The book is now available! First missing Curio!
(another Prime Pages' Curiosity)
Prime Curios!
Curios: Curios Search:
 

Participate:
Share
The nth Prime Page will now find any of the first 2.623˙1015 primes or π(x) for x up to 1017.

We have presented prime curios for hundreds of integers, but still have missed so many!  The first prime number which is missing a prime curio is

4127 followed by:
41574271428343494363
43914447451745194547
45494591459746034637
Does that mean there is no prime number related curiosity about this integer?

No, just that we have not found one worthy of inclusion yet.  In fact, below is a proof (okay, a joke proof), that every positive integer has an associated prime curio.  So if you know a great curio for 4127, please submit it today!

First we need a definition.  We will be a little stronger than Merriam-Webster's definition of curio and make our curios short:

A prime curio about n is a novel, rare or bizarre statement about primes involving n that can be typed using at most 100 keystrokes.

Theorem: Every positive integer n has an associated prime curio.

"Proof": Let S be the set of positive integers for which there is no associated prime curiosity.  If S is empty, then we are done.  So suppose, for proof by contradiction, that S is not empty.  By the well-ordering principle S has a least element, call it n.  Then n is the least positive integer for which there is no associated prime curio.  But our last statement is a prime curio for n, a contradiction showing S does not have a least element and completing the proof.

(For further discussion of this pseudo-proof, see the page a Curious Paradox.)


Prime Curios! © 2000-2016 (all rights reserved)