40779 · 2266901 - 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

Description:40779 · 2266901 - 1
Verification status (*):Proven
Official Comment (*):[none]
Proof-code(s): (*):L113 : Chatfield, NewPGen, LLR
Decimal Digits:80350   (log10 is 80349.817309284)
Rank (*):48966 (digit rank is 1)
Entrance Rank (*):3513
Currently on list? (*):no
Submitted:4/17/2006 13:35:32 CDT
Last modified:7/7/2006 10:12:26 CDT
Removed (*):2/17/2007 12:07:28 CDT
Database id:77611
Status Flags:none
Score (*):38.88 (normalized score 0.0037)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
machineWinXP Pent_M 1.7GHz Laptop
notesCommand: pfgw.exe -n -tp -q"40779*2^266901-1" 2>&1 PFGW Version 20030811.Win_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] Running N+1 test using discriminant 5, base 1+sqrt(5) N+1: 40779*2^266901-1 265000/26Primality testing 40779*2^266901-1 [N+1, Brillhart-Lehmer-Selfridge] Calling Brillhart-Lehmer-Selfridge with factored part 99.99% 40779*2^266901-1 is prime! (1856.2121s+0.0007s) 6918 [Elapsed time: 1855 seconds]
modified2020-07-07 17:30:42
created2006-04-17 18:45:37

machineGenToo P3 400MHz
notesCommand: /home/caldwell/client/TrialDiv/TrialDiv -q 40779 2 266901 -1 2>&1 [Elapsed time: 9.234 seconds]
modified2020-07-07 17:30:42
created2006-07-07 10:12:17

Query times: 0.0003 seconds to select prime, 0.0003 seconds to seek comments.
Printed from the PrimePages <primes.utm.edu> © Chris Caldwell.