Database Search Output
(Another of the Prime Pages' resources)
The Largest Known Primes Icon
  View this page in:   language help
 
GIMPS has discovered a new largest known prime number: 282589933-1 (24,862,048 digits)

-----  -------------------------------- ------- ----- ---- --------------
 rank           description              digits  who year comment
-----  -------------------------------- ------- ----- ---- --------------
   24  2805222*5^5610444+1              3921539 L4972 2019 Generalized Cullen
   73  322498*5^2800819-1               1957694 L4954 2019 
   74  88444*5^2799269-1                1956611 L3523 2019 
   75  138514*5^2771922+1               1937496 L4937 2019 
   79  194368*5^2638045-1               1843920  L690 2018 
   80  66916*5^2628609-1                1837324  L690 2018 
   88  327926*5^2542838-1               1777374 L4807 2018 
   89  81556*5^2539960+1                1775361 L4809 2018 
  107  301562*5^2408646-1               1683577 L4675 2017 
  109  171362*5^2400996-1               1678230 L4669 2017 
  123  180062*5^2249192-1               1572123 L4435 2016 
  127  53546*5^2216664-1                1549387 L4398 2016 
  136  296024*5^2185270-1               1527444  L671 2016 
  140  92158*5^2145024+1                1499313 L4348 2016 
  142  77072*5^2139921+1                1495746 L4340 2016 
  143  306398*5^2112410-1               1476517 L4274 2016 
  145  154222*5^2091432+1               1461854 L3523 2015 
  149  100186*5^2079747-1               1453686 L4197 2015 
  155  144052*5^2018290+1               1410730 L4146 2015 
  186  109208*5^1816285+1               1269534 L3523 2014 
  190  325918*5^1803339-1               1260486 L3567 2014 
  191  133778*5^1785689+1               1248149 L3903 2014 
  193  24032*5^1768249+1                1235958 L3925 2014 
  204  138172*5^1714207-1               1198185 L3904 2014 
  209  22478*5^1675150-1                1170884 L3903 2014 
  225  326834*5^1634978-1               1142807 L3523 2014 
  231  207394*5^1612573-1               1127146 L3869 2014 
  234  104944*5^1610735-1               1125861 L3849 2014 
  242  330286*5^1584399-1               1107453 L3523 2014 
  292  22934*5^1536762-1                1074155 L3789 2014 
  312  178658*5^1525224-1               1066092 L3789 2014 
  347  59912*5^1500861+1                1049062 L3772 2014 
  360  37292*5^1487989+1                1040065 L3553 2013 
  427  173198*5^1457792-1               1018959 L3720 2013 
  599  245114*5^1424104-1                995412 L3686 2013 
  600  175124*5^1422646-1                994393 L3686 2013 
  653  256612*5^1335485-1                933470  L259 2013 
  713  268514*5^1292240-1                903243 L3562 2013 
  750  97366*5^1259955-1                 880676 L3567 2013 
  751  243944*5^1258576-1                879713 L3566 2013 
  793  84466*5^1215373-1                 849515 L3562 2013 
  819  150344*5^1205508-1                842620 L3547 2013 
  944  1396*5^1146713-1                  801522 L3547 2013 
  972  92182*5^1135262+1                 793520 L3547 2013 
  981  17152*5^1131205-1                 790683 L3552 2013 
  996  329584*5^1122935-1                784904 L3553 2013 
 1075  305716*5^1093095-1                764047 L3547 2013 
 1097  130484*5^1080012-1                754902 L3547 2013 
 1139  55154*5^1063213+1                 743159 L3543 2013 
 1170  114986*5^1052966-1                735997 L3528 2013 
 1207  243686*5^1036954-1                724806 L3549 2013 
 1255  119878*5^1019645-1                712707 L3528 2013 
 1317  65536*5^997872+1                  697488 L3802 2014 Generalized Fermat
 1343  97768*5^987383-1                  690157 L1016 2013 
 1519  70082*5^936972-1                  654921 L3523 2013 
 1542  102976*5^929801-1                 649909 L3313 2013 
 1587  110488*5^917100+1                 641031 L3354 2013 
 1603  254*5^911506-1                    637118  p292 2010 
 1787  4*5^864751-1                      604436 L4881 2019 
 1833  162434*5^856004-1                 598327 L3410 2013 
 1837  174344*5^855138-1                 597722 L3354 2013 
 1885  57406*5^844253-1                  590113 L3313 2012 
 1955  48764*5^831946-1                  581510 L3313 2012 
 2178  162668*5^785748-1                 549220 L3190 2012 
 2282  289184*5^770116-1                 538294  p353 2012 
 2288  11812*5^769343-1                  537752  p341 2012 
 2315  316594*5^766005-1                 535421 L3157 2012 
 2339  190088*5^760352-1                 531469 L2841 2012 Generalized Woodall
 2386  4*5^754611-1                      527452 L4881 2019 
 2394  340168*5^753789-1                 526882  p323 2012 
 2459  338948*5^743996-1                 520037  p352 2012 
 2514  18656*5^735326-1                  513976  p280 2012 
 2768  5374*5^723697-1                   505847  p351 2012 
 3029  72532*5^708453-1                  495193  p341 2012 
 3407  2488*5^679769-1                   475142  p321 2011 
 3460  331882*5^674961-1                 471784  p333 2011 
 4015  7194*5^651779+1                   455578 L4786 2019 
 4224  27994*5^645221-1                  450995  p324 2011 
 4287  262172*5^643342-1                 449683  p323 2011 
 4369  49568*5^640900-1                  447975  p321 2011 
 4708  252468*5^630490+1                 440700 L4786 2019 
-----  -------------------------------- ------- ----- ---- --------------
Used 0 second(s) to find 81 primes matching the selection criteria: Find 300 primes of the form: k*5^n+/-1 . Query is SELECT * FROM prime WHERE description REGEXP '^[[:digit:]]+\\*5\\^[[:digit:]]+[\\+\\-]1' AND (onlist = 'yes' OR onlist = 'short') ORDER BY rank.