1 1521561 SB6 2003 221 13*2^4998362+1 1504659 L3917 2014 222 525094^262144+1 1499526 p338 2012 Generalized Fermat 223 92158*5^2145024+1 1499313 L4348 2016 224 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 225 77072*5^2139921+1 1495746 L4340 2016 226 2*3^3123036+1 1490068 L5043 2020 227 306398*5^2112410-1 1476517 L4274 2016 228 265711*2^4858008+1 1462412 g414 2008 229 154222*5^2091432+1 1461854 L3523 2015 230 1271*2^4850526-1 1460157 L1828 2012 231 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 232 361658^262144+1 1457075 p332 2011 Generalized Fermat 233 100186*5^2079747-1 1453686 L4197 2015 234 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 235 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 236b 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 237 653*10^1435026-1 1435029 p355 2014 238 188*468^535963+1 1431156 L4832 2019 239e 100*406^543228+1 1417027 L4944 2020 Generalized Fermat 240 1229*2^4703492-1 1415896 L1828 2018 241 144052*5^2018290+1 1410730 L4146 2015 242 9*2^4683555-1 1409892 L1828 2012 243 31*2^4673544+1 1406879 L4990 2019 244 34*993^469245+1 1406305 L4806 2018 245 79*2^4658115-1 1402235 L1884 2018 246 39*2^4657951+1 1402185 L1823 2019 247 11*2^4643238-1 1397755 L2484 2014 248 68*995^465908-1 1396712 L4001 2017 249 7*6^1793775+1 1395830 L4965 2019 250 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 251 27*2^4583717-1 1379838 L2992 2014 252 121*2^4553899-1 1370863 L3023 2012 253 27*2^4542344-1 1367384 L1204 2014 254 29*2^4532463+1 1364409 L4988 2019 255 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 256 145310^262144+1 1353265 p314 2011 Generalized Fermat 257 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 258 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 259 36772*6^1723287-1 1340983 L1301 2014 260 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 261 151*2^4424321-1 1331856 L1884 2016 262c 195*2^4373994-1 1316706 L5175 2020 263 49*2^4365175-1 1314051 L1959 2017 264 49*2^4360869-1 1312755 L1959 2017 265 13*2^4333087-1 1304391 L1862 2018 266 353159*2^4331116-1 1303802 L2408 2011 267 23*2^4300741+1 1294654 L4147 2019 268 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 269 141941*2^4299438-1 1294265 L689 2011 270 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 271 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 272 3*2^4235414-1 1274988 L606 2008 273 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 274b 45*436^481613+1 1271213 L4944 2020 275 109208*5^1816285+1 1269534 L3523 2014 276 1091*2^4215518-1 1269001 L1828 2018 277 191*2^4203426-1 1265360 L2484 2012 278 1259*2^4196028-1 1263134 L1828 2016 279 325918*5^1803339-1 1260486 L3567 2014 280 133778*5^1785689+1 1248149 L3903 2014 281 17*2^4107544-1 1236496 L4113 2015 282 24032*5^1768249+1 1235958 L3925 2014 283 172*159^561319-1 1235689 L4001 2017 284 97*2^4066717-1 1224206 L2484 2019 285 1031*2^4054974-1 1220672 L1828 2017 286 37*2^4046360+1 1218078 L2086 2019 287 39653*430^460397-1 1212446 L4187 2016 288 40734^262144+1 1208473 p309 2011 Generalized Fermat 289 9*2^4005979-1 1205921 L1828 2012 290 12*68^656921+1 1203815 L4001 2016 291 67*688^423893+1 1202836 L4001 2017 292 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 293 138172*5^1714207-1 1198185 L3904 2014 294 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 295 29*2^3964697+1 1193495 L1204 2019 296 39*2^3961129+1 1192421 L1486 2019 297 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 298 22478*5^1675150-1 1170884 L3903 2014 299 1199*2^3889576-1 1170883 L1828 2018 300 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 301 94*872^397354+1 1168428 L4944 2019 302 27*2^3855094-1 1160501 L3033 2012 303 164*978^387920-1 1160015 L4700 2018 304 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 305 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 306 30*514^424652-1 1151218 L4001 2017 307 24518^262144+1 1150678 g413 2008 Generalized Fermat 308 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 309 241*2^3815727-1 1148651 L2484 2019 310 109*980^383669-1 1147643 L4001 2018 311 123547*2^3804809-1 1145367 L2371 2011 312 2564*75^610753+1 1145203 L3610 2014 313 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 314 166*443^432000+1 1143249 L4944 2020 315 326834*5^1634978-1 1142807 L3523 2014 316d 43*182^502611-1 1135939 L4064 2020 317 415267*2^3771929-1 1135470 L2373 2011 318 11*2^3771821+1 1135433 p286 2013 319 265*2^3765189-1 1133438 L2484 2018 320 938237*2^3752950-1 1129757 L521 2007 Woodall 321 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 322 207394*5^1612573-1 1127146 L3869 2014 323 684*10^1127118+1 1127121 L4036 2017 324 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 325 104944*5^1610735-1 1125861 L3849 2014 326 23451*2^3739388+1 1125673 L591 2015 327 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 328 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 329 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 330 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 331 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 332 119*2^3698412-1 1113336 L2484 2018 333 330286*5^1584399-1 1107453 L3523 2014 334 34*951^371834-1 1107391 L4944 2019 335 45*2^3677787+1 1107126 L1204 2019 336 13*2^3675223-1 1106354 L1862 2016 337 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 338 15*2^3668194-1 1104238 L3665 2013 339 13*2^3664703-1 1103187 L1862 2016 340 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 341 118*892^373012+1 1100524 L5071 2020 342 33300*430^417849-1 1100397 L4393 2016 343 33*2^3649810+1 1098704 L4958 2019 344 989*2^3640585+1 1095929 L5115 2020 345 567*2^3639287+1 1095538 L4959 2019 346 639*2^3635707+1 1094460 L1823 2019 347 753*2^3631472+1 1093185 L1823 2019 348 65531*2^3629342-1 1092546 L2269 2011 349 1121*2^3629201+1 1092502 L4761 2019 350 215*2^3628962-1 1092429 L2484 2018 351 113*2^3628034-1 1092150 L2484 2014 352 1175*2^3627541+1 1092002 L4840 2019 353 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 354 951*2^3623185+1 1090691 L1823 2019 355 29*920^367810-1 1090113 L4064 2015 356 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 357 485*2^3618563+1 1089299 L3924 2019 358 95*2^3614033+1 1087935 L1474 2019 359 1005*2^3612300+1 1087414 L1823 2019 360 861*2^3611815+1 1087268 L1745 2019 361 1087*2^3611476+1 1087166 L4834 2019 362 485767*2^3609357-1 1086531 L622 2008 363 675*2^3606447+1 1085652 L3278 2019 364 669*2^3606266+1 1085598 L1675 2019 365 65077*2^3605944+1 1085503 L4685 2020 366 851*2^3604395+1 1085034 L2125 2019 367 1143*2^3602429+1 1084443 L4754 2019 368 1183*2^3601898+1 1084283 L1823 2019 369 189*2^3596375+1 1082620 L3760 2016 370 1089*2^3593267+1 1081685 L3035 2019 371 1101*2^3589103+1 1080431 L1823 2019 372 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 373 275*2^3585539+1 1079358 L3803 2016 374 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 375 651*2^3579843+1 1077643 L3035 2018 376 583*2^3578402+1 1077210 L3035 2018 377 309*2^3577339+1 1076889 L4406 2016 378 1185*2^3574583+1 1076060 L4851 2018 379 251*2^3574535+1 1076045 L3035 2016 380 1019*2^3571635+1 1075173 L1823 2018 381 119*2^3571416-1 1075106 L2484 2018 382 35*2^3570777+1 1074913 L2891 2014 383 33*2^3570132+1 1074719 L2552 2014 384 5*2^3569154-1 1074424 L503 2009 385 81*492^399095-1 1074352 L4001 2015 386 22934*5^1536762-1 1074155 L3789 2014 387 265*2^3564373-1 1072986 L2484 2018 388 771*2^3564109+1 1072907 L2125 2018 389 381*2^3563676+1 1072776 L4190 2016 390 555*2^3563328+1 1072672 L4850 2018 391 1183*2^3560584+1 1071846 L1823 2018 392 415*2^3559614+1 1071554 L3035 2016 393 1103*2^3558176-1 1071121 L1828 2018 394 1379*2^3557072-1 1070789 L1828 2018 395 681*2^3553141+1 1069605 L3035 2018 396 599*2^3551793+1 1069200 L3824 2018 397 621*2^3551472+1 1069103 L4687 2018 398 773*2^3550373+1 1068772 L1808 2018 399 1199*2^3548380-1 1068172 L1828 2018 400 191*2^3548117+1 1068092 L4203 2015 401 867*2^3547711+1 1067971 L4155 2018 402 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 403 351*2^3545752+1 1067381 L4082 2016 404 93*2^3544744+1 1067077 L1728 2014 405 1159*2^3543702+1 1066764 L1823 2018 406 178658*5^1525224-1 1066092 L3789 2014 407 1085*2^3539671+1 1065551 L3035 2018 408 465*2^3536871+1 1064707 L4459 2016 409 1019*2^3536312-1 1064539 L1828 2012 410 1179*2^3534450+1 1063979 L3035 2018 411 447*2^3533656+1 1063740 L4457 2016 412 1059*2^3533550+1 1063708 L1823 2018 413 345*2^3532957+1 1063529 L4314 2016 414 553*2^3532758+1 1063469 L1823 2018 415 141*2^3529287+1 1062424 L4185 2015 416 13*2^3527315-1 1061829 L1862 2016 417 1393*2^3525571-1 1061306 L1828 2017 418 1071*2^3523944+1 1060816 L1675 2018 419 329*2^3518451+1 1059162 L1823 2016 420 135*2^3518338+1 1059128 L4045 2015 421 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 422 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 423 599*2^3515959+1 1058412 L1823 2018 424 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 425 1135*2^3510890+1 1056887 L1823 2018 426 428639*2^3506452-1 1055553 L2046 2011 427 555*2^3502765+1 1054441 L1823 2018 428 643*2^3501974+1 1054203 L1823 2018 429 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 430 1159*2^3501490+1 1054057 L2125 2018 431 1189*2^3499042+1 1053320 L4724 2018 432 609*2^3497474+1 1052848 L1823 2018 433 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 434 87*2^3496188+1 1052460 L1576 2014 435 783*2^3494129+1 1051841 L3824 2018 436 51*2^3490971+1 1050889 L1823 2014 437 753*2^3488818+1 1050242 L1823 2018 438 699*2^3487253+1 1049771 L1204 2018 439 249*2^3486411+1 1049517 L4045 2015 440 195*2^3486379+1 1049507 L4108 2015 441 59912*5^1500861+1 1049062 L3772 2014 442 495*2^3484656+1 1048989 L3035 2016 443 323*2^3482789+1 1048427 L1204 2016 444 1149*2^3481694+1 1048098 L1823 2018 445 701*2^3479779+1 1047521 L2125 2018 446 813*2^3479728+1 1047506 L4724 2018 447 197*2^3477399+1 1046804 L2125 2015 448 491*2^3473837+1 1045732 L4343 2016 449 1061*2^3471354-1 1044985 L1828 2017 450 641*2^3464061+1 1042790 L1444 2018 451 453*2^3461688+1 1042075 L3035 2016 452 571*2^3460216+1 1041632 L3035 2018 453 1155*2^3455254+1 1040139 L4711 2017 454 37292*5^1487989+1 1040065 L3553 2013 455 1273*2^3448551-1 1038121 L1828 2012 456 1065*2^3447906+1 1037927 L4664 2017 457 1155*2^3446253+1 1037429 L3035 2017 458a 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 459a 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 460a 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 461b 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 462b 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 463b 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 464 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 465 943*2^3442990+1 1036447 L4687 2017 466c 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 467c 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 468c 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 469c 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 470c 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 471 943*2^3440196+1 1035606 L1448 2017 472d 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 473d 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 474d 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 475d 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 476 543*2^3438810+1 1035188 L3035 2017 477 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 478d 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 479d 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 480d 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 481d 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 482 74*941^348034-1 1034913 L4944 2020 483d 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 484 113*2^3437145+1 1034686 L4045 2015 485e 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 486e 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 487e 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 488e 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 489 1147*2^3435970+1 1034334 L3035 2017 490e 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 491f 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 492 911*2^3432643+1 1033332 L1355 2017 493 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 494 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 495 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 496 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 497 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 498 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 499 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 500 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 501 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 502 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 503 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 504 1127*2^3427219+1 1031699 L3035 2017 505 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 506 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 507 159*2^3425766+1 1031261 L4045 2015 508 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 509 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 510 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 511 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 512 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 513 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 514 1119*2^3422189+1 1030185 L1355 2017 515 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 516 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 517 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 518 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 519 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 520 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 521 975*2^3419230+1 1029294 L3545 2017 522 999*2^3418885+1 1029190 L3035 2017 523 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 524 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 525 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 526 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 527 907*2^3417890+1 1028891 L3035 2017 528 191249*2^3417696-1 1028835 L1949 2010 529 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 530 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 531 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 532 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 533 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 534 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 535 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 536 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 537 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 538 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 539 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 540 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 541 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 542 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 543 479*2^3411975+1 1027110 L2873 2016 544 245*2^3411973+1 1027109 L1935 2015 545 177*2^3411847+1 1027071 L4031 2015 546 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 547 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 548 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 549 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 550 113*2^3409934-1 1026495 L2484 2014 551 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 552 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 553 59*2^3408416-1 1026038 L426 2010 554 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 555 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 556 953*2^3405729+1 1025230 L3035 2017 557 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 558 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 559 373*2^3404702+1 1024921 L3924 2016 560 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 561 833*2^3403765+1 1024639 L3035 2017 562 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 563 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 564 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 565 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 566 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 567 24*414^391179+1 1023717 L4273 2016 568 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 569 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 570 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 571 1167*2^3399748+1 1023430 L3545 2017 572 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 573 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 574 611*2^3398273+1 1022985 L3035 2017 575 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 576 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 577 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 578 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 579 255*2^3395661+1 1022199 L3898 2014 580 1049*2^3395647+1 1022195 L3035 2017 581 342924651*2^3394939-1 1021988 L4166 2017 582 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 583 555*2^3393389+1 1021515 L2549 2017 584 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 585 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 586 609*2^3392301+1 1021188 L3035 2017 587 303*2^3391977+1 1021090 L2602 2016 588 805*2^3391818+1 1021042 L4609 2017 589 67*2^3391385-1 1020911 L1959 2014 590 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 591 663*2^3390469+1 1020636 L4316 2017 592 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 593 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 594 3329*2^3388472-1 1020036 L4841 2020 595 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 596 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 597 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 598 453*2^3387048+1 1019606 L2602 2016 599 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 600 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 601 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 602 173198*5^1457792-1 1018959 L3720 2013 603 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 604 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 605 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 606 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 607 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 608 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 609 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 610 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 611 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 612 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 613d 1425*2^3379921+1 1017461 L1134 2020 614 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 615 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 616 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 617 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 618 621*2^3378148+1 1016927 L3035 2017 619 1093*2^3378000+1 1016883 L4583 2017 620 861*2^3377601+1 1016763 L4582 2017 621 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 622 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 623 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 624 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 625 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 626 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 627 208003!-1 1015843 p394 2016 Factorial 628 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 629 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 630 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 631 179*2^3371145+1 1014819 L3763 2014 632 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 633 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 634 839*2^3369383+1 1014289 L2891 2017 635 677*2^3369115+1 1014208 L2103 2017 636 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 637 715*2^3368210+1 1013936 L4527 2017 638 617*2^3368119+1 1013908 L4552 2017 639 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 640 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 641 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 642 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 643 777*2^3367372+1 1013683 L4408 2017 644 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 645 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 646 61*2^3366033-1 1013279 L4405 2017 647 369*2^3365614+1 1013154 L4364 2016 648 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 649 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 650 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 651 533*2^3362857+1 1012324 L3171 2017 652 619*2^3362814+1 1012311 L4527 2017 653 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 654 104*873^344135-1 1012108 L4700 2018 655 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 656 3^2120580-3^623816-1 1011774 CH9 2019 657 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 658 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 659 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 660 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 661 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 662 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 663 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 664 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 665 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 666 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 667 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 668 1183*2^3353058+1 1009375 L3824 2017 669 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 670 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 671 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 672 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 673 543*2^3351686+1 1008961 L4198 2017 674 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 675 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 676 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 677 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 678 393*2^3349525+1 1008311 L3101 2016 679 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 680 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 681 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 682 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 683 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 684 5*326^400785+1 1007261 L4786 2019 685 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 686 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 687a 5559*2^3344826+1 1006897 L5223 2021 688a 6823*2^3344692+1 1006857 L5223 2021 689a 4839*2^3344453+1 1006785 L5188 2021 690a 7527*2^3344332+1 1006749 L5220 2021 691a 7555*2^3344240+1 1006721 L5188 2021 692a 6265*2^3344080+1 1006673 L5197 2021 693a 1299*2^3343943+1 1006631 L5217 2021 694a 2815*2^3343754+1 1006574 L5216 2021 695a 5349*2^3343734+1 1006568 L5174 2021 696b 2863*2^3342920+1 1006323 L5179 2020 697b 7387*2^3342848+1 1006302 L5208 2020 698b 9731*2^3342447+1 1006181 L5203 2020 699b 7725*2^3341708+1 1005959 L5195 2020 700b 7703*2^3341625+1 1005934 L5178 2020 701b 7047*2^3341482+1 1005891 L5194 2020 702b 4839*2^3341309+1 1005838 L5192 2020 703 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 704 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 705c 8989*2^3340866+1 1005705 L5189 2020 706c 6631*2^3340808+1 1005688 L5188 2020 707c 1341*2^3340681+1 1005649 L5188 2020 708 733*2^3340464+1 1005583 L3035 2016 709 3679815*2^3340001+1 1005448 L4922 2019 710 57*2^3339932-1 1005422 L3519 2015 711 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 712 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 713 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 714c 3651*2^3339341+1 1005246 L5177 2020 715c 3853*2^3339296+1 1005232 L5178 2020 716c 8015*2^3339267+1 1005224 L5176 2020 717c 3027*2^3339182+1 1005198 L5174 2020 718c 9517*2^3339002+1 1005144 L5172 2020 719d 4003*2^3338588+1 1005019 L3035 2020 720d 6841*2^3338336+1 1004944 L1474 2020 721e 2189*2^3338209+1 1004905 L5031 2020 722 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 723 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 724 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 725e 2957*2^3337667+1 1004742 L5144 2020 726f 1515*2^3337389+1 1004658 L1474 2020 727f 7933*2^3337270+1 1004623 L4666 2020 728f 1251*2^3337116+1 1004576 L4893 2020 729 651*2^3337101+1 1004571 L3260 2016 730 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 731f 8397*2^3336654+1 1004437 L5125 2020 732 8145*2^3336474+1 1004383 L5110 2020 733 1087*2^3336385-1 1004355 L1828 2012 734 5325*2^3336120+1 1004276 L2125 2020 735 849*2^3335669+1 1004140 L3035 2016 736 8913*2^3335216+1 1004005 L5079 2020 737 7725*2^3335213+1 1004004 L3035 2020 738 611*2^3334875+1 1003901 L3813 2016 739 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 740 403*2^3334410+1 1003761 L4293 2016 741 5491*2^3334392+1 1003756 L4815 2020 742 6035*2^3334341+1 1003741 L2125 2020 743 1725*2^3334341+1 1003740 L2125 2020 744 4001*2^3334031+1 1003647 L1203 2020 745 2315*2^3333969+1 1003629 L2125 2020 746 6219*2^3333810+1 1003581 L4582 2020 747 8063*2^3333721+1 1003554 L1823 2020 748 9051*2^3333677+1 1003541 L3924 2020 749 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 750 4091*2^3333153+1 1003383 L1474 2020 751 9949*2^3332750+1 1003262 L5090 2020 752 3509*2^3332649+1 1003231 L5085 2020 753 3781*2^3332436+1 1003167 L1823 2020 754 4425*2^3332394+1 1003155 L3431 2020 755 6459*2^3332086+1 1003062 L2629 2020 756 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 757 5257*2^3331758+1 1002963 L1188 2020 758 2939*2^3331393+1 1002853 L1823 2020 759 6959*2^3331365+1 1002845 L1675 2020 760 8815*2^3330748+1 1002660 L3329 2020 761 4303*2^3330652+1 1002630 L4730 2020 762 8595*2^3330649+1 1002630 L4723 2020 763 673*2^3330436+1 1002564 L3035 2016 764 8163*2^3330042+1 1002447 L3278 2020 765 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 766 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 767 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 768 2829*2^3329061+1 1002151 L4343 2020 769 5775*2^3329034+1 1002143 L1188 2020 770 7101*2^3328905+1 1002105 L4568 2020 771 7667*2^3328807+1 1002075 L4087 2020 772 129*2^3328805+1 1002073 L3859 2014 773 7261*2^3328740+1 1002055 L2914 2020 774 4395*2^3328588+1 1002009 L3924 2020 775 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 776 143183*2^3328297+1 1001923 L4504 2017 777 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 778 9681*2^3327987+1 1001828 L1204 2020 779 2945*2^3327987+1 1001828 L2158 2020 780 5085*2^3327789+1 1001769 L1823 2020 781 8319*2^3327650+1 1001727 L1204 2020 782 4581*2^3327644+1 1001725 L2142 2020 783 655*2^3327518+1 1001686 L4490 2016 784 8863*2^3327406+1 1001653 L1675 2020 785 659*2^3327371+1 1001642 L3502 2016 786 3411*2^3327343+1 1001634 L1675 2020 787 4987*2^3327294+1 1001619 L3924 2020 788 821*2^3327003+1 1001531 L3035 2016 789 2435*2^3326969+1 1001521 L3035 2020 790 2277*2^3326794+1 1001469 L5014 2020 791 6779*2^3326639+1 1001422 L3924 2020 792 6195*2^3325993+1 1001228 L1474 2019 793 555*2^3325925+1 1001206 L4414 2016 794 9041*2^3325643+1 1001123 L3924 2019 795 1993*2^3325302+1 1001019 L3662 2019 796 6179*2^3325027+1 1000937 L3048 2019 797 4485*2^3324900+1 1000899 L1355 2019 798 3559*2^3324650+1 1000823 L3035 2019 799 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 800 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 801 6927*2^3324387+1 1000745 L3091 2019 802 9575*2^3324287+1 1000715 L3824 2019 803 1797*2^3324259+1 1000705 L3895 2019 804 4483*2^3324048+1 1000642 L3035 2019 805 791*2^3323995+1 1000626 L3035 2016 806 6987*2^3323926+1 1000606 L4973 2019 807 3937*2^3323886+1 1000593 L3035 2019 808 2121*2^3323852+1 1000583 L1823 2019 809 1571*2^3323493+1 1000475 L3035 2019 810 2319*2^3323402+1 1000448 L4699 2019 811 2829*2^3323341+1 1000429 L4754 2019 812 4335*2^3323323+1 1000424 L1823 2019 813 8485*2^3322938+1 1000308 L4858 2019 814 6505*2^3322916+1 1000302 L4858 2019 815 597*2^3322871+1 1000287 L3035 2016 816 9485*2^3322811+1 1000270 L2603 2019 817 8619*2^3322774+1 1000259 L3035 2019 818 387*2^3322763+1 1000254 L1455 2016 819 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 820 5553507*2^3322000+1 1000029 p391 2016 821 3659465685*2^3321910-1 1000005 L4960 2020 822 3652932033*2^3321910-1 1000005 L4960 2020 823 3603204333*2^3321910-1 1000005 L4960 2020 824 3543733545*2^3321910-1 1000005 L4960 2020 825 3191900133*2^3321910-1 1000005 L4960 2020 826 3174957723*2^3321910-1 1000005 L4960 2020 827 2973510903*2^3321910-1 1000005 L4960 2019 828 2848144257*2^3321910-1 1000005 L4960 2019 829 2820058827*2^3321910-1 1000005 L4960 2019 830 2611553775*2^3321910-1 1000004 L4960 2020 831 2601087525*2^3321910-1 1000004 L4960 2019 832 2386538565*2^3321910-1 1000004 L4960 2019 833 2272291887*2^3321910-1 1000004 L4960 2019 834 2167709265*2^3321910-1 1000004 L4960 2019 835 2087077797*2^3321910-1 1000004 L4960 2019 836 1848133623*2^3321910-1 1000004 L4960 2019 837 1825072257*2^3321910-1 1000004 L4960 2019 838 1633473837*2^3321910-1 1000004 L4960 2019 839 1228267623*2^3321910-1 1000004 L4808 2019 840 1148781333*2^3321910-1 1000004 L4808 2019 841 1065440787*2^3321910-1 1000004 L4808 2019 842 1055109357*2^3321910-1 1000004 L4960 2019 843 992309607*2^3321910-1 1000004 L4808 2019 844 926102325*2^3321910-1 1000004 L4808 2019 845 892610007*2^3321910-1 1000004 L4960 2019 846 763076757*2^3321910-1 1000004 L4960 2019 847 607766997*2^3321910-1 1000004 L4808 2019 848 539679177*2^3321910-1 1000004 L4808 2019 849 425521077*2^3321910-1 1000004 L4808 2019 850 132940575*2^3321910-1 1000003 L4808 2019 851 239378138685*2^3321891+1 1000001 L5104 2020 852 464253*2^3321908-1 1000000 L466 2013 853 3^2095902+3^647322-1 1000000 x44 2018 854 191273*2^3321908-1 1000000 L466 2013 855 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 856 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 857 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 858 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 859b 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 860b 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 861 3139*2^3321905-1 999997 L185 2008 862 4847*2^3321063+1 999744 SB9 2005 863 49*2^3309087-1 996137 L1959 2013 864 139413*6^1279992+1 996033 L4001 2015 865 51*2^3308171+1 995861 L2840 2015 866 245114*5^1424104-1 995412 L3686 2013 867 175124*5^1422646-1 994393 L3686 2013 868 1611*22^738988+1 992038 L4139 2015 869 2017*2^3292325-1 991092 L3345 2017 870 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 871 61*2^3286535-1 989348 L4405 2016 872 87*2^3279368+1 987191 L3458 2015 873 65*2^3270127+1 984409 L3924 2015 874 5*2^3264650-1 982759 L384 2013 875 223*2^3264459-1 982703 L1884 2012 876 9*2^3259381-1 981173 L1828 2011 877 6*5^1403337+1 980892 L4965 2020 878 33*2^3242126-1 975979 L3345 2014 879 39*2^3240990+1 975637 L3432 2014 880 6*5^1392287+1 973168 L4965 2020 881 211195*2^3224974+1 970820 L2121 2013 882 7*6^1246814+1 970211 L4965 2019 883 35*832^332073-1 969696 L4001 2019 884 600921*2^3219922-1 969299 g337 2018 885 6*409^369832+1 965900 L4001 2015 886 94373*2^3206717+1 965323 L2785 2013 887 2751*2^3206569-1 965277 L4036 2015 888 113983*2^3201175-1 963655 L613 2008 889 34*888^326732-1 963343 L4001 2017 890b 22007146^131072+1 962405 L4245 2020 Generalized Fermat 891 4*3^2016951+1 962331 L4965 2020 892b 21917442^131072+1 962173 L4622 2020 Generalized Fermat 893b 21869554^131072+1 962048 L5061 2020 Generalized Fermat 894c 21757066^131072+1 961754 L4773 2020 Generalized Fermat 895c 21582550^131072+1 961296 L5068 2020 Generalized Fermat 896c 21517658^131072+1 961125 L5126 2020 Generalized Fermat 897e 20968936^131072+1 959654 L4245 2020 Generalized Fermat 898f 20674450^131072+1 958849 L4245 2020 Generalized Fermat 899 20234282^131072+1 957624 L4942 2020 Generalized Fermat 900 20227142^131072+1 957604 L4677 2020 Generalized Fermat 901 20185276^131072+1 957486 L4201 2020 Generalized Fermat 902 33*2^3176269+1 956154 L3432 2013 903 19464034^131072+1 955415 L4956 2020 Generalized Fermat 904 600921*2^3173683-1 955380 g337 2018 905 19216648^131072+1 954687 L5024 2020 Generalized Fermat 906 1414*95^482691-1 954633 L4877 2019 907d 78*236^402022-1 953965 L4944 2020 908 18968126^131072+1 953946 L5011 2020 Generalized Fermat 909 18813106^131072+1 953479 L4201 2020 Generalized Fermat 910 18608780^131072+1 952857 L4488 2020 Generalized Fermat 911 1087*2^3164677-1 952666 L1828 2012 912 18509226^131072+1 952552 L4884 2020 Generalized Fermat 913 18501600^131072+1 952528 L4875 2020 Generalized Fermat 914 15*2^3162659+1 952057 p286 2012 915 18309468^131072+1 951934 L4928 2020 Generalized Fermat 916 18298534^131072+1 951900 L4201 2020 Generalized Fermat 917 67*2^3161450+1 951694 L3223 2015 918f 58*117^460033+1 951436 L4944 2020 919 17958952^131072+1 950834 L4201 2020 Generalized Fermat 920 17814792^131072+1 950375 L4752 2020 Generalized Fermat 921 17643330^131072+1 949824 L4201 2020 Generalized Fermat 922 19*2^3155009-1 949754 L1828 2012 923 17141888^131072+1 948183 L4963 2019 Generalized Fermat 924 17138628^131072+1 948172 L4963 2019 Generalized Fermat 925 17119936^131072+1 948110 L4963 2019 Generalized Fermat 926 17052490^131072+1 947885 L4715 2019 Generalized Fermat 927 17025822^131072+1 947796 L4870 2019 Generalized Fermat 928 16985784^131072+1 947662 L4295 2019 Generalized Fermat 929 16741226^131072+1 946837 L4201 2019 Generalized Fermat 930 16329572^131072+1 945420 L4201 2019 Generalized Fermat 931 69*2^3140225-1 945304 L3764 2014 932 3*2^3136255-1 944108 L256 2007 933 15731520^131072+1 943296 L4245 2019 Generalized Fermat 934 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 935 15667716^131072+1 943064 L4387 2019 Generalized Fermat 936 15567144^131072+1 942698 L4918 2019 Generalized Fermat 937 15342502^131072+1 941870 L4245 2019 Generalized Fermat 938 15237960^131072+1 941481 L4898 2019 Generalized Fermat 939 15147290^131072+1 941141 L4861 2019 Generalized Fermat 940 15091270^131072+1 940930 L4760 2019 Generalized Fermat 941 3125*2^3124079+1 940445 L1160 2019 942 14790404^131072+1 939784 L4871 2019 Generalized Fermat 943 14613898^131072+1 939101 L4926 2019 Generalized Fermat 944 14217182^131072+1 937534 L4387 2019 Generalized Fermat 945 134*864^319246-1 937473 L4944 2020 946 14020004^131072+1 936739 L4249 2019 Generalized Fermat 947 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 948 13800346^131072+1 935840 L4880 2019 Generalized Fermat 949 13613070^131072+1 935062 L4245 2019 Generalized Fermat 950 13433028^131072+1 934305 L4868 2018 Generalized Fermat 951 1019*2^3103680-1 934304 L1828 2012 952 99*2^3102401-1 933918 L1862 2017 953 256612*5^1335485-1 933470 L1056 2013 954 13083418^131072+1 932803 L4747 2018 Generalized Fermat 955 69*2^3097340-1 932395 L3764 2014 956 12978952^131072+1 932347 L4849 2018 Generalized Fermat 957 12961862^131072+1 932272 L4245 2018 Generalized Fermat 958 12851074^131072+1 931783 L4670 2018 Generalized Fermat 959 45*2^3094632-1 931579 L1862 2018 960c 57*2^3093440-1 931220 L2484 2020 961 12687374^131072+1 931054 L4289 2018 Generalized Fermat 962 513*2^3092705+1 931000 L4329 2016 963 12661786^131072+1 930939 L4819 2018 Generalized Fermat 964 38*875^316292-1 930536 L4001 2019 965 5*2^3090860-1 930443 L1862 2012 966 12512992^131072+1 930266 L4814 2018 Generalized Fermat 967 12357518^131072+1 929554 L4295 2018 Generalized Fermat 968 12343130^131072+1 929488 L4720 2018 Generalized Fermat 969 373*520^342177+1 929357 L3610 2014 970 19401*2^3086450-1 929119 L541 2015 971 75*2^3086355+1 929088 L3760 2015 972c 65*2^3080952-1 927461 L2484 2020 973 11876066^131072+1 927292 L4737 2018 Generalized Fermat 974 271*2^3079189-1 926931 L2484 2018 975 766*33^610412+1 926923 L4001 2016 976 11778792^131072+1 926824 L4672 2018 Generalized Fermat 977 31*332^367560+1 926672 L4294 2018 978 167*2^3077568-1 926443 L1862 2019 979 10001*2^3075602-1 925853 L4405 2019 980a 116*107^455562-1 924513 L4064 2021 981 11292782^131072+1 924425 L4672 2018 Generalized Fermat 982 14844*430^350980-1 924299 L4001 2016 983 11267296^131072+1 924297 L4654 2017 Generalized Fermat 984 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 985 11195602^131072+1 923933 L4706 2017 Generalized Fermat 986 60849*2^3067914+1 923539 L591 2014 987 674*249^385359+1 923400 L4944 2019 988 11036888^131072+1 923120 L4660 2017 Generalized Fermat 989 10994460^131072+1 922901 L4704 2017 Generalized Fermat 990 21*2^3065701+1 922870 p286 2012 991 10962066^131072+1 922733 L4702 2017 Generalized Fermat 992 10921162^131072+1 922520 L4559 2017 Generalized Fermat 993 43*2^3063674+1 922260 L3432 2013 994 8460*241^387047-1 921957 L4944 2019 995 10765720^131072+1 921704 L4695 2017 Generalized Fermat 996c 111*2^3060238-1 921226 L2484 2020 997 5*2^3059698-1 921062 L503 2008 998 10453790^131072+1 920031 L4694 2017 Generalized Fermat 999 10368632^131072+1 919565 L4692 2017 Generalized Fermat 1000 123*2^3049038+1 917854 L4119 2015 1001 10037266^131072+1 917716 L4691 2017 Generalized Fermat 1002 400*95^463883-1 917435 L4001 2019 1003 9907326^131072+1 916975 L4690 2017 Generalized Fermat 1004 454*383^354814+1 916558 L2012 2020 1005 9785844^131072+1 916272 L4326 2017 Generalized Fermat 1006 291*2^3037904+1 914503 L3545 2015 1007 9419976^131072+1 914103 L4591 2017 Generalized Fermat 1008 9240606^131072+1 913009 L4591 2017 Generalized Fermat 1009f 99*2^3029959-1 912111 L1862 2020 1010d 26*3^1910099+1 911351 L4799 2020 1011f 99*2^3026660-1 911118 L1862 2020 1012 8343*42^560662+1 910099 L4444 2020 1013 8770526^131072+1 910037 L4245 2017 Generalized Fermat 1014 8704114^131072+1 909604 L4670 2017 Generalized Fermat 1015 383731*2^3021377-1 909531 L466 2011 1016 46821*2^3021380-374567 909531 p363 2013 1017 2^3021377-1 909526 G3 1998 Mersenne 37 1018 7*2^3015762+1 907836 g279 2008 1019 75*2^3012342+1 906808 L3941 2015 1020 8150484^131072+1 905863 L4249 2017 Generalized Fermat 1021 7926326^131072+1 904276 L4249 2017 Generalized Fermat 1022 7858180^131072+1 903784 L4201 2017 Generalized Fermat 1023 7832704^131072+1 903599 L4249 2017 Generalized Fermat 1024 268514*5^1292240-1 903243 L3562 2013 1025 7*10^902708+1 902709 p342 2013 1026 43*2^2994958+1 901574 L3222 2013 1027 1095*2^2992587-1 900862 L1828 2011 1028 7379442^131072+1 900206 L4201 2017 Generalized Fermat 1029 15*2^2988834+1 899730 p286 2012 1030 29*564^326765+1 899024 L4001 2017 1031 39*2^2978894+1 896739 L2719 2013 1032 4348099*2^2976221-1 895939 L466 2008 1033 205833*2^2976222-411665 895938 L4667 2017 1034 18976*2^2976221-18975 895937 p373 2014 1035 2^2976221-1 895932 G2 1997 Mersenne 36 1036 1024*3^1877301+1 895704 p378 2014 1037 249*2^2975002+1 895568 L2322 2015 1038 195*2^2972947+1 894949 L3234 2015 1039 6705932^131072+1 894758 L4201 2017 Generalized Fermat 1040 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 1041 493*72^480933+1 893256 L3610 2014 1042 6403134^131072+1 892128 L4510 2016 Generalized Fermat 1043 6391936^131072+1 892028 L4511 2016 Generalized Fermat 1044 45*2^2958002-1 890449 L1862 2017 1045 198677*2^2950515+1 888199 L2121 2012 1046 88*985^296644+1 887987 L4944 2020 1047 5877582^131072+1 887253 L4245 2016 Generalized Fermat 1048 17*2^2946584-1 887012 L3519 2013 1049 141*2^2943065+1 885953 L3719 2015 1050 5734100^131072+1 885846 L4477 2016 Generalized Fermat 1051 33*2^2939063-1 884748 L3345 2013 1052 5903*2^2938744-1 884654 L4036 2015 1053 5586416^131072+1 884361 L4454 2016 Generalized Fermat 1054 243*2^2937316+1 884223 L4114 2015 1055 61*2^2936967-1 884117 L2484 2017 1056 5471814^131072+1 883181 L4362 2016 Generalized Fermat 1057 188*228^374503+1 883056 L4786 2020 1058b 53*248^368775+1 883016 L5196 2020 1059 5400728^131072+1 882436 L4201 2016 Generalized Fermat 1060 17*326^350899+1 881887 L4786 2019 1061 5326454^131072+1 881648 L4201 2016 Generalized Fermat 1062 7019*10^881309-1 881313 L3564 2013 1063 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 1064 97366*5^1259955-1 880676 L3567 2013 1065a 973*2^2923062+1 879933 L5228 2021 1066 1126*177^391360+1 879770 L4955 2020 1067 243944*5^1258576-1 879713 L3566 2013 1068a 693*2^2921528+1 879471 L5201 2021 1069 6*10^879313+1 879314 L5009 2019 1070 269*2^2918105+1 878440 L2715 2015 1071a 331*2^2917844+1 878362 L5210 2021 1072 169*2^2917805-1 878350 L2484 2018 1073b 1085*2^2916967+1 878098 L5174 2020 1074b 389*2^2916499+1 877957 L5215 2020 1075b 431*2^2916429+1 877936 L5214 2020 1076b 1189*2^2916406+1 877929 L5174 2020 1077 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 1078 4974408^131072+1 877756 L4380 2016 Generalized Fermat 1079b 465*2^2914079+1 877228 L5210 2020 1080 427194*113^427194+1 877069 p310 2012 Generalized Cullen 1081 4893072^131072+1 876817 L4303 2016 Generalized Fermat 1082a 493*2^2912552+1 876769 L5192 2021 1083 143157*2^2911403+1 876425 L4504 2017 1084b 567*2^2910402+1 876122 L5201 2020 1085b 683*2^2909217+1 875765 L5199 2020 1086 674*249^365445+1 875682 L4944 2019 1087a 475*2^2908802+1 875640 L5192 2021 1088b 371*2^2907377+1 875211 L5197 2020 1089 207*2^2903535+1 874054 L3173 2015 1090c 851*2^2902731+1 873813 L5177 2020 1091b 777*2^2901907+1 873564 L5192 2020 1092c 717*2^2900775+1 873224 L5185 2020 1093 99*2^2899303-1 872780 L1862 2017 1094 63*2^2898957+1 872675 L3262 2013 1095 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 1096c 747*2^2895307+1 871578 L5178 2020 1097c 403*2^2894566+1 871354 L5180 2020 1098c 629*2^2892961+1 870871 L5173 2020 1099d 627*2^2891514+1 870436 L5168 2020 1100d 363*2^2890208+1 870042 L3261 2020 1101d 471*2^2890148+1 870024 L5158 2020 1102 4329134^131072+1 869847 L4395 2016 Generalized Fermat 1103d 583*2^2889248+1 869754 L5139 2020 1104e 955*2^2887934+1 869358 L4958 2020 1105e 937*2^2887130+1 869116 L5134 2020 1106e 885*2^2886389+1 868893 L3924 2020 1107e 763*2^2885928+1 868754 L2125 2020 1108f 1071*2^2884844+1 868428 L3593 2020 1109f 1181*2^2883981+1 868168 L3593 2020 1110 51*2^2881227+1 867338 L3512 2013 1111f 933*2^2879973+1 866962 L4951 2020 1112 261*2^2879941+1 866952 L4119 2015 1113 4085818^131072+1 866554 L4201 2016 Generalized Fermat 1114 65*2^2876718-1 865981 L2484 2016 1115 21*948^290747-1 865500 L4985 2019 1116 4013*2^2873250-1 864939 L1959 2014 1117 41*2^2872058-1 864578 L2484 2013 1118 359*2^2870935+1 864241 L1300 2020 1119 165*2^2870868+1 864220 L4119 2015 1120 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 1121 665*2^2869847+1 863913 L2885 2020 1122 283*2^2868750+1 863583 L3877 2015 1123 845*2^2868291+1 863445 L5100 2020 1124 3125*2^2867399+1 863177 L1754 2019 1125 701*2^2867141+1 863099 L1422 2020 1126 3814944^131072+1 862649 L4201 2016 Generalized Fermat 1127 307*2^2862962+1 861840 L4740 2020 1128 147*2^2862651+1 861746 L1741 2015 1129 1207*2^2861901-1 861522 L1828 2011 1130 231*2^2860725+1 861167 L2873 2015 1131 193*2^2858812+1 860591 L2997 2015 1132 629*2^2857891+1 860314 L3035 2020 1133 493*2^2857856+1 860304 L5087 2020 1134 241*2^2857313-1 860140 L2484 2018 1135 707*2^2856331+1 859845 L5084 2020 1136 3615210^131072+1 859588 L4201 2016 Generalized Fermat 1137 949*2^2854946+1 859428 L2366 2020 1138 222361*2^2854840+1 859398 g403 2006 1139 725*2^2854661+1 859342 L5031 2020 1140 399*2^2851994+1 858539 L4099 2020 1141 225*2^2851959+1 858528 L3941 2015 1142 247*2^2851602+1 858421 L3865 2015 1143 183*2^2850321+1 858035 L2117 2015 1144 1191*2^2849315+1 857733 L1188 2020 1145 717*2^2848598+1 857517 L1204 2020 1146 795*2^2848360+1 857445 L4099 2020 1147 3450080^131072+1 856927 L4201 2016 Generalized Fermat 1148 705*2^2846638+1 856927 L1808 2020 1149 369*2^2846547+1 856899 L4099 2020 1150 955*2^2844974+1 856426 L1188 2020 1151 753*2^2844700+1 856343 L1204 2020 1152 11138*745^297992-1 855884 L4189 2019 1153 111*2^2841992+1 855527 L1792 2015 1154 649*2^2841318+1 855325 L4732 2020 1155 305*2^2840155+1 854975 L4907 2020 1156 1149*2^2839622+1 854815 L2042 2020 1157 95*2^2837909+1 854298 L3539 2013 1158 199*2^2835667-1 853624 L2484 2019 1159 595*2^2833406+1 852943 L4343 2020 1160 1101*2^2832061+1 852539 L4930 2020 1161 813*2^2831757+1 852447 L4951 2020 1162 435*2^2831709+1 852432 L4951 2020 1163 543*2^2828217+1 851381 L4746 2019 1164 704*249^354745+1 850043 L4944 2019 1165 1001*2^2822037+1 849521 L1209 2019 1166 84466*5^1215373-1 849515 L3562 2013 1167 97*2^2820650+1 849103 L2163 2013 1168 107*2^2819922-1 848884 L2484 2013 1169 84256*3^1778899+1 848756 L4789 2018 1170 45472*3^1778899-1 848756 L4789 2018 1171 497*2^2818787+1 848543 L4842 2019 1172 97*2^2818306+1 848397 L3262 2013 1173 177*2^2816050+1 847718 L129 2012 1174 553*2^2815596+1 847582 L4980 2019 1175 1071*2^2814469+1 847243 L3035 2019 1176 105*2^2813000+1 846800 L3200 2015 1177 1115*2^2812911+1 846774 L1125 2019 1178 96*10^846519-1 846521 L2425 2011 Near-repdigit 1179 763*2^2811726+1 846417 L3919 2019 1180 1125*2^2811598+1 846379 L4981 2019 1181 891*2^2810100+1 845928 L4981 2019 1182 441*2^2809881+1 845862 L4980 2019 1183 711*2^2808473+1 845438 L1502 2019 1184 1089*2^2808231+1 845365 L4687 2019 1185 63*2^2807130+1 845033 L3262 2013 1186 1083*2^2806536+1 844855 L3035 2019 1187 675*2^2805669+1 844594 L1932 2019 1188 819*2^2805389+1 844510 L3372 2019 1189 1027*2^2805222+1 844459 L3035 2019 1190 437*2^2803775+1 844024 L3168 2019 1191 4431*372^327835-1 842718 L4944 2019 1192 150344*5^1205508-1 842620 L3547 2013 1193 311*2^2798459+1 842423 L4970 2019 1194 400254*127^400254+1 842062 g407 2013 Generalized Cullen 1195 2639850^131072+1 841690 L4249 2016 Generalized Fermat 1196 43*2^2795582+1 841556 L2842 2013 1197 1001*2^2794357+1 841189 L1675 2019 1198 117*2^2794014+1 841085 L1741 2015 1199 1057*2^2792700+1 840690 L1675 2019 1200 345*2^2792269+1 840560 L1754 2019 1201 711*2^2792072+1 840501 L4256 2019 1202 973*2^2789516+1 839731 L3372 2019 1203 2187*2^2786802+1 838915 L1745 2019 1204 15*2^2785940+1 838653 p286 2012 1205 1337*2^2785444-1 838506 L4518 2017 1206 711*2^2784213+1 838135 L4687 2019 1207d 58582*91^427818+1 838118 L4944 2020 1208 923*2^2783153+1 837816 L1675 2019 1209 1103*2^2783149+1 837815 L3784 2019 1210 485*2^2778151+1 836310 L1745 2019 1211 600921*2^2776014-1 835670 g337 2017 1212 1129*2^2774934+1 835342 L1774 2019 1213 8700*241^350384-1 834625 L4944 2019 1214 1023*2^2772512+1 834613 L4724 2019 1215 656*249^348030+1 833953 L4944 2019 1216 92*10^833852-1 833854 L4789 2018 Near-repdigit 1217 437*2^2769299+1 833645 L3760 2019 1218 967*2^2768408+1 833377 L3760 2019 1219 2280466^131072+1 833359 L4201 2016 Generalized Fermat 1220 1171*2^2768112+1 833288 L2676 2019 1221 57*2^2765963+1 832640 L3262 2013 1222 1323*2^2764024+1 832058 L1115 2019 1223 77*2^2762047+1 831461 L3430 2013 1224 745*2^2761514+1 831302 L1204 2019 1225 2194180^131072+1 831164 L4276 2016 Generalized Fermat 1226 7*10^830865+1 830866 p342 2014 1227 893*2^2758841+1 830497 L4826 2019 1228 537*2^2755164+1 829390 L3035 2019 1229 579*2^2754370+1 829151 L1823 2019 1230 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 1231 215*2^2751022-1 828143 L2484 2018 1232 337*2^2750860+1 828094 L4854 2019 1233 701*2^2750267+1 827916 L3784 2019 1234 467*2^2749195+1 827593 L1745 2019 1235 245*2^2748663+1 827433 L3173 2015 1236 591*2^2748315+1 827329 L3029 2019 1237 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 1238 1089*2^2746155+1 826679 L2583 2019 1239 707*2^2745815+1 826576 L3760 2019 1240 459*2^2742310+1 825521 L4582 2019 1241 777*2^2742196+1 825487 L3919 2019 1242 609*2^2741078+1 825150 L3091 2019 1243 639*2^2740186+1 824881 L4958 2019 1244 905*2^2739805+1 824767 L4958 2019 1245 1955556^131072+1 824610 L4250 2015 Generalized Fermat 1246 777*2^2737282+1 824007 L1823 2019 1247 765*2^2735232+1 823390 L1823 2019 1248 609*2^2735031+1 823330 L1823 2019 1249 305*2^2733989+1 823016 L1823 2019 1250 165*2^2732983+1 822713 L1741 2015 1251 1133*2^2731993+1 822415 L4687 2019 1252 251*2^2730917+1 822091 L3924 2015 1253 1185*2^2730620+1 822002 L4948 2019 1254 173*2^2729905+1 821786 L3895 2015 1255 1981*2^2728877-1 821478 L1134 2018 1256 693*2^2728537+1 821375 L3035 2019 1257 501*2^2728224+1 821280 L3035 2019 1258 763*2^2727928+1 821192 L3924 2019 1259 10*743^285478+1 819606 L4955 2019 1260 17*2^2721830-1 819354 p279 2010 1261 1101*2^2720091+1 818833 L4935 2019 1262 1766192^131072+1 818812 L4231 2015 Generalized Fermat 1263 165*2^2717378-1 818015 L2055 2012 1264 68633*2^2715609+1 817485 L5105 2020 1265 1722230^131072+1 817377 L4210 2015 Generalized Fermat 1266 1717162^131072+1 817210 L4226 2015 Generalized Fermat 1267 133*2^2713410+1 816820 L3223 2015 1268 45*2^2711732+1 816315 L1349 2012 1269 569*2^2711451+1 816231 L4568 2019 1270 335*2^2708958-1 815481 L2235 2020 1271 93*2^2708718-1 815408 L1862 2016 1272 1660830^131072+1 815311 L4207 2015 Generalized Fermat 1273 837*2^2708160+1 815241 L4314 2019 1274 1005*2^2707268+1 814972 L4687 2019 1275 13*458^306196+1 814748 L3610 2015 1276 253*2^2705844+1 814543 L4083 2015 1277 657*2^2705620+1 814476 L4907 2019 1278 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 1279 303*2^2703864+1 813947 L1204 2019 1280 141*2^2702160+1 813434 L1741 2015 1281 753*2^2701925+1 813364 L4314 2019 1282 133*2^2701452+1 813221 L3173 2015 1283 521*2^2700095+1 812813 L4854 2019 1284 393*2^2698956+1 812470 L1823 2019 1285 417*2^2698652+1 812378 L3035 2019 1286 525*2^2698118+1 812218 L1823 2019 1287 3125*2^2697651+1 812078 L3924 2019 1288 153*2^2697173+1 811933 L3865 2015 1289 1560730^131072+1 811772 L4201 2015 Generalized Fermat 1290 26*3^1700041+1 811128 L4799 2020 1291 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 1292 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 1293 7335*2^2689080-1 809498 L4036 2015 1294 1049*2^2688749+1 809398 L4869 2018 1295 329*2^2688221+1 809238 L3035 2018 1296 865*2^2687434+1 809002 L4844 2018 1297 989*2^2686591+1 808748 L2805 2018 1298 136*904^273532+1 808609 L4944 2020 1299 243*2^2685873+1 808531 L3865 2015 1300 909*2^2685019+1 808275 L3431 2018 1301b 1455*2^2683953-1 807954 L1134 2020 1302 11210*241^339153-1 807873 L4944 2019 1303 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 1304 975*2^2681840+1 807318 L4155 2018 1305 295*2^2680932+1 807044 L1741 2015 1306 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 1307 575*2^2679711+1 806677 L2125 2018 1308 2386*52^469972+1 806477 L4955 2019 1309 219*2^2676229+1 805628 L1792 2015 1310 637*2^2675976+1 805552 L3035 2018 1311 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 1312 951*2^2674564+1 805127 L1885 2018 1313 1372930^131072+1 804474 g236 2003 Generalized Fermat 1314d 662*1009^267747-1 804286 L4944 2020 1315 261*2^2671677+1 804258 L3035 2015 1316 895*2^2671520+1 804211 L3035 2018 1317 1361244^131072+1 803988 g236 2004 Generalized Fermat 1318 789*2^2670409+1 803877 L3035 2018 1319 256*11^771408+1 803342 L3802 2014 Generalized Fermat 1320 503*2^2668529+1 803310 L4844 2018 1321 255*2^2668448+1 803286 L1129 2015 1322 4189*2^2666639-1 802742 L1959 2017 1323 539*2^2664603+1 802129 L4717 2018 1324 26036*745^279261-1 802086 L4189 2020 1325 1396*5^1146713-1 801522 L3547 2013 1326 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 1327 51*892^271541+1 801147 L4944 2019 1328 297*2^2660048+1 800757 L3865 2015 1329 851*2^2656411+1 799663 L4717 2018 1330 487*2^2655008+1 799240 L3760 2018 1331 371*2^2651663+1 798233 L3760 2018 1332 69*2^2649939-1 797713 L3764 2014 1333 207*2^2649810+1 797675 L1204 2015 1334 505*2^2649496+1 797581 L3760 2018 1335 993*2^2649256+1 797509 L3760 2018 1336 517*2^2648698+1 797341 L3760 2018 1337 340*703^280035+1 797250 L4001 2018 1338 441*2^2648307+1 797223 L3760 2018 1339 1129*2^2646590+1 796707 L3760 2018 1340 128*518^293315+1 796156 L4001 2019 1341 Phi(3,-1181782^65536) 795940 L4142 2015 Generalized unique 1342 1176694^131072+1 795695 g236 2003 Generalized Fermat 1343 13*2^2642943-1 795607 L1862 2012 1344 119*410^304307+1 795091 L4294 2019 1345 501*2^2641052+1 795039 L3035 2018 1346 879*2^2639962+1 794711 L3760 2018 1347 57*2^2639528-1 794579 L2484 2016 1348 342673*2^2639439-1 794556 L53 2007 1349 813*2^2639092+1 794449 L2158 2018 1350 Phi(3,-1147980^65536) 794288 L4142 2015 Generalized unique 1351 1027*2^2638186+1 794177 L3760 2018 1352 889*2^2637834+1 794071 L3545 2018 1353 92182*5^1135262+1 793520 L3547 2013 1354 741*2^2634385+1 793032 L1204 2018 1355 465*2^2630496+1 791861 L1444 2018 1356 189*2^2630487+1 791858 L3035 2015 1357 87*2^2630468+1 791852 L3262 2013 1358 1131*2^2629345+1 791515 L4826 2018 1359 967*2^2629344+1 791515 L3760 2018 1360 267*2^2629210+1 791474 L3035 2015 1361 154*883^268602+1 791294 L4944 2020 1362 819*2^2627529+1 790968 L1387 2018 1363 17152*5^1131205-1 790683 L3552 2013 1364 183*2^2626442+1 790641 L3035 2015 1365 813*2^2626224+1 790576 L4830 2018 1366 807*2^2625044+1 790220 L1412 2018 1367 1063730^131072+1 789949 g260 2013 Generalized Fermat 1368 1243*2^2623707-1 789818 L1828 2011 1369 693*2^2623557+1 789773 L3278 2018 1370 981*2^2622032+1 789314 L1448 2018 1371 145*2^2621020+1 789008 L3035 2015 1372 541*2^2614676+1 787099 L4824 2018 1373 1061*268^323645-1 785857 L4944 2019 1374 Phi(3,-984522^65536) 785545 p379 2015 Generalized unique 1375 1071*2^2609316+1 785486 L3760 2018 1376 87*2^2609046+1 785404 L2520 2013 1377 543*2^2608129+1 785128 L4822 2018 1378 329584*5^1122935-1 784904 L3553 2013 1379 10*311^314806+1 784737 L3610 2014 1380 1019*2^2606525+1 784646 L1201 2018 1381 977*2^2606211+1 784551 L4746 2018 1382 13*2^2606075-1 784508 L1862 2011 1383 693*2^2605905+1 784459 L4821 2018 1384 147*2^2604275+1 783968 L1741 2015 1385 105*2^2603631+1 783774 L3459 2015 1386 93*2^2602483-1 783428 L1862 2016 1387 155*2^2602213+1 783347 L2719 2015 1388 303*2^2601525+1 783140 L4816 2018 1389 711*2^2600535+1 782842 L4815 2018 1390 1133*2^2599345+1 782484 L4796 2018 1391 397*2^2598796+1 782319 L3877 2018 1392 1536*177^347600+1 781399 L4944 2020 1393 1171*2^2595736+1 781398 L3035 2018 1394 909548^131072+1 781036 p387 2015 Generalized Fermat 1395 2*218^333925+1 780870 L4683 2017 1396 1149*2^2593359+1 780682 L1125 2018 1397 225*2^2592918+1 780549 L1792 2015 Generalized Fermat 1398 333*2^2591874-1 780235 L2017 2019 1399 Phi(3,-883969^65536) 779412 p379 2015 Generalized unique 1400 Phi(3,-872989^65536) 778700 p379 2015 Generalized unique 1401 703*2^2586728+1 778686 L4256 2018 1402 2642*372^302825-1 778429 L4944 2019 1403 120*825^266904+1 778416 L4001 2018 1404 337*2^2585660+1 778364 L2873 2018 1405 393*2^2584957+1 778153 L4600 2018 1406 151*2^2584480+1 778009 L4043 2015 1407 Phi(3,-862325^65536) 778001 p379 2015 Generalized unique 1408 385*2^2584280+1 777949 L4600 2018 1409 Phi(3,-861088^65536) 777919 p379 2015 Generalized unique 1410 65*2^2583720-1 777780 L2484 2015 1411 25*2^2583690+1 777770 L3249 2013 Generalized Fermat 1412 82*920^262409-1 777727 L4064 2015 1413 1041*2^2582112+1 777297 L1456 2018 1414 334310*211^334310-1 777037 p350 2012 Generalized Woodall 1415 229*2^2581111-1 776995 L1862 2017 1416 61*2^2580689-1 776867 L2484 2015 1417 1113*2^2580205+1 776723 L4724 2018 1418 51*2^2578652+1 776254 L3262 2013 1419 173*2^2578197+1 776117 L3035 2015 1420 833*2^2578029+1 776067 L4724 2018 1421e 80*394^298731-1 775358 L541 2020 1422 460*628^276994+1 775021 L4944 2020 1423 459*2^2573899+1 774824 L1204 2018 1424 Phi(3,-806883^65536) 774218 p379 2015 Generalized unique 1425 627*2^2567718+1 772963 L3803 2018 1426 933*2^2567598+1 772927 L4724 2018 1427 757*2^2566468+1 772587 L2606 2018 1428 231*2^2565263+1 772224 L3035 2015 1429 4*737^269302+1 772216 L4294 2016 Generalized Fermat 1430 941*2^2564867+1 772105 L4724 2018 1431 923*2^2563709+1 771757 L1823 2018 1432 151*596^278054+1 771671 L4876 2019 1433 Phi(3,-770202^65536) 771570 p379 2015 Generalized unique 1434 303*2^2562423-1 771369 L2017 2018 1435 75*2^2562382-1 771356 L2055 2011 1436 147559*2^2562218+1 771310 L764 2012 1437 829*2^2561730+1 771161 L1823 2018 1438 404*12^714558+1 771141 L1471 2011 1439 Phi(3,-757576^65536) 770629 p379 2015 Generalized unique 1440 1193*2^2559453+1 770476 L2030 2018 1441 19*984^257291+1 770072 L4944 2020 1442 Phi(3,-731582^65536) 768641 p379 2015 Generalized unique 1443e 65*752^267180-1 768470 L4944 2020 1444 419*2^2552363+1 768341 L4713 2018 1445 34*759^266676-1 768093 L4001 2019 1446 315*2^2550412+1 767754 L4712 2017 1447 415*2^2549590+1 767506 L4710 2017 1448 693*2^2547752+1 766953 L4600 2017 1449 673*2^2547226+1 766795 L2873 2017 1450 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 1451 183*2^2545116+1 766159 L3035 2015 1452 311*2^2544778-1 766058 L2017 2018 1453 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 1454f 67*446^288982+1 765612 L4273 2020 1455 663*2^2542990+1 765520 L4703 2017 1456 705*2^2542464+1 765361 L2873 2017 1457 689186^131072+1 765243 g429 2013 Generalized Fermat 1458 745*2^2540726+1 764838 L4696 2017 1459 Phi(3,-682504^65536) 764688 p379 2015 Generalized unique 1460 64*177^340147-1 764644 L3610 2015 1461 421*2^2539336+1 764419 L4148 2017 1462 123287*2^2538167+1 764070 L3054 2012 1463 305716*5^1093095-1 764047 L3547 2013 1464 223*2^2538080+1 764041 L2125 2015 1465 83*2^2537641+1 763908 L1300 2013 1466 645*2^2532811+1 762455 L4600 2017 1467 953*2^2531601+1 762091 L4404 2017 1468 545*2^2528179+1 761061 L1502 2017 1469 203*2^2526505+1 760557 L3910 2015 1470 967*2^2526276+1 760488 L1204 2017 1471 241*2^2522801-1 759442 L2484 2018 1472 360307*6^975466-1 759066 p255 2017 1473 749*2^2519457+1 758436 L1823 2017 1474 199*2^2518871-1 758259 L2484 2018 1475 6*10^758068+1 758069 L5009 2019 1476 87*2^2518122-1 758033 L2484 2014 1477 Phi(3,-605347^65536) 757859 p379 2015 Generalized unique 1478 711*2^2516187+1 757451 L3035 2017 1479 967*2^2514698+1 757003 L4600 2017 1480 33*2^2513872-1 756753 L3345 2013 1481 973*2^2511920+1 756167 L1823 2017 1482 679*2^2511814+1 756135 L4598 2017 1483 1093*2^2511384+1 756005 L1823 2017 1484 38*875^256892-1 755780 L4001 2019 1485 45*2^2507894+1 754953 L1349 2012 1486 130484*5^1080012-1 754902 L3547 2013 1487 572186^131072+1 754652 g0 2004 Generalized Fermat 1488 242*501^279492-1 754586 L4911 2019 1489 883*2^2506382+1 754500 L1823 2017 1490 847*2^2505540+1 754246 L4600 2017 1491 191*2^2504121+1 753818 L3035 2015 1492 783*2^2500912+1 752853 L1823 2017 1493 165*2^2500130-1 752617 L2055 2011 1494 33*2^2499883-1 752542 L3345 2013 1495 319*2^2498685-1 752182 L2017 2018 1496 321*2^2496594-1 751553 L2235 2018 1497 365*2^2494991+1 751070 L3035 2017 1498 213*2^2493004-1 750472 L1863 2017 1499 777*2^2492560+1 750339 L3035 2017 1500 57*2^2492031+1 750178 L1230 2013 1501 879*2^2491342+1 749972 L4600 2017 1502 14*152^343720-1 749945 L3610 2015 1503 231*2^2489083+1 749292 L3035 2015 1504 255*2^2488562+1 749135 L3035 2015 1505 221*780^258841-1 748596 L4001 2018 1506 303*2^2486629+1 748553 L3035 2017 1507 6*433^283918-1 748548 L3610 2015 1508 617*2^2485919+1 748339 L1885 2017 1509 515*2^2484885+1 748028 L3035 2017 1510 1095*2^2484828+1 748011 L3035 2017 1511 1113*2^2484125+1 747800 L3035 2017 1512 607*2^2483616+1 747646 L3035 2017 1513 625*2^2483272+1 747543 L2487 2017 Generalized Fermat 1514 723*2^2482064+1 747179 L3035 2017 1515f 26*3^1565545+1 746957 L4799 2020 1516 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 1517 1071*2^2477584+1 745831 L3035 2017 1518 22*30^504814-1 745673 p355 2014 1519 11*2^2476839+1 745604 L2691 2011 1520 825*2^2474996+1 745051 L1300 2017 1521 1061*2^2474282-1 744837 L1828 2012 1522 435*2^2473905+1 744723 L3035 2017 1523 1121*2^2473401+1 744571 L3924 2017 1524 325*2^2473267-1 744531 L2017 2018 1525 889*2^2471082+1 743873 L1300 2017 1526 529*2^2470514+1 743702 L3924 2017 Generalized Fermat 1527 883*2^2469268+1 743327 L4593 2017 1528 5754*313^297824-1 743237 L5089 2020 1529 81*2^2468789+1 743182 g418 2009 1530 55154*5^1063213+1 743159 L3543 2013 1531 119*2^2468556-1 743112 L2484 2018 1532 525*2^2467658+1 742842 L3035 2017 1533 715*2^2465640+1 742235 L3035 2017 1534 26773*2^2465343-1 742147 L197 2006 1535 581*550^270707-1 741839 L4944 2020 1536 993*2^2464082+1 741766 L3035 2017 1537 1179*2^2463746+1 741665 L3035 2017 1538 857*2^2463411+1 741564 L3662 2017 1539 103*2^2462567-1 741309 L2484 2014 1540 12587*2^2462524-1 741298 L2012 2017 1541 5*2^2460482-1 740680 L503 2008 1542 763*2^2458592+1 740113 L1823 2017 1543 453*2^2458461+1 740074 L3035 2017 1544 519*2^2458058+1 739952 L3803 2017 1545 137*2^2457639+1 739826 L4021 2014 1546 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 1547 133*2^2455666+1 739232 L2322 2014 1548 99*2^2455541-1 739194 L1862 2015 1549 377*2^2452639+1 738321 L3035 2017 1550b 2189*138^345010+1 738284 L4944 2020 1551 1129*2^2452294+1 738218 L3035 2017 1552 1103*2^2451133+1 737868 L4531 2017 1553 65*2^2450614-1 737711 L2074 2014 1554 549*2^2450523+1 737684 L3035 2017 1555 4*789^254595+1 737582 L4955 2019 1556 3942*55^423771-1 737519 L4955 2019 1557 765*2^2448660+1 737123 L4412 2017 1558 607*2^2447836+1 736875 L4523 2017 1559 1005*2^2446722+1 736540 L4522 2017 1560 703*2^2446472+1 736465 L2805 2017 1561 75*2^2446050+1 736337 L3035 2013 1562 115*26^520277-1 736181 L1471 2014 1563 114986*5^1052966-1 735997 L3528 2013 1564 1029*2^2444707+1 735934 L3035 2017 1565 1035*2^2443369+1 735531 L3173 2017 1566 1017*2^2442723+1 735336 L4417 2017 1567 1065*2^2441132+1 734857 L1823 2017 1568 393*2^2436849+1 733568 L3035 2016 1569c 1425*2^2435607-1 733194 L1134 2020 1570 386892^131072+1 732377 p259 2009 Generalized Fermat 1571 465*2^2431455+1 731944 L3035 2016 1572 905*2^2430509+1 731660 L4408 2016 1573 223*2^2430490+1 731653 L4016 2014 1574 8*410^279991+1 731557 L4700 2019 1575 69*2^2428251-1 730979 L384 2014 1576 233*2^2426512-1 730456 L2484 2020 1577 645*2^2426494+1 730451 L3035 2016 1578 665*2^2425789+1 730239 L3173 2016 1579 23*2^2425641+1 730193 L2675 2011 1580 361*2^2424232+1 729770 L3035 2016 Generalized Fermat 1581 753*2^2422914+1 729373 L3035 2016 1582 5619*52^424922+1 729172 L4944 2019 1583 105*2^2422105+1 729129 L2520 2014 1584 201*2^2421514-1 728951 L1862 2016 1585 239*2^2421404-1 728918 L2484 2018 1586 577*2^2420868+1 728757 L4489 2016 1587 929*2^2417767+1 727824 L3924 2016 1588 4075*2^2417579-1 727768 L1959 2017 1589 303*2^2417452-1 727729 L2235 2018 1590 895*2^2417396+1 727712 L3035 2016 1591 1764*327^289322+1 727518 L4944 2020 Generalized Fermat 1592 5724*313^291243-1 726814 L4444 2020 1593 1081*2^2412780+1 726323 L1203 2016 1594 333*2^2412735-1 726309 L2017 2018 1595 6891*52^423132+1 726100 L4944 2019 1596 83*2^2411962-1 726075 L1959 2018 1597 69*2^2410035-1 725495 L2074 2013 1598 12362*1027^240890-1 725462 L4444 2018 1599 143157*2^2409056+1 725204 L4504 2016 1600 Phi(3,-340594^65536) 725122 p379 2015 Generalized unique 1601 339*2^2408337+1 724985 L3029 2016 1602 811*2^2408096+1 724913 L2526 2016 1603 157*2^2407958+1 724870 L1741 2014 1604 243686*5^1036954-1 724806 L3549 2013 1605 3660*163^327506+1 724509 L4955 2019 1606 303*2^2406433+1 724411 L4425 2016 1607 345*2^2405701+1 724191 L3035 2016 1608 921*2^2405056+1 723997 L2805 2016 1609 673*2^2403606+1 723561 L3035 2016 1610 475*2^2403220+1 723444 L4445 2016 1611 837*2^2402798+1 723318 L3372 2016 1612 Phi(3,-329886^65536) 723303 p379 2015 Generalized unique 1613 231*2^2402748+1 723302 L3995 2014 1614 375*2^2401881+1 723041 L2805 2016 1615 107*2^2401731+1 722996 L3998 2014 1616 1023*2^2398601+1 722054 L4414 2016 1617 539*2^2398227+1 721941 L4061 2016 1618 659*2^2397567+1 721743 L4441 2016 1619 40*844^246524+1 721416 L4001 2017 1620 465*2^2395133+1 721010 L4088 2016 1621 56*318^288096+1 720941 L1471 2019 1622 667*2^2394430+1 720799 L4408 2016 1623 15*2^2393365+1 720476 L1349 2010 1624 1642*273^295670+1 720304 L4944 2019 1625 633*2^2391222+1 719833 L3743 2016 1626 273*2^2388104+1 718894 L3668 2014 1627 118*558^261698+1 718791 L4877 2019 1628 1485*2^2386037-1 718272 L1134 2017 1629 399*2^2384115+1 717693 L4412 2016 1630 99*2^2383846+1 717612 L1780 2013 1631 737*2^2382804-1 717299 L191 2007 1632 111*2^2382772+1 717288 L3810 2014 1633 61*2^2381887-1 717022 L2432 2012 1634 202*249^299162+1 716855 L4944 2019 1635 321*2^2378535-1 716013 L2017 2018 1636 435*2^2378522+1 716010 L1218 2016 1637 4*3^1499606+1 715495 L4962 2020 Generalized Fermat 1638 147*2^2375995+1 715248 L1130 2014 1639 915*2^2375923+1 715228 L1741 2016 1640 1981*2^2375591-1 715128 L1134 2017 1641 1129*2^2374562+1 714818 L3035 2016 1642 97*2^2374485-1 714794 L2484 2018 1643 1117*2^2373977-1 714642 L1828 2012 1644 949*2^2372902+1 714318 L4408 2016 1645 659*2^2372657+1 714244 L3035 2016 1646 1365*2^2372586+1 714223 L1134 2016 1647 509*2^2370721+1 713661 L1792 2016 1648 99*2^2370390+1 713561 L1204 2013 1649 959*2^2370077+1 713468 L1502 2016 1650 1135*2^2369808+1 713387 L2520 2016 1651 125*2^2369461+1 713281 L3035 2014 1652 1183953*2^2367907-1 712818 L447 2007 Woodall 1653 57671892869766803925...(712708 other digits)...06520121133805600769 712748 p360 2013 1654 119878*5^1019645-1 712707 L3528 2013 1655 453*2^2367388+1 712658 L3035 2016 1656 150209!+1 712355 p3 2011 Factorial 1657 281*2^2363327+1 711435 L1741 2014 1658 2683*2^2360743-1 710658 L1959 2012 1659 409*2^2360166+1 710484 L1199 2016 1660 305*2^2358854-1 710089 L2017 2018 1661a 1706*123^339764+1 710078 L4944 2021 1662 403*2^2357572+1 709703 L3029 2016 1663 155*2^2357111+1 709564 L3975 2014 1664 365*2^2355607+1 709111 L2117 2016 1665 33706*6^910462+1 708482 L587 2014 1666 1087*2^2352830+1 708276 L1492 2016 1667 152*1002^235971+1 708120 L4944 2019 1668 179*2^2352291+1 708113 L1741 2014 1669 559*2^2351894+1 707994 L3924 2016 1670 24573*2^2350824+1 707673 p168 2018 1671 1035*2^2350388+1 707541 L2526 2016 1672 433*2^2348252+1 706897 L2322 2016 1673 329*2^2348105+1 706853 L3029 2016 1674 45*2^2347187+1 706576 L1349 2012 1675 7675*46^424840+1 706410 L4944 2019 1676 127*2^2346377-1 706332 L282 2009 1677 933*2^2345893+1 706188 L3035 2016 1678 903*2^2345013+1 705923 L2006 2016 1679 33*2^2345001+1 705918 L2322 2013 1680 Phi(3,-242079^65536) 705687 p379 2015 Generalized unique 1681 627*2^2343140+1 705359 L3125 2016 1682 83*2^2342345+1 705119 L2626 2013 1683 61*380^273136+1 704634 L4944 2019 1684 277*2^2340182+1 704468 L1158 2014 1685 159*2^2339566+1 704282 L3035 2014 1686 335*2^2338972-1 704104 L2235 2017 1687 22*422^268038+1 703685 L4955 2019 1688 9602*241^295318-1 703457 L4944 2019 1689 1149*2^2336638+1 703402 L4388 2016 1690 339*2^2336421-1 703336 L2519 2017 1691 231*2^2335281-1 702992 L1862 2019 1692 275293*2^2335007-1 702913 L193 2006 1693 105*2^2334755-1 702834 L1959 2018 1694 228188^131072+1 702323 g124 2010 Generalized Fermat 1695 809*2^2333017+1 702312 L2675 2016 1696 795*2^2332488+1 702152 L3029 2016 1697 3^1471170-3^529291+1 701927 p269 2019 1698 118*761^243458+1 701499 L4944 2019 1699 435*2^2329948+1 701387 L2322 2016 1700 585*2^2329350+1 701207 L2707 2016 1701 213*2^2328530-1 700960 L1863 2017 1702 1482*327^278686+1 700773 L4944 2020 1703d 26472*91^357645+1 700646 L4944 2020 1704 1107*2^2327472+1 700642 L3601 2016 1705 435*2^2327152+1 700546 L2337 2016 1706 4161*2^2326875-1 700463 L1959 2016 1707 427*2^2326288+1 700286 L2719 2016 1708 438*19^547574-1 700215 L4944 2020 1709 147855!-1 700177 p362 2013 Factorial 1710 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 1711 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 1712 374565*2^2247391+1 676538 L3532 2013 Generalized Cullen 1713 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 1714 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 1715 404882*43^404882-1 661368 p310 2011 Generalized Woodall 1716 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 1717 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 1718 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 1719 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 1720 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 1721 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 1722 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 1723 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 1724 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 1725 292402*159^292402+1 643699 g407 2012 Generalized Cullen 1726 93*10^642225-1 642227 L4789 2020 Near-repdigit 1727 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 1728 316903*10^633806+1 633812 L3532 2014 Generalized Cullen 1729 563528*13^563528-1 627745 p262 2009 Generalized Woodall 1730 437960*3^1313880+1 626886 L2777 2012 Generalized Cullen 1731 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 1732 269328*211^269328+1 626000 p354 2012 Generalized Cullen 1733 8*10^608989-1 608990 p297 2011 Near-repdigit 1734 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 1735 251749*2^2013995-1 606279 L436 2007 Woodall 1736 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 1737 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 1738 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 1739 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 1740 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 1741 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 1742 1183414*3^1183414+1 564639 L2841 2014 Generalized Cullen 1743 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 1744 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 1745 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 1746 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 1747 92*10^544905-1 544907 L3735 2015 Near-repdigit 1748 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 1749 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 1750 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 1751 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 1752 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 1753 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 1754 5*10^511056-1 511057 p297 2011 Near-repdigit 1755 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 1756 110059!+1 507082 p312 2011 Factorial 1757 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 1758 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 1759 30981*14^433735-1 497121 p77 2015 Generalized Woodall 1760 1035092*3^1035092-1 493871 L3544 2013 Generalized Woodall 1761 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 1762 321671*34^321671-1 492638 L4780 2019 Generalized Woodall 1763 216290*167^216290-1 480757 L2777 2012 Generalized Woodall 1764 1098133#-1 476311 p346 2012 Primorial 1765 87*2^1580858+1 475888 L2487 2011 Divides GF(1580856,6) 1766 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 1767 199388*233^199388-1 472028 L4780 2018 Generalized Woodall 1768 103040!-1 471794 p301 2010 Factorial 1769 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 1770 95*10^466002-1 466004 L3735 2014 Near-repdigit 1771 5*10^464843-1 464844 p297 2011 Near-repdigit 1772 3555*2^1542813-4953427788675*2^1290000-1 464437 p363 2020 Arithmetic progression (3,d=3555*2^1542812-4953427788675*2^1290000) 1773 341351*22^341351-1 458243 p260 2017 Generalized Woodall 1774 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 1775 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 1776 13*2^1499876+1 451509 g267 2004 Divides GF(1499875,3) 1777 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 1778 7*2^1491852+1 449094 p166 2005 Divides GF(1491851,6) 1779 1286*3^937499+1 447304 L2777 2012 Generalized Cullen 1780 5*10^445773-1 445774 p297 2011 Near-repdigit 1781 176660*18^353320-1 443519 p325 2011 Generalized Woodall 1782 1467763*2^1467763-1 441847 L381 2007 Woodall 1783 4125*2^1445206-2723880039837*2^1290000-1 435054 p199 2016 Arithmetic progression (3,d=4125*2^1445205-2723880039837*2^1290000) 1784 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 1785 95*2^1433853+1 431635 L2503 2011 Divides GF(1433852,3) 1786 94550!-1 429390 p290 2010 Factorial 1787 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 1788 2415*2^1413628-1489088842587*2^1290000-1 425548 p199 2017 Arithmetic progression (3,d=2415*2^1413627-1489088842587*2^1290000) 1789 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 1790 2985*2^1404275-770527213395*2^1290000-1 422733 p199 2017 Arithmetic progression (3,d=2985*2^1404274-770527213395*2^1290000) 1791 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 1792 2^1398269-1 420921 G1 1996 Mersenne 35 1793 999999998*10^419343-1 419352 L1958 2019 Near-repdigit 1794 182402*14^364804-1 418118 p325 2011 Generalized Woodall 1795 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 1796 249798*47^249798-1 417693 L4780 2018 Generalized Woodall 1797 338707*2^1354830+1 407850 L124 2005 Cullen 1798 11*2^1343347+1 404389 p169 2005 Divides GF(1343346,6) 1799 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 1800 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 1801 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 1802 94189*2^1318646+1 396957 L2777 2013 Generalized Cullen 1803 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 1804 9422094211005*2^1290000-1 388342 L3494 2020 Arithmetic progression (3,d=2227792035315*2^1290001) 1805 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 1806 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 1807 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 1808 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 1809 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 1810 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 1811 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 1812 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 1813 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 1814 1489088842587*2^1290000-1 388341 L2511 2014 Arithmetic progression (1,d=2415*2^1413627-1489088842587*2^1290000) [p199] 1815 1188581180295*2^1290000-1 388341 L3765 2014 Arithmetic progression (1,d=160128309135*2^1290001) [L3494] 1816 1957*2^1284992+1 386825 L3913 2014 Divides GF(1284991,6) 1817 5*2^1282755+1 386149 g55 2002 Divides GF(1282754,3), GF(1282748,5) 1818 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 1819 1268979*2^1268979-1 382007 L201 2007 Woodall 1820 2^1257787-1 378632 SG 1996 Mersenne 34 1821 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 1822 259738*3^779214+1 371785 L2777 2011 Generalized Cullen 1823 531*2^1233440+1 371306 L2803 2011 Divides GF(1233439,5) 1824 177482*117^177482+1 367072 g407 2008 Generalized Cullen 1825 843301#-1 365851 p302 2010 Primorial 1826 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 1827 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 1828 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 1829 1195203*2^1195203-1 359799 L124 2005 Woodall 1830 5245*2^1153762+1 347321 L1204 2013 Divides GF(1153761,12) 1831 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 1832 33*2^1130884+1 340432 L165 2006 Divides GF(1130881,12) 1833 163*2^1129934+1 340147 L1751 2010 Divides GF(1129933,10) 1834 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 1835 93*2^1087202+1 327283 L669 2010 Divides GF(1087199,12) 1836 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 1837 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 1838 1491*2^1050764+1 316315 L2826 2013 Divides GF(1050763,10) 1839 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 1840 9539*2^1034437+1 311401 L1502 2013 Divides GF(1034434,10) 1841 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 1842 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 1843 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 1844 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 1845 113*2^916801+1 275987 L153 2009 Divides GF(916800,5), GF(916800,12) 1846 3*2^916773+1 275977 g245 2001 Divides GF(916771,3), GF(916772,10) 1847 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 1848 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 1849 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 1850 2^859433-1 258716 SG 1994 Mersenne 33 1851 2^756839-1 227832 SG 1992 Mersenne 32 1852 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 1853 10^220285-949*10^110141-1 220285 p363 2016 Palindrome 1854 10^219113-535*10^109555-1 219113 p363 2016 Palindrome 1855d 10^216091-7*(10^37627-1)/9*10^89232-1 216091 p413 2020 Palindrome 1856 10^214575-20002*10^107285-1 214575 p363 2016 Palindrome 1857 10^214479-535*10^107238-1 214479 p363 2016 Palindrome 1858 Phi(3,10^104279)+(137*10^104280+731*10^93395)*(10^10884-1)/999 208559 p44 2014 Palindrome 1859 Phi(3,10^104276)+(137*10^104277+731*10^99683)*(10^4593-1)/999 208553 p44 2014 Palindrome 1860 Phi(3,10^104257)+(137*10^104258+731*10^99193)*(10^5064-1)/999 208515 p44 2014 Palindrome 1861 Phi(3,10^103289)+(137*10^103290+731*10^90449)*(10^12840-1)/999 206579 p44 2014 Palindrome 1862 13*2^684560+1 206075 g267 2003 Divides GF(684557,10), GF(684559,6) 1863 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 1864 667071*2^667071-1 200815 g55 2000 Woodall 1865 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 1866 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 1867 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 1868 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 1869 659*2^617815+1 185984 L732 2009 Divides Fermat F(617813) 1870 151*2^585044+1 176118 L446 2007 Divides Fermat F(585042) 1871 392113#+1 169966 p16 2001 Primorial 1872 366439#+1 158936 p16 2001 Primorial 1873 481899*2^481899+1 145072 gm 1998 Cullen 1874 34790!-1 142891 p85 2002 Factorial 1875 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 1876 361275*2^361275+1 108761 DS 1998 Cullen 1877 26951!+1 107707 p65 2002 Factorial 1878 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 1879 65516468355*2^333333-1 100355 L923 2009 Twin (p) 1880 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 1881 21480!-1 83727 p65 2001 Factorial 1882 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 1883 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 1884 262419*2^262419+1 79002 DS 1998 Cullen 1885 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 1886 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 1887 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 1888 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 1889 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 1890 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 1891 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 1892 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 1893 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 1894 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 1895 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 1896 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 1897 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 1898 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 1899f (27987^15313-1)/27986 68092 CH13 2020 Generalized repunit 1900 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 1901 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 1902 12770275971*2^222225-1 66907 L527 2017 Twin (p) 1903 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 1904 2*103157148^8192+1 65647 p409 2020 Cunningham chain 2nd kind (2p-1) 1905 103157148^8192+1 65647 p410 2020 Cunningham chain 2nd kind (p), generalized Fermat 1906 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 1907 556336461*2^211356+1 63634 L3494 2019 Cunningham chain 2nd kind (2p-1) 1908 556336461*2^211355+1 63633 L3494 2019 Cunningham chain 2nd kind (p) 1909 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 1910 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 1911 145823#+1 63142 p21 2000 Primorial 1912 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 1913f (28507^13831-1)/28506 61612 CH13 2020 Generalized repunit 1914 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 1915 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 1916 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 1917 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 1918 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 1919 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 1920 70965694293*2^200006-1 60219 L95 2016 Twin (p) 1921 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 1922 66444866235*2^200003-1 60218 L95 2016 Twin (p) 1923 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 1924 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 1925 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 1926 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 1927 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 1928 2003663613*2^195000-1 58711 L202 2007 Twin (p) 1929 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 1930 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 1931 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 1932 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 1933 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 1934 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 1935 191547657*2^173372-1 52199 L5116 2020 Twin (p) 1936 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 1937 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 1938 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 1939 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 1940 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 1941 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 1942 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 1943 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 1944 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 1945 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 1946 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 1947 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 1948 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 1949 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 1950 33218925*2^169690-1 51090 g259 2002 Twin (p) 1951 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 1952 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 1953 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 1954 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 1955 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 1956 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 1957 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 1958e 3706785456*13^42069+1 46873 p412 2020 Twin (p+2) 1959e 3706785456*13^42069-1 46873 p412 2020 Twin (p) 1960 22835841624*7^54321+1 45917 p296 2010 Twin (p+2) 1961 22835841624*7^54321-1 45917 p296 2010 Twin (p) 1962 1679081223*2^151618+1 45651 L527 2012 Twin (p+2) 1963 1679081223*2^151618-1 45651 L527 2012 Twin (p) 1964 9606632571*2^151515+1 45621 p282 2014 Twin (p+2) 1965 9606632571*2^151515-1 45621 p282 2014 Twin (p) 1966 151023*2^151023-1 45468 g25 1998 Woodall 1967a 773985*2^150559+1 45329 L5115 2021 Twin (p+2) 1968 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 1969 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 1970 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 1971 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 1972 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 1973 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 1974 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 1975 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 1976 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 1977 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 1978 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 1979 4158932595*2^143074-1 43080 L3494 2019 Sophie Germain (2p+1) 1980 4158932595*2^143073-1 43079 L3494 2019 Sophie Germain (p) 1981 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 1982 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 1983 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 1984 84966861*2^140219+1 42219 L3121 2012 Twin (p+2) 1985 84966861*2^140219-1 42219 L3121 2012 Twin (p) 1986 31737014565*2^140004-1 42156 L95 2010 Sophie Germain (2p+1) 1987 31737014565*2^140003-1 42156 L95 2010 Sophie Germain (p) 1988 14962863771*2^140002-1 42155 L95 2010 Sophie Germain (2p+1) 1989 12378188145*2^140002-1 42155 L95 2010 Twin (p) 1990 14962863771*2^140001-1 42155 L95 2010 Sophie Germain (p) 1991 13375563435*2^137137-1 41293 p364 2018 Sophie Germain (2p+1) 1992 13375563435*2^137136-1 41293 p364 2018 Sophie Germain (p) 1993 10429091973*2^135136-1 40691 p364 2018 Sophie Germain (2p+1) 1994 10429091973*2^135135-1 40690 p364 2018 Sophie Germain (p) 1995 73378515705*2^133148-1 40093 L167 2018 Sophie Germain (2p+1) 1996 73378515705*2^133147-1 40093 L167 2018 Sophie Germain (p) 1997 p(1289844341) 40000 c84 2020 Partitions, ECPP 1998 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 1999 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 2000 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 2001 2^116224-15905 34987 c87 2017 ECPP 2002 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 2003 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 2004 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 2005 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 2006 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 2007 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 2008 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 2009 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 2010 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 2011 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 2012 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 2013 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 2014 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 2015 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 2016 V(148091) 30950 c81 2015 Lucas number, ECPP 2017 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 2018 49363*2^98727-1 29725 Y 1997 Woodall 2019 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 2020 -τ(331^2128) 29492 c80 2015 ECPP 2021 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 2022 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 2023 V(140057) 29271 c76 2014 Lucas number,ECPP 2024 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 2025 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 2026 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 2027 primV(205011) 28552 x39 2009 Lucas primitive part 2028 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 2029 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 2030 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 2031 90825*2^90825+1 27347 Y 1997 Cullen 2032 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 2033 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 2034 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 2035 tau(157^2206) 26643 FE1 2011 ECPP 2036 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 2037 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 2038 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 2039 1036053977*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10664254*60013#) 2040 1027676400*60013#+1 25992 p155 2019 Arithmetic progression (4,d=6813491*60013#) 2041 1025139165*60013#+1 25992 p115 2019 Arithmetic progression (4,d=6205834*60013#) 2042 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 2043 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 2044 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 2045 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 2046f 10^25333-2*10^5182-3 25333 c95 2020 ECPP 2047 Phi(12345,7176)/31531760245313526865033921 25331 c54 2017 ECPP 2048 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 2049e (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 2050 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 2051 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 2052 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 2053 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 2054 6753^5122+5122^6753 25050 FE1 2010 ECPP 2055 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 2056 floor((3/2)^137752)+13566 24257 c35 2015 ECPP 2057 -tau(691^1522) 23770 c65 2014 ECPP 2058 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 2059a 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 2060 6917!-1 23560 g1 1998 Factorial 2061 primV(67,-1,13081)/65419672274940815357 23451 c84 2019 ECPP 2062 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 2063 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 2064 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 2065 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 2066 τ(257^1698) 22506 c72 2014 ECPP 2067 10^22250+57913 22251 c35 2014 ECPP 2068 2^73845+14717 22230 c61 2013 ECPP 2069 U(104911) 21925 c82 2015 Fibonacci number, ECPP 2070 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 2071 6380!+1 21507 g1 1998 Factorial 2072 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 2073b -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 2074c Phi(39855,-10) 21248 c95 2020 Unique, ECPP 2075 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 2076 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 2077 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 2078 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 2079 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 2080 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 2081 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 2082 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 2083 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 2084 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 2085 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 2086 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 2087 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 2088 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 2089 V(94823) 19817 c73 2014 Lucas number, ECPP 2090 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 2091 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 2092 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 2093 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 2094 V(89849) 18778 c70 2014 Lucas number, ECPP 2095 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 2096 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 2097 Phi(18827,10) 18480 c47 2014 Unique, ECPP 2098 42209#+1 18241 p8 1999 Primorial 2099 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 2100e V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 2101 7457*2^59659+1 17964 Y 1997 Cullen 2102 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 2103 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 2104 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 2105 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 2106 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 2107 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 2108 U(81839) 17103 p54 2001 Fibonacci number 2109 V(81671) 17069 c66 2013 Lucas number, ECPP 2110 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 2111f V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 2112 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 2113 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 2114 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 2115 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 2116 p(221444161) 16569 c77 2017 Partitions, ECPP 2117e U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 2118 U(11091,-1,4049) 16375 CH3 2005 Generalized Lucas number 2119 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 2120 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 2121 U(2554,-1,4751) 16185 CH3 2005 Generalized Lucas number 2122f V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 2123 U(1599,-1,5039) 16141 x23 2007 Generalized Lucas number 2124 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 2125 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 2126 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 2127 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 2128 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 2129 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 2130 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 2131 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 2132 (V(824,1,5277)-1)/(V(824,1,3)-1) 15379 x25 2013 Lehmer primitive part 2133 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2134 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 2135 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2136 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 2137 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 2138 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2139 (V(42995,1,3231)+1)/(V(42995,1,9)+1) 14929 x25 2012 Lehmer primitive part 2140 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 2141 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 2142 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 2143 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 2144 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 2145 (V(8003,1,3771)+1)/(V(8003,1,9)+1) 14685 x25 2013 Lehmer primitive part 2146 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 2147 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 2148 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 2149 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2150 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 2151 (V(5111,1,3789)+1)/(V(5111,1,9)+1) 14019 x25 2013 Lehmer primitive part 2152 (V(5763,1,3753)+1)/(V(5763,1,27)+1) 14013 x25 2011 Lehmer primitive part 2153 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 2154 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 2155 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 2156 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 2157 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 2158 (V(5132,1,3753)+1)/(V(5132,1,27)+1) 13825 x25 2011 Lehmer primitive part 2159 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 2160 (V(4527,1,3771)+1)/(V(4527,1,9)+1) 13754 x25 2013 Lehmer primitive part 2161 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2162 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 2163 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 2164 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 2165 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 2166 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 2167 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2168 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 2169 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 2170 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 2171 p(131328565) 12758 c77 2017 Partitions, ECPP 2172 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2173 p(130249452) 12705 c85 2017 Partitions, ECPP 2174 p(130243561) 12705 c85 2017 Partitions, ECPP 2175 p(130242827) 12705 c85 2017 Partitions, ECPP 2176 p(130232271) 12705 c85 2017 Partitions, ECPP 2177 p(130201087) 12703 c85 2017 Partitions, ECPP 2178 p(130168020) 12701 c85 2017 Partitions, ECPP 2179 p(130142600) 12700 c85 2017 Partitions, ECPP 2180 p(130123073) 12699 c85 2017 Partitions, ECPP 2181 p(130086648) 12697 c85 2017 Partitions, ECPP 2182 p(130085878) 12697 c85 2017 Partitions, ECPP 2183 p(130060601) 12696 c85 2016 Partitions, ECPP 2184 p(130000231) 12693 c59 2016 Partitions, ECPP 2185 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 2186 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 2187 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 2188 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 2189 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 2190 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 2191 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 2192 p(122110618) 12302 c77 2015 Partitions, ECPP 2193 p(120052058) 12198 c59 2012 Partitions, ECPP 2194 p(120037981) 12197 c59 2014 Partitions, ECPP 2195 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 2196 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 2197 primV(57724) 12063 p54 2001 Lucas primitive part, cyclotomy 2198 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 2199 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 2200 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 2201 primV(59018) 11789 c74 2015 Lucas primitive part, ECPP 2202 V(56003) 11704 p193 2006 Lucas number 2203 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 2204 p(110030755) 11677 c59 2014 Partitions, ECPP 2205 primV(77231) 11637 c74 2015 Lucas primitive part, ECPP 2206 primV(83481) 11631 c74 2015 Lucas primitive part, ECPP 2207 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 2208 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 2209 primV(64652) 11577 c74 2015 Lucas primitive part, ECPP 2210 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 2211 primV(56356) 11557 c74 2015 Lucas primitive part, ECPP 2212 primV(58672) 11557 c74 2015 Lucas primitive part, ECPP 2213 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 2214 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 2215 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 2216 primU(67825) 11336 x23 2007 Fibonacci primitive part 2217 3610!-1 11277 C 1993 Factorial 2218 p(100115477) 11138 c59 2016 Partitions, ECPP 2219 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 2220 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 2221 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 2222 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 2223 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 2224 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 2225 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 2226 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 2227 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 2228 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 2229 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 2230 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 2231 3507!-1 10912 C 1992 Factorial 2232 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 2233 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 2234 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 2235 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 2236 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 2237 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 2238 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 2239 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 2240 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 2241 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 2242 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 2243 V(51169) 10694 p54 2001 Lucas number 2244 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 2245 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 2246 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 2247 U(50833) 10624 CH4 2005 Fibonacci number 2248 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 2249 2683143625525*2^35176+7 10602 c92 2019 Consecutive primes arithmetic progression (2,d=6),ECPP 2250 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 2251 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 2252 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 2253 1213266377*2^35000+2429 10546 c4 2014 ECPP, consecutive primes arithmetic progression (2,d=2430) 2254 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 2255 1043085905*2^35000+18197 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=18198) 2256 1043085905*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (2,d=18198) 2257 1043085905*2^35000-18199 10546 c4 2014 ECPP, consecutive primes arithmetic progression (1,d=18198) 2258 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 2259 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 2260 3221449497221499*2^34567+5 10422 c58 2015 Triplet (3), ECPP 2261 3221449497221499*2^34567+1 10422 p296 2015 Triplet (2) 2262 3221449497221499*2^34567-1 10422 p296 2015 Triplet (1) 2263 1288726869465789*2^34567+1 10421 p296 2014 Triplet (3) 2264 1288726869465789*2^34567-1 10421 p296 2014 Triplet (2) 2265 1288726869465789*2^34567-5 10421 c58 2014 ECPP, Triplet (1) 2266 24029#+1 10387 C 1993 Primorial 2267 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 2268 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 2269 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 2270 195262026*24001#+1 10377 p155 2018 Arithmetic progression (5,d=10601738*24001#) 2271 184591880*24001#+1 10377 p155 2018 Arithmetic progression (5,d=17881715*24001#) 2272 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 2273 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 2274 23801#+1 10273 C 1993 Primorial 2275 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 2276 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 2277 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 2278 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 2279 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 2280 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 2281 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 2282 32469*2^32469+1 9779 MM 1997 Cullen 2283 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 2284 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 2285 8073*2^32294+1 9726 MM 1997 Cullen 2286 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 2287 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 2288 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 2289 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 2290 V(44507) 9302 CH3 2005 Lucas number 2291 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 2292 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 2293 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 2294 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 2295 (2^29473-1)/(5613392570256862943*24876264677503329001) 8835 c59 2012 Mersenne cofactor, ECPP 2296 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2297 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 2298 (2^28771-1)/104726441 8653 c56 2012 Mersenne cofactor, ECPP 2299 (2^28759-1)/226160777 8649 c60 2012 Mersenne cofactor, ECPP 2300 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 2301 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 2302 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 2303 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 2304 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 2305 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 2306 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2307 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 2308 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2309 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 2310 primB(119945) 8165 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2311 primB(99835) 8126 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2312 primB(96545) 8070 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2313 (2^26903-1)/1113285395642134415541632833178044793 8063 c55 2011 Mersenne cofactor, ECPP 2314 18523#+1 8002 D 1989 Primorial 2315 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 2316 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 2317 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 2318 U(37511) 7839 x13 2005 Fibonacci number 2319 primB(145545) 7824 c8 2013 Lucas Aurifeuillian primitive part, ECPP 2320 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 2321 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 2322 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 2323 (2^25933-1)/1343522383641330719274248287/55891374030173104216060503792\ 56829183569 7740 c86 2017 Mersenne cofactor 2324 V(36779) 7687 CH3 2005 Lucas number 2325 (2^25243-1)/252431/403889/43014073/449245236879223161338352589831 7551 c84 2016 Mersenne cofactor, ECPP 2326 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 2327 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 2328 V(35449) 7409 p12 2001 Lucas number 2329 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 2330 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 2331 V(34759)/27112021 7257 c33 2005 Lucas cofactor, ECPP 2332 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 2333 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 2334 Phi(9455,-10) 7200 c33 2005 Unique, ECPP 2335 Phi(1479,-100000000) 7168 c47 2009 Unique, ECPP 2336 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 2337 U(33997)/8119544695419968014626314520991088099382355441843013 7053 c8 2013 Fibonacci cofactor, ECPP 2338 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 2339 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 2340 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 2341 V(33353)/279902102741094707003083072429 6941 c8 2013 Lucas cofactor, ECPP 2342 23005*2^23005-1 6930 Y 1997 Woodall 2343 22971*2^22971-1 6920 Y 1997 Woodall 2344 Phi(2405,-10000) 6912 c47 2009 Unique, ECPP 2345 15877#-1 6845 CD 1992 Primorial 2346 Phi(10887,10) 6841 c33 2005 Unique, ECPP 2347 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 2348 primU(40295) 6737 p12 2001 Fibonacci primitive part 2349 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 2350 (2^22193-1)/1482314857/335842152520679489/5501204091835435410769069847\ 32919 6622 c90 2018 Mersenne cofactor 2351 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 2352 Phi(7357,-10) 6301 c33 2004 Unique, ECPP 2353 Phi(6437,10) 6240 c47 2008 Unique, ECPP 2354 (2^20887-1)/(694257144641*3156563122511*28533972487913*189380444251383\ 6092687) 6229 c4 2009 Mersenne cofactor, ECPP 2355 primU(43653) 6082 CH7 2010 Fibonacci primitive part 2356 primU(70455) 6019 c8 2013 Fibonacci primitive part, ECPP 2357 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 2358 primU(43359) 5939 c8 2013 Fibonacci primitive part, ECPP 2359 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 2360 13649#+1 5862 D 1987 Primorial 2361 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 2362 18885*2^18885-1 5690 K 1987 Woodall 2363 1963!-1 5614 CD 1992 Factorial 2364 13033#-1 5610 CD 1992 Primorial 2365 289*2^18502+1 5573 K 1984 Cullen, generalized Fermat 2366 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 2367 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 2368 U(25561) 5342 p54 2001 Fibonacci number 2369 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 2370 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 2371 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 2372 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 2373 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 2374 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 2375 11549#+1 4951 D 1986 Primorial 2376 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 2377 7911*2^15823-1 4768 K 1987 Woodall 2378 Phi(6685,-10) 4560 c8 2003 Unique, ECPP 2379 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 2380 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 2381 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 2382 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 2383 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 2384 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 2385 1477!+1 4042 D 1984 Factorial 2386 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 2387 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 2388 -197676570*18851280661*Bern(1836)/(59789*3927024469727) 3734 c8 2003 Irregular, ECPP 2389 12379*2^12379-1 3731 K 1984 Woodall 2390 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 2391 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 2392 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 2393 642*Bern(1802)/15720728189 3641 c8 2003 Irregular, ECPP 2394 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 2395 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 2396 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 2397 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 2398 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 2399 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 2400 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 2401 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 2402 2339662057597*10^3490+9 3503 c67 2013 Quadruplet (4) 2403 2339662057597*10^3490+7 3503 c67 2013 Quadruplet (3) 2404 2339662057597*10^3490+3 3503 c67 2013 Quadruplet (2) 2405 2339662057597*10^3490+1 3503 p364 2013 Quadruplet (1) 2406 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 2407 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 2408 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 2409 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 2410 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 2411 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 2412 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 2413 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 2414 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 2415 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2416 50946848056*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2417 26997933312*7001#+7811555753 3020 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2418 25506692100*7001#+7811555783 3020 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 2419 V(14449) 3020 DK 1995 Lucas number 2420 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 2421 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 2422 2946259686*7001#+1 3019 p155 2012 Arithmetic progression (6,d=313558156*7001#) 2423 2915000572*7001#+1 3019 p155 2012 Arithmetic progression (6,d=3093612*7001#) 2424 U(14431) 3016 p54 2001 Fibonacci number 2425 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 2426 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2427 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2428 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 2429 V(13963) 2919 c11 2002 Lucas number, ECPP 2430 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 2431 9531*2^9531-1 2874 K 1984 Woodall 2432 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 2433 6569#-1 2811 D 1992 Primorial 2434 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 2435 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 2436 V(12251) 2561 p54 2001 Lucas number 2437 974!-1 2490 CD 1992 Factorial 2438 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 2439 E(1004)/(579851915*80533376783) 2364 c4 2002 Euler irregular, ECPP 2440 7755*2^7755-1 2339 K 1984 Woodall 2441 -2090369190*Bern(1236)/(103*939551962476779*157517441360851951) 2276 c4 2002 Irregular, ECPP 2442 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 2443 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 2444 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 2445 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 2446 115624080541*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10462990078*5303#) 2447 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 2448 V(10691) 2235 DK 1995 Lucas number 2449 872!+1 2188 D 1983 Factorial 2450b -E(958)/(23041998673*60728415169*1169782469256830327*67362435411492751\ 3970319552187639) 2183 c63 2020 Euler irregular, ECPP 2451 -E(902)/(9756496279*314344516832998594237) 2069 c4 2002 Euler irregular, ECPP 2452 -E(886)/68689 2051 c4 2002 Euler irregular, ECPP 2453 4787#+1 2038 D 1984 Primorial 2454b 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 2455b 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 2456b 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 2457b 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 2458b 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 2459 U(9677) 2023 c2 2000 Fibonacci number, ECPP 2460c 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 2461c 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 2462c 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 2463c 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 2464c 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 2465 6611*2^6611+1 1994 K 1984 Cullen 2466 4583#-1 1953 D 1992 Primorial 2467 U(9311) 1946 DK 1995 Fibonacci number 2468 4547#+1 1939 D 1984 Primorial 2469 4297#-1 1844 D 1992 Primorial 2470 V(8467) 1770 c2 2000 Lucas number, ECPP 2471 4093#-1 1750 CD 1992 Primorial 2472 5795*2^5795+1 1749 K 1984 Cullen 2473 (2^5807+1)/3 1748 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 2474 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 2475 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 2476 V(7741) 1618 DK 1995 Lucas number 2477 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 2478 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 2479 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 2480 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 2481 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 2482 83*2^5318-1 1603 K 1984 Woodall 2483 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 2484 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 2485 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 2486 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 2487 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 2488 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 2489 163252711105*3371#/2+4 1443 c67 2014 Quintuplet (5) 2490 163252711105*3371#/2+2 1443 c67 2014 Quintuplet (4) 2491 163252711105*3371#/2-2 1443 c67 2014 Quintuplet (3) 2492 163252711105*3371#/2-4 1443 c67 2014 Quintuplet (2) 2493 163252711105*3371#/2-8 1443 c67 2014 Quintuplet (1) 2494 4713*2^4713+1 1423 K 1984 Cullen 2495 3229#+1 1368 D 1984 Primorial 2496 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 2497 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 2498 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 2499 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 2500 546!-1 1260 D 1992 Factorial 2501 V(5851) 1223 DK 1995 Lucas number 2502 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2503 68002763264*2749#-1 1185 p35 2012 Cunningham chain (16p+15) 2504 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 2505 U(5387) 1126 WM 1990 Fibonacci number 2506 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 2507 993530619517*2503#+1633050373 1073 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2508 495690450643*2503#+1633050403 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2509 150822742857*2503#+1633050373 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2510 94807777362*2503#+1633050373 1072 x38 2013 Consecutive primes arithmetic progression (5,d=30) 2511 587027392600*2477#*16-1 1070 p382 2016 Cunningham chain (16p+15) 2512 (2^3539+1)/3 1065 M 1989 First titanic by ECPP, generalized Lucas number, Wagstaff 2513 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 2514 469!-1 1051 BC 1981 Factorial 2515 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 2516 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 2517 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 2518 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 2519 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 2520 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 2521 R(1031) 1031 WD 1985 Repunit 2522 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 2523 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 2524 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 2525 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 2526 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 2527 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 2528 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 2529 V(4793) 1002 DK 1995 Lucas number 2530 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): BC Penk, Crandall, Buhler C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Water, Broadhurst, Primo c11 Oakes, Primo c18 Luhn, Primo c33 Chaglassian, Primo c35 Cami, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c61 Kaiser1, Broadhurst, NewPGen, OpenPFGW, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c65 Lygeros, Rozier, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Dubner, Underwood, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c72 Deloche, Lygeros, Rozier, Primo c73 Lifchitz, Underwood, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Underwood, Water, Primo c77 Batalov, Primo c79 Batalov, Water, Broadhurst, Primo c80 Lygeros, Rozier, Anonymous, Primo c81 Underwood, Water, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c85 Lasher, Broadhurst, Primo c86 Polzer, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Underwood, Broadhurst, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo CD Dubner, Caldwell, Cruncher CH10 Batalov, Primo, OpenPFGW, CHG CH12 Propper, Batalov, Primo, OpenPFGW, CHG CH13 Propper, Batalov, Primo, OpenPFGW, CHG CH2 Wu_T, Primo, OpenPFGW, CHG CH3 Water, Broadhurst, Primo, OpenPFGW, CHG CH4 Irvine, Water, Broadhurst, Primo, OpenPFGW, CHG CH7 Broadhurst, OpenPFGW, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Keller, Dubner, Cruncher DS Smith_Darren, Proth.exe FE1 Morain, FastECPP FE8 Oakes, Morain, Water, Broadhurst, FastECPP FE9 Morain, Water, Broadhurst, FastECPP g0 Gallot, Proth.exe G1 Armengaud, GIMPS, Prime95 g1 Caldwell, Proth.exe G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g124 Crickman, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g260 AYENI, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g418 Taura, NewPGen, PRP, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe g429 Underbakke, GenefX64, AthGFNSieve, PrimeGrid, Proth.exe gm Morii, Proth.exe K Keller L53 Zaveri, ProthSieve, RieselSieve, PRP, LLR L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L153 Eckhard, LLR L165 Keiser, NewPGen, OpenPFGW, LLR L167 Curtis, NewPGen, Rieselprime, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L191 Banka, NewPGen, LLR L192 Jaworski, LLR L193 Rosink, ProthSieve, RieselSieve, LLR L197 DaltonJ, ProthSieve, RieselSieve, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L282 Curtis, Srsieve, Rieselprime, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L446 Saridis, NewPGen, Proth.exe, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L587 Dettweiler, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L669 Harvey, Srsieve, PrimeGrid, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L732 Embling, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L764 Ewing, Srsieve, PrimeGrid, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1130 Adolfsson, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1158 Vogel, PSieve, Srsieve, PrimeGrid, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1199 DeRidder, PSieve, Srsieve, PrimeGrid, LLR L1201 Carpenter1, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1218 Winslow, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1230 Yooil1, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1387 Anonymous, PSieve, Srsieve, PrimeGrid, LLR L1412 Jones_M, PSieve, Srsieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1456 Webster, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1471 Gunn, Srsieve, CRUS, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1492 Eiterig, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1751 Eckhard, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1863 Wozny, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1958 DUrso, Srsieve, NewPGen, OpenPFGW, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2006 Rix, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2017 Hubbard, PSieve, Srsieve, NPLB, LLR L2030 Tonner, PSieve, Srsieve, PrimeGrid, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2074 Minovic, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2337 Schmalen, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2432 Sutton1, PSieve, Srsieve, Rieselprime, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2487 Liao, PSieve, Srsieve, PrimeGrid, LLR L2503 Zhan1, PSieve, Srsieve, PrimeGrid, LLR L2511 Johnson6, TwinGen, PrimeGrid, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2519 Schmidt2, PSieve, Srsieve, NPLB, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2606 Slakans, PSieve, Srsieve, PrimeGrid, LLR L2626 DeKlerk, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2675 Ling, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2691 Pettersen, PSieve, Srsieve, PrimeGrid, LLR L2707 Out, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2803 Barbyshev, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2826 Jeudy, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3054 Winslow, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3121 Kwok, NewPGen, TPS, LLR L3125 Rizman, PSieve, Srsieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3249 Lind, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3459 Boruvka, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3528 Batalov, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3543 Yama, PrimeGrid, LLR L3544 Minovic, Gcwsieve, GenWoodall, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3549 Hirai, Srsieve, PrimeGrid, LLR L3552 Benson2, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3601 Jablonski1, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3668 Prokopchuk, PSieve, Srsieve, PrimeGrid, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3743 Parker1, PSieve, Srsieve, PrimeGrid, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3765 Ruch, TwinGen, PrimeGrid, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3810 Radle, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3910 Bischof, PSieve, Srsieve, PrimeGrid, LLR L3913 Kadohara, PSieve, Srsieve, PrimeGrid, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3975 Hou, PSieve, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L3995 Unbekannt, PSieve, Srsieve, PrimeGrid, LLR L3998 Rossman, PSieve, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4016 Bedenbaugh, PSieve, Srsieve, PrimeGrid, LLR L4021 Busse, PSieve, Srsieve, PrimeGrid, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4043 Niedbala, PSieve, Srsieve, PrimeGrid, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4061 Lee, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4088 Graeber, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4142 Batalov, CycloSv, EMsieve, PIES, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4148 Glatte, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4388 Mena, PSieve, Srsieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4404 Stepnicka, PSieve, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4412 Simpson3, PSieve, Srsieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4417 Rasp, PSieve, Srsieve, PrimeGrid, LLR L4425 Weber1, PSieve, Srsieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4441 Miyauchi, PSieve, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4445 Leudesdorff, PSieve, Srsieve, PrimeGrid, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4489 Szreter, PSieve, Srsieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4522 Lorsung, PSieve, Srsieve, PrimeGrid, LLR L4523 Mull, PSieve, Srsieve, PrimeGrid, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4531 Butez, PSieve, Srsieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4593 Mangio, PSieve, Srsieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4598 Connaughty, PSieve, Srsieve, PrimeGrid, LLR L4600 Simbarsky, PSieve, Srsieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4683 Bird2, Srsieve, CRUS, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4696 Plottel, PSieve, Srsieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4703 Pacini, PSieve, Srsieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4710 Wiedemann, PSieve, Srsieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4712 Gravemeyer, PSieve, Srsieve, PrimeGrid, LLR L4713 Post, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4780 Harvey, Gcwsieve, MultiSieve, GenWoodall, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4796 White2, PSieve, Srsieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4816 Doenges, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4821 Svantner, PSieve, Srsieve, PrimeGrid, LLR L4822 Magklaras, PSieve, Srsieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4824 Allivato, PSieve, Srsieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4830 Eisler1, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4876 Tennant, Srsieve, CRUS, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4911 Calveley, Srsieve, CRUS, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 SRBase, Srsieve, CRUS, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4962 Baur, Srsieve, NewPGen, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5089 MARSIN, Srsieve, CRUS, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 United, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p35 Augustin, NewPGen, OpenPFGW p44 Broadhurst, OpenPFGW p54 Water, Broadhurst, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p77 Harvey, MultiSieve, GenWoodall, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Underwood, Frind, OpenPFGW p115 DavisK, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p166 Yamada, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p168 Cami, OpenPFGW p169 Eaton, NewPGen, PRP, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p199 Broadhurst, NewPGen, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p255 Siemelink, Srsieve, CRUS, OpenPFGW p259 Underbakke, GenefX64, AthGFNSieve, OpenPFGW p260 Harvey, Gcwsieve, MultiSieve, GenWoodall, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p269 Zhou, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p282 Rajala, NewPGen, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p297 Broadhurst, Srsieve, NewPGen, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p325 Broadhurst, Gcwsieve, MultiSieve, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p354 Koen, Gcwsieve, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p360 Kinne, Exoo, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p387 Zimmerman, GeneFer, AthGFNSieve, PrimeGrid, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p410 Brown1, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p412 Gelhar, Srsieve, OpenPFGW p413 Morimoto, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Gage, Slowinski WD Dubner, Williams, Cruncher WM Williams, Morain x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Water, Broadhurst x23 Renze, Water, Broadhurst, Primo, OpenPFGW x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Water, Broadhurst, Primo, OpenPFGW x28 Iskra x33 Carmody, Renze, Water, Broadhurst, Primo, OpenPFGW x36 Irvine, Carmody, Renze, Water, Broadhurst, Primo, OpenPFGW x38 Broadhurst, Primo, OpenPFGW x39 Keller, Dubner, Broadhurst, Primo, OpenPFGW x44 Zhou, Unknown x45 Batalov, Primo, OpenPFGW, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown Y Young