Home
Search Site
Largest
Finding
How Many?
Mersenne
Glossary
Prime Curios!
email list
FAQ
Prime Lists
Titans
Submit primes

This is the Prime Pages'
interface to our BibTeX database. Rather than being an exhaustive database,
it just lists the references we cite on these pages. Please let me know of any errors you notice.References: [ Home  Author index  Key index  Search ] All items with keys beginning with the letter(s): pq
 Paxson61
 G. A. Paxson, "The compositeness of the thirteenth Fermat number," Math. Comp., 15 (1961) 420.
 Pepin77
 T. Pepin, "Sur la formule 2^{2n}+1," C. R. Acad. Sci. Paris, 85 (1877) 329331.
 Pepin78
 T. Pepin, "Sur la formule 2^{n}  1," C. R. Acad. Sci. Paris, 86 (1878) 307310.
 Peretti1987
 Peretti, A., "The quantity of Sophie Germain primes less than x," Bull. Number Theory Related Topics, 11:13 (1987) 8192. MR 995537
 Peterson2000
 I. Peterson, "Prime proof zeros in on crucial numbers," Science News, 158 (December 2000) 357. Short note that Miailescu showed solutions to Catalan's are Wierferich double primes.
 Peterson85
 I. Peterson, "Prime time for supercomputers," Science News, 128 (1985) 199.
 Peterson88
 I. Peterson, "Priming for a lucky strike," Science News, 133 (1988) 85.
 Peterson92
 I. Peterson, "Striking paydirt in primenumber terrain," Science News, 141:14 (1992) 213. [Discusses the discovery of the Mersenne prime 2^{756839} 1]
 Peterson93
 I. Peterson, "Dubner's primes," Science News, 144:21 (1993) 331. [Discusses the Dubner Cruncher [DD85] and a few of Dubner's record primes.]
 PH2002
 Perschell, Karaloine and Huff, Loran, "Mersenne primes in imaginary quadratic number fields," (2002) avaliable from http://www.utm.edu/staff/caldwell/preprints/kpp/Paper2.pdf. (Abstract available)
 Pi1998
 Pi, Xin Ming, "Searching for generalized Fermat primes," J. Math. (Wuhan), 18:3 (1998) 276280. MR 1656292
 Pi1999
 X. M. Pi, "Primes of the form (2^{p}+1)/3," J. Math. (Wuhan), 19 (1999) 199202. MR 2000i:11016 [The author proves the primality of (2^{p}+1)/3 for p=1709 and 2617.]
 Pi2002
 Pi, Xin Ming, "Generalized Fermat primes for b < 2000, m< 10," J. Math. (Wuhan), 22:1 (2002) 9193. MR 1897106
 Picutti1989
 E. Picuttii, "Pour l'histoire des sept premiers nombres parfaits," Historia Mathematica, 16 (1989) 123136.
 Pierpont1895
 J. Pierpont, "On an undemonstrated theorem of the Disquisitiones Aritmeticae," American Mathematical Society Bulletin,:2 (18951896) 77  83.
 Pinch2000
 R. Pinch, The pseudoprimes up to 10^{13}. In "Algorithmic number theory (Leiden, 2000)," Lecture Notes in Comput. Sci. Vol, 1838, SpringerVerlag, 2000. Berlin, pp. 459473, MR 2002g:11177
 Pinch93
 R. Pinch, "The Carmichael numbers up to 10^{15}," Math. Comp., 61:203 (1993) 381391. MR 93m:11137 [A preprint and several data files may be found in the Carmichael directory of his FTP site. For example, he lists the Carmichaels to 10^{17}.]
 Pinch93a
 R. G. E. Pinch, "Some primality testing algorithms," Notices Amer. Math. Soc., 40 (1993) 12031210. [This article describes the primality testing algorithms in use in some popular computer algebra systems, and gives examples where they break down in practice.]
 Pinch98
 R. Pinch, "Economical numbers," (1998) preprint. (Annotation available)
 Platt2012
 D. J. Platt, "Computing π(x) analytically," preprint. Available from http://arxiv.org/abs/1203.5712.
 PMT95
 P. Pritchard, A. Moran and A. Thyssen, "Twentytwo primes in arithmetic progression," Math. Comp., 64:211 (1995) 13371339. MR 95j:11003
Abstract:
Some newlydiscovered arithmetic progressions of primes are presented, including five of length twentyone and one of length twentytwo.
 Pocklington14
 H. C. Pocklington, "The determination of the prime or composite nature of large numbers by Fermat's theorem," Proc. Cambridge Phil. Soc., 18 (19141916) 2930.
 Pollard74
 J. Pollard, "Theorems of factorization and primality testing," Proc. Cambridge Phil. Soc., 76 (1974) 521528. [Pollard introduces his p1 factoring method.]
 Pollard75
 J. Pollard, "Monte Carlo method for factorization," BIT, 15 (1975) 331334. [Pollard introduces his rho method.]
 Polya59
 G. Pólya, "Heuristic reasoning in the theory of numbers," Amer. Math. Monthly, 66 (1959) 375384.
 Pomerance1986
 C. Pomerance, "On primitive divisors of Mersenne numbers," Acta Arith., 46:4 (1986) 355367. MR871278
 Pomerance81
 C. Pomerance, "Recent developments in primality testing," Math. Intelligencer, 3:3 (1980/81) 97105. MR 83h:10015
 Pomerance82
 C. Pomerance, "The search for prime numbers," Scientific American, 247:6 (December 1982) 136147,178.
 Pomerance84
 C. Pomerance, Lecture notes on primality testing and factoring (notes by G. M. Gagola Jr.), Notes Vol, 4, Mathematical Association of America, 1984. pp. 34 pages,
 Pomerance94
 C. Pomerance, Lecture notes in primality testing and factoringa short course at Kent State University, MAA Notes Vol, 4, MAA, 1984. [ISBN 0883580540]
 Pomerance94a
 C. Pomerance editor, Cryptology and computational number theoryan introduction, Proc. Symp. Appl. Math. Vol, 42, Amer. Math. Soc., 1990. Providence, RI, pp. 112, MR 92e:94023
 Poussin1989
 C. de la Vallée Poussin, "Sur les valeurs moyennes de certaines fonctions arithmétiques," Annales de la société scientifique de Bruxelles, 22 (1898) 8490.
 Powers11
 R. E. Powers, "The tenth perfect number," Amer. Math. Monthly, 18 (1911) 195197.
 Powers14
 R. E. Powers, "On Mersenne's numbers," Proc. Lond. Math. Soc., 13 (1914) xxxix.
 Pritchard87
 P. Pritchard, "Linear primenumber sieves: a family tree," Sci. Comput. Programming, 9:1 (1987) 1735. MR 88j:11087 [A comparison of recent sieves such as the sieve of Eratosthenes.]
 Proth1878
 F. Proth, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, 85 (1877) 329331.
 PS2002
 A. Paszkiewicz and A. Schinzel, "On the least prime primitive root modulo a prime," Math. Comp., 71:239 (2002) 13071321. MR 2003d:11006 (Abstract available)
 PSS89
 J. Pintz, W. L. Steiger and E. Szemerédi, "Infinite sets of primes with fast primality tests and quick generation of large primes," Math. Comp., 53:187 (1989) 399406. MR 90b:11141
 PSW80
 C. Pomerance, J. L. Selfridge and Wagstaff, Jr., S. S., "The pseudoprimes to 25 · 10^{9}," Math. Comp., 35:151 (1980) 10031026. MR 82g:10030 [See Richard Pinch's lists of pseudoprimes and [Jaeschke93].]
 PSZ90
 B. K. Parady, J. F. Smith and S. E. Zarantonello, "Largest known twin primes," Math. Comp., 55 (1990) 381382. MR 90j:11013
 PTVF93
 W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical recipes in C : the art of scientific computing, Cambridge University Press, 1993. pp. xxvi+963, ISBN 0521431085. MR 93i:65001b
