1128330746865 · 266441 - 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

Description:1128330746865 · 266441 - 1
Verification status (*):Proven
Official Comment (*):Cunningham chain (4p+3)
Proof-code(s): (*):p158 : Paridon, NewPGen, OpenPFGW
Decimal Digits:20013   (log10 is 20012.786378333)
Rank (*):66889 (digit rank is 1)
Entrance Rank (*):66124
Currently on list? (*):short
Submitted:2/18/2020 10:49:31 CDT
Last modified:2/18/2020 11:20:22 CDT
Database id:130566
Status Flags:TrialDiv
Score (*):34.5882 (normalized score 0)

Archival tags:

There are certain forms classed as archivable: these prime may (at times) remain on this list even if they do not make the Top 5000 proper.  Such primes are tracked with archival tags.
Cunningham Chains (1st kind) (archivable class *)
Prime on list: yes, rank 1, weight 44.2762310596512
Subcategory: "Cunningham chain (4p+3)"
(archival tag id 223831, tag last modified 2020-02-18 11:20:28)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id130566
person_id9
machineUsing: Xeon 4c+4c 3.5GHz
whatprime
notesCommand: /home/caldwell/client/llr.pl 1128330746865*2^66441-1 2>&1 Starting Lucas Lehmer Riesel prime test of 1128330746865*2^66441-1 Using zero-padded AVX FFT length 8K, Pass1=128, Pass2=64 V1 = 9 ; Computing U0... V1 = 9 ; Computing U0...done.Starting Lucas-Lehmer loop... 1128330746865*2^66441-1 is prime! (20013 decimal digits) Time : 2.750 sec. [Elapsed time: 3.00 seconds]
modified2020-07-07 17:30:10
created2020-02-18 10:51:01
id176250

Query times: 0.0005 seconds to select prime, 0.0006 seconds to seek comments.
Printed from the PrimePages <primes.utm.edu> © Chris Caldwell.