![]() |
Factorial primes |
There is more information of primorial and factorial primes in [Dubner87] and [Dubner89a].
>rank prime digits who when comment 1 208003! - 1 1015843 p394 Jul 2016 Factorial 2 150209! + 1 712355 p3 Oct 2011 Factorial 3 147855! - 1 700177 p362 Sep 2013 Factorial 4 110059! + 1 507082 p312 Jun 2011 Factorial 5 103040! - 1 471794 p301 Dec 2010 Factorial 6 94550! - 1 429390 p290 Oct 2010 Factorial 7 34790! - 1 142891 p85 May 2002 Factorial 8 26951! + 1 107707 p65 May 2002 Factorial 9 21480! - 1 83727 p65 Sep 2001 Factorial 10 6917! - 1 23560 g1 Oct 1998 Factorial 11 6380! + 1 21507 g1 Oct 1998 Factorial 12 3610! - 1 11277 C Oct 1993 Factorial 13 3507! - 1 10912 C Oct 1992 Factorial 14 1963! - 1 5614 CD Oct 1992 Factorial 15 1477! + 1 4042 D Dec 1984 Factorial 16 974! - 1 2490 CD Oct 1992 Factorial 17 872! + 1 2188 D Dec 1983 Factorial 18 546! - 1 1260 D Oct 1992 Factorial 19 469! - 1 1051 BC Dec 1981 Factorial
- BCP82
- J. P. Buhler, R. E. Crandall and M. A. Penk, "Primes of the form n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 38:158 (1982) 639--643. Corrigendum in Math. Comp. 40 (1983), 727. MR 83c:10006
- Borning72
- A. Borning, "Some results for k! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 26 (1972) 567--570. MR 46:7133
- Caldwell95
- C. Caldwell, "On the primality of n! ± 1 and 2 · 3 · 5 ... p ± 1," Math. Comp., 64:2 (1995) 889--890. MR 95g:11003
- CG2000
- C. Caldwell and Y. Gallot, "On the primality of n! ± 1 and 2 × 3 × 5 × ... × p ± 1," Math. Comp., 71:237 (2002) 441--448. MR 2002g:11011 (Abstract available) (Annotation available)
- Dubner87
- H. Dubner, "Factorial and primorial primes," J. Recreational Math., 19:3 (1987) 197--203.
- Krizek2008
- M. Křížek and L. Somer, "Euclidean primes have the minimum number of primitive roots," JP J. Algebra Number Theory Appl., 12:1 (2008) 121--127. MR2494078
- Templer80
- M. Templer, "On the primality of k! + 1 and 2 * 3 * 5 * ... * p + 1," Math. Comp., 34 (1980) 303-304. MR 80j:10010