Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
email list
FAQ
Prime Lists
Titans
Submit primes

This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home  Author index  Key index  Search ] All items with author Crandall (sorted by date)
 BCP82
 J. P. Buhler, R. E. Crandall and M. A. Penk, "Primes of the form n! ± 1 and 2 · 3 · 5 ^{...} p ± 1," Math. Comp., 38:158 (1982) 639643. Corrigendum in Math. Comp. 40 (1983), 727. MR 83c:10006
 BCS1992
 J. P. Buhler, R. E. Crandall and R. W. Sompolski, "Irregular primes to one million," Math. Comp., 59:200 (1992) 717722. MR 93a:11106
 BCEM1993
 J. Buhler, R. Crandall, R. Ernvall and T. Metsänkylä, "Irregular primes and cyclotomic invariants to four million," Math. Comp., 61:203 (1993) 151153. MR 93k:11014
 CF94
 R. Crandall and B. Fagin, "Discrete weighted transforms and largeinteger arithmetic," Math. Comp., 62:205 (1994) 305324. MR 94c:11123
 CDNY95
 R. Crandall, J. Doenias, C. Norrie and J. Young, "The twentysecond Fermat number is composite," Math. Comp., 64 (1995) 863868. MR 95f:11104
 Crandall96
 R. Crandall, Topics in advanced scientific computation, SpringerVerlag, 1996. MR 97g:65005
 CDP97
 R. Crandall, K. Dilcher and C. Pomerance, "A search for Wieferich and Wilson primes," Math. Comp., 66:217 (1997) 433449. MR 97c:11004 (Abstract available)
 BBC1999
 J. M. Borwein, D. M. Bradley and R. E. Crandall, "Computational strategies for the Riemann zeta function," J. Comput. Appl. Math., 121:12 (2000) 247296. Numerical analysis in the 20th century, Vol. I, Approximation. MR 2001h:11110
 BCEMS2000
 J. Buhler, R. Crandall, R. Ernvall, T. Metsankyla and M. Shokrollahi, "Irregular primes and cyclotomic invariants to 12 million," J. Symbolic Comput., 31:12 (2001) 8996. MR 2001m:11220
 CP2001
 R. Crandall and C. Pomerance, Prime numbers: a computational perspective, SpringerVerlag, New York, NY, 2001. pp. xvi+545, ISBN 0387947779. MR 2002a:11007 (Abstract available) [This is a valuable text written by true experts in two different areas: computational and theoretical respectively. There is now a second edition [CP2005].]
 CMP2003
 R. E. Crandall, E. W. Mayer and J. S. Papadopoulos, "The twentyfourth Fermat number is composite," Math. Comp., 72 (2003) 15551572. (Abstract available)
 CP2005
 R. Crandall and C. Pomerance, Prime numbersa computational approach, Second edition, Springer, 2005. New York, pp. xvi+597, ISBN 9780387252827; 0387252827. MR2156291
