21889763805 · 2333333 - 1

At this site we maintain a list of the 5000 Largest Known Primes which is updated hourly. This list is the most important PrimePages database: a collection of research, records and results all about prime numbers. This page summarizes our information about one of these primes.

Description:21889763805 · 2333333 - 1
Verification status (*):Proven
Official Comment (*):[none]
Proof-code(s): (*):L392 : Rodenkirk, NewPGen, PrimeGrid, TPS, LLR
Decimal Digits:100354   (log10 is 100353.57178574)
Rank (*):43592 (digit rank is 1311)
Entrance Rank (*):3933
Currently on list? (*):no
Submitted:9/26/2007 09:37:35 CDT
Last modified:9/26/2007 13:07:25 CDT
Removed (*):1/14/2008 09:03:18 CDT
Database id:82387
Status Flags:none
Score (*):39.5651 (normalized score 0.0092)

Verification data:

The Top 5000 Primes is a list for proven primes only. In order to maintain the integrity of this list, we seek to verify the primality of all submissions.  We are currently unable to check all proofs (ECPP, KP, ...), but we will at least trial divide and PRP check every entry before it is included in the list.
fieldvalue
prime_id82387
person_id9
machineRedHat P4 P4
whattrial_divided
notesCommand: /home/caldwell/client/TrialDiv/TrialDiv -q 21889763805 2 333333 -1 2>&1 [Elapsed time: 9.575 seconds]
modified2020-07-07 17:30:40
created2007-09-26 09:53:00
id93876

fieldvalue
prime_id82387
person_id9
machineRedHat P4 P4
whatprime
notesCommand: /home/caldwell/client/llr.pl 21889763805*2^333333-1 2>&1 Starting Lucas Lehmer Riesel prime test of 21889763805*2^333333-1 V1 = 21 ; Computing U0... Done Computing U0. Starting Lucas-Lehmer loop... 21889763805*2^333333-1 is prime! Time: 1284.868 sec. [Elapsed time: 21.42 minutes]
modified2020-07-07 17:30:40
created2007-09-26 12:46:00
id93886

Query times: 0.0001 seconds to select prime, 0.0002 seconds to seek comments.
Printed from the PrimePages <primes.utm.edu> © Chris Caldwell.