Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
email list
FAQ
Prime Lists
Titans
Submit primes

This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home  Author index  Key index  Search ] All items with author Riele (sorted by date)
 LRW86
 J. van de Lune, H. J. J. te Riele and D. T. Winter, "On the zeros of the Riemann zeta function in the critical strip. IV," Math. Comp., 46 (1986) 667681. MR 87e:11102 [The first 1,500,000,001 nontrivial zeros of the Riemann zeta function.]
 VTW86
 van de Lune, J., te Riele, H. J. J. and Winter, D. T., "On the zeros of the Riemann zeta function in the critical strip, iv," Math. Comp., 46:174 (1986) 667681. MR 87e:11102
 GRL89
 A. Granville, H. J. J. te Riele and J. van de Lune,"Checking the Goldbach conjecture on a vector computer" in Number theory and its applications. R. A. Mollin editor, Kluwer, 1989. Dordrect, pp. 423433,
 BCR91
 R. P. Brent, G. L. Cohen and H. J. J. te Riele, "Improved techniques for lower bounds for odd perfect numbers," Math. Comp., 57:196 (1991) 857868. MR 92c:11004
 BPR96
 R. Brent, A. van der Poorten and H. J. J. te Riele, A comparative study of algorithms for computing continued fractions of algebraic numbers. In "Algorithmic Number Theory, Second International Symposium," SpringerVerlag, 1996. Berlin, pp. 3749, ANTSII in Talence France, May 1823, 1996. MR 98c:11144
 DERZ97
 J. M. Deshouillers, G. Effinger, H. te Riele and D. Zinoviev, "A complete Vinogradov 3primes theorem under the Riemann hypothesis," ERA Amer. Math. Soc., 3 (1997) 94104. MR 98g:11112 (Abstract available)
 DRS98
 J. M. Deshouillers, H. J. J. te Riele and Y. Saouter, New experimental results concerning the Goldbach conjecture. In "Proc. 3rd Int. Symp. on Algorithmic Number Theory," Lecture Notes in Computer Science Vol, 1423, 1998. pp. 204215, MR 2000j:11143
